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A Numerical Investigation for 
Curved Pipe Flow at High 
Reynolds Number 
A numerical scheme for solving the curved pipe flow at high Reynolds number is 
presented in considerable detail. This paper complements an earlier paper 
presenting mainly numerical results. An efficient scheme based on the conventional 
Telenin method is developed to solve the general three-dimensional Laplace 
equation subject to Dirichlet, Neumann, or mixed boundary conditions. 

1 Introduction 

Numerous investigations of curved pipe flow have been 
carried out since the first theoretical studies due to Dean [1, 
2). A brief survey of the more important work on this topic is 
given by Yeung [3], which is also the major source of the 
present work. 

A numerical investigation is made of the flow of an in­
compressible fluid in the entry region of a circular curved pipe 
at very large Reynolds number. The three-dimensional flow 
field is divided into two parts, namely, the boundary layer 
region near the inner pipe surface and an irrotational core. 
The Method of Integral Relations (MIR) is used to solve the 
appropriate boundary layer equations while a modified 
version of Telenin's method is applied in the irrotational core 
region. The general equations of motion are the usual Navier-
Stokes equations written in toroidal coordinates as shown in 
Fig. 1. 

The equations of motion, respectively, governing the in-
viscid and boundary layer flows are solved as a coupled 
system. This composite method was applied to flow in a 90 
deg elbow with ratio of pipe radius to elbow radius equal to 
0.1 with Reynolds number 104. The results of the application 
are given in Yeung [4]. The present paper deals with the 
details of the numerical technique employed. 

2 Irrotational Core 

Since the core region is assumed irrotational, we can define 
a potential function Q such that 

a2fi an 
+ • 

1 
• + 

a cos i/>0 
+ • 

1 d2Q 

drl dr0 I r0 1 + ar0 cos i/-0 J r\ d\j/\ 

Contributed by the Applied Mechanics Division for presentation at the 1983 
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ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
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paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 
ASME Applied Mechanics Division, November, 1981; final revision, October, 
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Copies will be available until February, 1984. 

a sin \j/0 dfi 
+ 

d2U 

1 + ar0 cos \j/0 di/>0 ' (1 + ar0 cos \p0)
2 ds2, 

Equation (1) is written in toroidal coordinates shown in Fig. 
1. The pipe is generated by rotating the circle, radius a, about 
the y axis. The angular coordinate 4> is in the main stream 
direction (following the mean radius of the curved pipe) while 
r and \p are polar coordinates in the cross-flow plane. The 
ratio of the pipe radius a to the pipe radius of curvature R is 
denoted by a; r0 is nondimensionalized with respect to a and 
(/•0, 0o, So) are the coordinates for the core region. The 
corresponding velocity components, relative to the constant 
entry velocity W-,, are given by 

1 dQ 1 30 „ , 1 dQ ^ 
U0= , V0 = , W0 = — . (2) 

a dr0 ar0 d\p0 1 + euro c o s ^o °so 
We restrict ourselves to the following boundary conditions: 

dQ 
= 1 + ar0 cos 0O at s0 = 0 (3) 

ds0 

corresponding to uniform flow at the entry, and 

Q = g(^a,r0) at s0 = ir/2 (4) 

corresponding to a prescribed variation of the potential at the 
exit. In addition, the radial velocity is prescribed at the pipe 
boundary, 

dQ 

dr0 
=/3(^o.*o) at r0 = l. (5) 

The function / 3 is the main interaction term between the 
boundary layer region and the core region, as we shall see 
later. 

Telenin's method, which is described in full in Holt [5], is 
chosen to solve equation (1). In short, Q is represented by 
appropriate interpolating functions in r0 and i/-0. This makes 
possible the calculation of the corresponding partial 
derivatives, and eventually replaces equation (1) with a system 
of ordinary differential equations in s0. The principal ad­
vantage of Telenin's method over conventional finite dif­
ference schemes lies in the flexibility in choice of the in­
terpolating functions. Thus, when certain functional 
properties of the unknowns are known (for example, the 
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Fig. 1 Toroidal coordinate system 

*=90° 

<J"I35, 

^M80 *=0 " 

Fig. 2 Grid system and nodal point coordinates in the core region 

functions may be odd, even, or periodic), one can easily 
choose appropriate functions that exhibit those properties, 
thereby improving the accuracy of the numerical results. 
Furthermore, some boundary conditions can be carefully 
incorporated into such chosen functions, thus eliminating the 
need to consider the boundary points separately, as is required 
in finite difference formulations. 

The cross-flow plane is discretized according to Fig. 2. 
Changing from Cartesian to toroidal coordinates introduces 
an artificial singularity in the solution of equation (1) at r0 = 
0. This is avoided in numerical work by taking the inner 
boundary of the integration on the circle r0 =0.1 rather than 
the center r0 = 0. The resulting numerical solution can be 
extrapolated uniformly to r0 = 0. Let (i,k) represent the 
coordinates of the nodes, i.e., at the point (i,k), r0 = r0_,- and 
to = to.it- Tn e value of any function f(r0,\p0,s0) at the node 
(i,k) will be denoted by fjk (s0). Note that/,* is only a func­
tion of So • 

On planes of constant \J/0, \p0 = \j/ok, we approximate 0 by 
a Lagrangian polynomial in the r0 direction: 

Q= E m~ (6) 
y'=i 

where NXl is the number of nodes in the r0 direction and Q] 
depends only on \p0 and s0. Normally, one can only fit a 
(NXl - 1) degree polynomial to NXl points. However, due to 
the derivative boundary condition at r0 = 1, one has an extra 
degree of freedom in fitting a polynomial through NXl 
points, i.e., one can fit an NXl degree polynomial through the 
NXl points. Rewrite (6) as 

(7) 

Applying the boundary condition at r0 = 1 from equation (5) 
we finally obtain.. 

r ' — l ~\ 

j = 2 

where fl is defined as 

fi = 0-
NXl 

(8) 

(9) 

The interpolating coefficients 0°,£2°, • • • can be solved in 
terms of the nodal values of fi. Thus, if we apply (8) to the 
NXl points in the r0 direction, we have 

Q *= E Au®% ' = l > 2 <NX[< 
j=i 

where A y is given by 

Ajj = l when j = 1 

and 

(10) 

A - r/-i I/"1) 
A'J-rh NX1 

, otherwise. (11) 

Solving (10), we obtain 

0?= E AjlQJk, /=1,2, NXl. (12) 
y'=l 

The partial derivatives in the r0 direction are then given by 

30 , 

Br, 
~ — Lj C^Ak 
o j=\ 

where 

and 

where 

ci,,= E c-iMfW-'w"-1) (13) 

92Qtt
 NXi 

•= E DhAk 
' 0 j=\ 

Dhj = E (e-Wy[W-2y0:i
i-(NXl-l)r$f1-2]. (14) 

Similarly, on contours of constant r0, fi is expressed in cosine 
series (because of its symmetry property) as follows, 

0= E q?°cos(/"-iMw. (15) 

where NX2 is the number of nodes in the \p0 direction. As 
before, Qj°, which is now a function of r0 and s0 only, is a 
linear combination of the values of fi on the NX2 points. If a 
matrix B is defined as 

Bv=cosV-Wojt, k,j=l, . . . ,NX2, (16) 

it can be shown that the following holds, 

NXl 
n f= E VO/r. y=l ,NX2, (17) 

dU,, 
2^ C2kjtt<j, 

dto j 

where 
NXl 

C2kj=- E (MW'sinff-Wojt, (18) 

and 

a2o,, Nn 

m jft 
E D2kJ^j 
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i/ = Nx3 
(exit) 

V'+l 

V . / N 

""'N/N 

/ / ' 

/ / / 
1 f s ° l 

/ / ^ - " ~ ~ ~ ' ~ 

v- '^ /^ 
^ A NT ° VNX3/ 2 

s JZ±)ir / ^ ^ 
ao \ N X 3 / 2 ' ^ ^ 

v-0 
(entry) 

Fig. 3 Notation of the mesh size in the streamwise direction in the 
core region 

- 0 . 6 L 

Fig. 4 Comparison of numerical solution by the modified Telenin 
method to the exact analytical solution of Laplace's equation in a 
circular cylinder 

where 

D2kj=- £ ( f - l ) 2 * , 1 cos (*-!)*„,* (19) 

Substituting the partial derivatives in r0 and \p0 directions into 
equation (1), Laplace's equation reduces to the following 
system of second-order ordinary differential equations in s0: 

d*nu 
'- $ik ( Onm > fi ) 

where *5ik is given by 

«2 <- drt \n 

i=\, . . . ,NXl 

k=l, . . . ,NX2 

1 a cos \j/ok \ 90,/t 
* ) . 

drn 

1 d2Qik a sin ^0>t 30,̂ . 

(20) 

with 

Jik = 1 + ar0J cos ^0i/t. 

The dependence on / 3 is derived from equation (9). 

(21) 

The boundary conditions for (20) can be derived from (3) 
and (4) as 

dQilc 

ds„ 
• = 1 + ar0J cos ^0,* a t s0=0 (22a) 

and 

®% = g (^a.k ,r0J) at s0 = ir/2. (22b) 

The conventional Telenin method transforms the boundary 
value problem into an initial value problem by guessing 
enough initial conditions to start the integration. 
Mathematically, this is equivalent to solving an elliptic 
problem by assigning Cauchy data along an initial line. This 
approach suffers from so-called Hadamard instability [6]. 
Indeed, when this shooting technique was applied to (20) with 
(22a,b), the solutions increased without limit and it was not 
possible to obtain convergent results. 

A different approach is sought by taking advantage of the 
linearity of equation (20). Since Hadamard instability arises 
only when we try to cast the elliptic problem into a Cauchy 
initial value problem, numerical schemes based on the direct 
solution of (20) should eliminate this instability. To do so, let 
us divide the curved pipe into NX3 equal parts in the direction 
of increasing s0, as shown in Fig. 3. Denote the value of Q at 
the point (i,k) on the plane s0 = (v/NX3) ir/2, where v = 
0,1, . . . ,NX3, by U-k. Equation (20) is then approximated by 
replacing the second derivative by a central difference for­
mula. For the derivative boundary condition at s0 = 0, we 
imagine a fictitious plane s0 = - (1/NX3)' ir/2, and denote 
the values of Q at this plane by fi^'. In the case when a 
derivative condition is also prescribed at s0 = ir/2, it can be 
treated in similar fashion. The resulting finite difference 
system of equation (20) is 

Qr'-2Qf,+f i , r ' 

®ik ~ ®ik 

2h 

= FikWnm,f3), 

(fl)ik> (23) 

/ = 1 , . . . ,NXl, k=\, . , . ,NX2, e = 0,l, . . . ,NX3, 

where h = (1/NX3) ir/2 is the step size in the present 
problem. 

The linear system (23) has a very interesting property. 
Rearrangement of the equations enables us to write it in the 
following form 

AX (24) 

where A turns out to be a block tridiagonal matrix with the 
following special property, 

21 

A, I 

A 

I A, 

(25) 

with A0 = A t i-NXl and I being the identity 
matrix. The order of each matrix element is NXl 
NXl • NX2. The transpose of X is given by 

X — {X0 ,Xl ,X, NXl I 

NX2by 

(26) 

where X, is a column vector containing Q-k, i = 1, NXl, k = 
1, NX2. Finally, C contains the corresponding in-
homogeneous term that depends on the boundary conditions. 
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The special structure of the coefficient matrix A improves 
the efficiency of the present numerical scheme for solving 
equation (1) tremendously. Thus, one can easily transform A 
into a lower and upper triangular matrix as one does for an 
ordinary tridiagonal matrix [7]. The order of systems that 
need to be solved during the course of the LU decomposition 
is at most NX\ • NX2, as compared to the original order of 
NXl - NX2 • (NX3 +1) in (23). Moreover, many matrix 
multiplications are saved since the lower and upper diagonal 
elements of A are multiples of the identity matrix I. 

The present modified version of Telenin's method has been 
applied to solve Laplace's equation in a circular cylinder with 
prescribed Neumann boundary conditions, as shown in Fig. 4. 
The numerical results agree well with the exact analytical 
solution indicated. Other boundary conditions, mostly mixed 
Neumann-Dirichlet conditions for the same problem, have 
been tried and in all cases there is close agreement between the 
numerical and exact solutions. Hence there is no doubt that 
the present modified scheme is more efficient than the con­
ventional Telenin method, at least when applied to a linear 
problem. 

For equation (1), different forms of g(r0,\//0) have been 
tried and the corresponding solutions do not differ 
significantly over most of the curved pipe downstream of the 
entry plane. This is in conformity with a simple perturbation 
analysis [3]. In view of this we take g = constant for the rest 
of the paper. It now remains to specify/3 , the boundary 
condition at r0 = 1. The value of/3 is determined from the 
radial outflow of the boundary layer region and, con­
sequently, provides the interaction between the core and the 
boundary layer region, as mentioned earlier. 

3 Boundary Layer Region 

In this region, the governing equations are of the usual 
boundary layer type [3]. The Method of Integral Relations 
(MIR) has been applied to reduce the original parabolic 
equations to a system of first-order hyperbolic partial dif­
ferential equations. The derivation of the basic integral 
relations is given elsewhere [3,4]. The final forms of the basic 
integral relations are as follows, 

1 + a c o s . M as Jo \-W ds) ( ' 

dbn s. WgN(W) 
dW 

1+acosi / ' ds Jo 1 - W 

1 dbk2 f dV 
l + a c o s 0 ds Jo d\fr 

A"=l,2, ,N, 

where 

v 
V= W= w 

s= — , Z= 
a (£)"'• w , ' we' a \ d-r) 

y1=(a-r)R?a'A/a, Re=Wia/v. 

(27) 

(28) 

(29) 

Here, we is the streamwise velocity component at the 
boundary layer edge, bn, j = 0, . . . ,7V-1 are the 
parameters for the Z profile, bj2, j = 1, . . .,/V are the 
parameters for the V profile, gk (W) and hk ( W) are ap­

propriate weighting functions, and C(k) and D(k) are 
complex expressions that do not contain any s or i/< derivatives 
of bj{ or bj2- The coordinates for the boundary layer are 
(MM). 

On the plane ^ = 0 the following integral relations are used 

1 +a ds \-W 

1 ftffroi f' 
1 + a I ds Jo 

dW+-
db 

1 

Wgk ( W) 

k=\ 7V=1, 

dek 

3 - C(k), 

1 +ce ds 
= D(k), k=l,...,N, 

(30) 

(31) 

where e)•, j = 1, . . . ,7V are the parameters for the profile S = 
dV/d\j/ and C(k) and D{k) are again complex expressions 
not containing any s or \p derivatives of bn or ey-. C,D,C, and 
D are given in the Appendix. 

The appropriate initial conditions can be obtained from the 
solution of a uniform entry into a straight tube. As a first 
approximation, the Blasius solution with a free stream 
velocity equal to W, was used. It is well known that a 
similarity solution exists in this case and equation (27) yields a 
system of nonlinear coupled algebraic equations given by [3] 

WgN 
ViA •s: \-w 

dW=S(N), 

'{A*+Ao\0~^dw}=S(k), *=!,...,/V-l, 

(32) 

where Ak is related to bkx by 

bkl=a"Aky/s~i (33) 

and Si is an initial station taken as 0.0025 at present. S(k) is 
given in the Appendix. Equation (32) has been solved 
iteratively for Ak's. Since the flow is approximately 
axisymmetric at j , , 

bj2=ej=0, j=l, . . . ,7V. (34) 

A simple method based on the Method of Lines [5] was used 
to solve equations (27) and (28). The i/< domain is divided into 
( equal intervals and the \p derivatives of either Z or V at the 
nodal point \pk = kir/l, k = 1,2, . . . ,{(- 1) is approximated 
by a backward difference formula 

( — ) 
uk-uk (35) 

where U is either Z or V and Ai/- is simply %lt It should be 
mentioned that the backward difference scheme produced 
stable results for the present problem. The conventional 
Telenin method has been tried and found to yield oscillatory 
results in the streamwise direction. 

The solution procedure in the boundary layer region was to 
integrate equations (30) and (31) directly subject to the ap­
propriate initial conditions at s,. Solutions at \ji = 0 were used 
to calculate the \p derivatives of the next plane, ^ = ir/(; 
equations (27) and (28) were then integrated to yield results at 
4> = tell. This procedure was continued until \// = ir was 
reached. It should be noted that it is possible to decouple each 
\p = constant plane only because of the simple backward 
difference scheme used. If a general finite difference formula 
were used in place of (35), 27Vf coupled ordinary differential 
equations would be generated by equations (27) and (28). An 
available ODE solver package has been used for the in­
tegration. 
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4 Interaction Between the Core and Boundary Layer 
Regions 

A computer program was written for each of the solution 
procedures described in Sections 2 and 3. A simple iteration 
scheme was used to account for the interaction between the 
two regions. The core flow was initially represented by a two-
dimensional point vortex to provide the necessary functional 
values at the boundary layer edge. In general, a five-point 
Lagrangian interpolation scheme was used to calculate the 
values at a particular point in space. From the boundary layer 
solution, a new estimate for the outward radial velocity, and 
hence f3, could be calculated and the core region reevaluated. 
If fi and/?"1 are the estimates of/3 from the current «th 
boundary layer calculation and the previous (n - l)th 
calculation, respectively, then the new estimate of f3 is 
evaluated as 

/ ^ z z / S - ' + w C / S - y j - i ) , 0<co<l 

/ " ' is then updated as 
n - 1 _ f (new) / $ - ' = / 

(36) 

(37) 

for the next iteration. 

5 Results and Discussion 
The overall accuracy of the present model is restricted by 

the accuracy of the boundary layer calculation, which is of 
first order in \p by virtue of equation (35). All numerical 
calculations were carried out on a CDC 7600 computer. In the 
first approximation (corresponding to N = 1 in the Method 
of Integral Relations (equations (27) and (28)), the computing 
time for the boundary layer calculation requires about twice 
as much time as for the core calculation, which needs about 1 
sec. The computation time increases rather rapidly as the 
order of approximation, N, increases. The present calculation 
is limited to the second-order approximation, N - 2. Five 
points were calculated in the \p direction and three points were 
taken in the v direction. A typical calculation requires about 
40 iterations or 5 min of computation time, which is to be 
compared with 50 sec for the first approximation. Also, the 
converged solution for the core region from the first ap­
proximation was used to initiate the iteration process for the 
second approximation. As a result, comparatively large 
values of u> can be used (co = 0.1 at present) which speeds up 
the iteration process. Typical results have been presented in 
[4]. 

6 Conclusion 
A numerical scheme has been presented in detail for the 

solution concerning the steady laminar flow of an in­
compressible fluid in the entry region of a circular curved pipe 
at very high Reynolds number. A special feature of the 
numerical scheme is to eliminate as much finite difference 
formulation as possible. The present scheme is restricted to 
the second approximation due to the large number of or­
dinary differential equations arising in the boundary layer 
calculations. 

References 
1 Dean, W. R., "Note on the Motion of Fluid in a Curved Pipe," 

Philosophical Magazine, Vol. 4, 1927, pp. 208-223. 
2 Dean, W. R., "The Streamline Motion of Fluid in a Curved Pipe," 

Philosophical Magazine, Vol. 5, 1928, pp. 673-695. 
3 Yeung, W. S., "Gas-Particle in the Entry Region of a Curved Pipe," 

Ph.D. Thesis, Report LBL-9905, Lawrence Berkeley Laboratory, University of 
California, Berkeley, Calif., 1979. 

4 Yeung, W. S., "Laminar Boundary-Layer Flow Near the Entry of a 
Curved Circular Pipe," ASME JOURNAL OF APPLIED MECHANICS, Vol. 47, 
1980, pp.697-702. 

5 Holt, M., Numerical Methods in Fluid Dynamics, Springer- Verlag, Berlin, 
Heidelberg, New York, 1977. 

6 Garabedian, P. R., Partial Differential Equations, Wiley, New York, 
1964. 

7 Issacson, E., and Keller, H. B., Analysis of Numerical Methods, Wiley, 
New York, 1966. 

A P P E N D I X 

Expressions for C{k),D{k), C(k), D{k), andS(k) from 
reference [3] 

C(k) 
1 + a cos \p We d\p 

1 1 dW, i" 

1 dWe f 
\0[{VW-V,)gt + Vgk\ZdW 

+ 1 + a cos 4> We ds j > - ^ 
-Wgk]ZdW-

Va gk(0) Va r* gk' 
W. wP 

J -dW 

1 dw r' r dv ^ 

1 1 dW, f > 

1 + a cos \p We ds 

asini/- <"' 

5>. WV-~(\-W^)]hkdW 

[ Ul-W2) (VW-Ve)]hkdW 
1 + acos^ Jo O dWy e') " 

(v dVe i l dVe[lh 
\ e d\b 1 + r e c o s i i ds Jo * 

+ 

d\p 1 + a cos ip ds 

Vri f d2V 1 

• dW 

_va_f' d^V_ 1 
dW, 

C(k) = - l o Z ^ dW+ 
i dw„ r1 

! o [ ( i - ^ ' 1 + a cos \j/ We ds 

u/ , 7 J n / Vagt'(O) Va ( " g / 
- Wgk]ZdW -—; — ~dW, 

WeZQ We Jo Z 
f' 1 1 dW r ' r 

D{k) = - \ &hkdW+- T T J T — \(Se-WS) 
Jo 1 +acosi/< We s Jo L e 

~] rv COS \b f ' 
-r{\-W2)\hkdW+- r _ (i-MA)h 

J 1 + a cos \p Jo 
1 

dS 

d~wx 

+ S1 + 

dW 

1 + a cos \p ds J o 

yfa f d2S 1 

-w;\*wiph''dw' 

hkdW 

S(k)-. «*(0) 
• i: 

8k -dW, 
i/o xu 6(W) 

where the prime denotes differentiation with respect to W, 
and 8 is related to Ak (equation (33)) by 

e(W) = \A0+ YjAjej(W)\/{\-W). 

Journal of Applied Mechanics JUNE 1983, Vol. 50/243 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



R. E.Johnson 
Assistant Professor, 

Department of Theoretical 
and Applied Mechanics, 

University of Illinois 
at Urbana-Champaign, 

Urbana, III. 

On Transverse Secondary Flows in 
Wave Channels 
The viscous boundary layer analysis for the sidewalls of a wave tank is presented for 
the case of two-dimensional waves of small amplitude traveling along the 
channel length. The second-order transverse streaming motion induced in the in­
terior of the channel by the sidewall layers is determined. The calculations extend 
the work of Mei and Liu [1] which examined the effect of sidewalls on the 
longitudinal streaming motion. The intensity of the transverse streaming flow is 
found to increase as the depth to wavelength ratio decreases, and is found to be 
significant for typical wave tanks that generally have a depth to width ratio between 
one-half and one-fourth. The present results are useful if accurate conclusions 
concerning mass transport in the open ocean are to be made from laboratory 
studies. Furthermore, the results may offer an explanation for some of the 
laboratory observations already in the literature. 

Introduction 

The fundamental theory of mass transport in water waves is 
due to Longuet-Higgins [2]. In that work the classical two-
dimensional inviscid, irrotational water wave theory was 
modified to satisfy the no-slip condition at the water bottom 
and the shear-free condition at the free surface. This was 
accomplished by including in the solution viscous boundary 
layers at the water bottom and free surface. One of the 
principal results found is that the nonlinear effect of Reynolds 
stresses cause a second-order steady streaming motion in the 
boundary layers which in turn drives a steady circulation or 
current in the interior or core of. the fluid. Although the 
existence of a mass transport velocity had already been 
predicted by Stokes [3] based on inviscid, irrotational theory, 
the presence of the viscous boundary layers was found to have 
a substantial effect on the mass transport. 

The pioneering work of Longuet-Higgins has been followed 
by a great number of studies on wave-induced mass transport. 
The majority of these studies have been concerned with purely 
two-dimensional flow fields. Summaries of the work on two-
dimensional waves are available in the introductions to [4-6]. 

One of the only studies of three-dimensional effects is 
presented by Mei and Liu [1] in a MIT report. In that report, 
Mei and Liu consider the effect of wave tank sidewalls on the 
streaming motion induced in the direction of wave 
propagation by waves traveling along the channel length. 
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ASME Applied Mechanics, Bioengineering, and Fluids Engineering Con­
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1982. Paper No. 83-APM-26. 
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They made no calculations, however, of the induced trans­
verse streaming motion in the cross-section plane of the 
channel. The present study will extend the work of Mei and 
Liu by examining the transverse motion. The viscous 
boundary layers at the wave tank sidewalls which, along with 
the bottom and free-surface boundary layers, drive the steady 
motion in the interior of the channel will be examined. The 
boundary layer analysis is similar to that of Mei and Liu, 
except an Eulerian description is used here as opposed to the 
Lagrangian description used by Mei and Liu. The present 
version is believed to be somewhat simpler. The results are in 
agreement with those of Mei and Liu, and the analysis will be 
presented in an appendix since their work is not readily 
available in its present form. The present study will also 
estimate the attenuation coefficient of the wave motion due to 
the viscous dissipation in the sidewall layers. This result is in 
agreement with that obtained previously by Mei and Liu [7], 
In the somewhat similar situation involving closed basins, the 
linear wave damping due to the sidewalls has been examined 
by a number of researchers [7-10]. Note that in this con­
nection it has been pointed out that sidewall capillary effects 
can contribute significantly to the damping. This effect, 
however, is not considered here. 

The primary result of the present investigation will be the 
determination of the transverse streaming motion that is 
established in the interior of the channel. This will be found 
for the case of very small amplitude waves when the streaming 
motion is governed by the Stokes equations. This case is 
referred to as the conduction-limit and implies that the steady 
streaming Reynolds number Rs = a2 w/v is small (a is the 
wave amplitude, v the kinematic viscosity, and co the wave 
frequency). Although this restriction is severe, Mei and Liu 
[1] indicate that experimental results have shown qualitative 
agreement with such a theory under various conditions. They 
also point out that in the natural environment the eddy 
viscosity ve should replace the much smaller laminar viscosity 
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Fig. 1 Cross-sectional view of a wave channel 

v in which case this limit may be very realistic. Furthermore, it 
should be noted that numerous applications of the con­
duction-limit have been made in purely two-dimensional 
flows and that the results have often been useful. 

For the two-dimensional case, studies have recently 
examined the problem when Rs > > 1 [4, 6]. For these large 
streaming Reynolds numbers the analysis results in a double-
boundary layer theory in which the boundary layer of the type 
previously discussed, often referred to as a Stokes layer, is 
embedded within a thicker outer boundary layer. The theory 
is analogous to that developed by Stuart [11] for an oscillating 
cylinder. Similar attempts in the present problem have un­
fortunately not yet been successful. The difficulty is primarily 
due to the increased complexity associated with the three-
dimensional character of the present problem. 

Formulation 

We consider a wave channel of width 2/ and constant mean 
depth h in which small amplitude, two-dimensional waves are 
propagating along the channel length. The wave disturbance 
is given to leading order by 

y = acos(kx-o>t), 

where a is the wave amplitude, k = 27r/X is the wave number, 
X the wave length, x the direction of wave propagation, y the 
vertical direction, and a> the wave frequency. The z axis is 
taken to be in the cross-channel direction (see Fig. 1). 

In the governing equations the velocity ii, pressure p, time 
t, and position x = (x,y,z) are nondimensionalized according 
to 

u = u/toa, p=p/pu2a\, t = ut, 

x = x/X, / = / / X , h=h/\, 

giving the equations of momentum and mass conservation as 

du 

17 + e(u- V)u= - Vi/i + ajO + R e - 1 V2u, V«u = 0. (1) 

Here a = g/w2a, g is the constant gravitational acceleration, e 
= a/A is the amplitude parameter which is assumed small, 
and Re = wX2/y is a Reynolds number. The boundary 
conditions are as follows. The velocity vanishes at the bottom 
and sidewalls of the channel. At the free surface the shear 
stress vanishes, the normal stress equals the. ambient at­

mospheric pressure, and the flux of fluid across the surface is 
zero. The effects of surface tension and/or surface films are 
neglected at the free surface. 

We restrict attention to Re > > 1 in which case it is well 
known that near the solid boundaries (bottom and sidewalls) 
and free surface there will be thin regions where viscous ef­
fects become important, i.e., the viscous boundary layers. 
The thickness of these layers is of order 5 = V v/os where 8 is 
the characteristic length sjale associated with momentum 
diffusion. The viscous regions are thin because the Reynolds 
number is assumed large and 5/A = Re"1 / 2 < < 1. Con­
sequently, we determine the solution within these viscous 
boundary layers and match the solution to the core solution 
valid in the interior of the channel. Within the core the flow 
field is given at leading order by the classical two-
dimensional, inviscid, irrotational water wave theory. 
Deviation from this potential flow are found at second order 
due to the matching with the motion in the boundary layers. 
In the boundary layers, however, the flow field differs from 
the two-dimensional potential flow at leading order so that 
the boundary conditions may be satisfied. That is, at leading 
order the boundary layer solution is given by the two-
dimensional potential flow plus a correction term that 
vanishes outside the boundary layer. 

Although it has been popular in previous studies to use a 
Lagrangian formulation, here the problem is formulated in 
terms of the Eulerian velocity. 

Consideration of the Core 

The solution valid in the core has the form 

u = u^ + t{u^+u*)+ 
v = v^+e(v^ +V*)+ . • • , 
w = ew* + . . . , • (2) 
P = p + ay = P{P0) + e(P(Pi)+Re~lP*) + . . . 
y = ey(0) + e 2y( i ) + _ _ . = ecos(2Trx-t) + e2Y^ + 

where (u,v, vv,) are the (x,y,z) components of velocity, and the 
last equation is the free-surface profile which contains a 
perturbation at second order. uiPK) = (u<-PK) ,v<-PK), 0), P{PK) 

and y f° , K = 0,1, are the first and second-order potential 
flow solutions of classical water wave theory. This potential 
part of the core solution is unaffected by the viscous bound­
ary layers, including the sidewalls. u*, p* are the rotational 
velocity and pressure fields which must be added to the 
potential flow in the core so that the core solution can match 
to the boundary layer solutions. 

The potential flow terms satisfy the governing equations of 
inviscid, irrotational flow. The viscous terms of order Re" ' in 
the momentum equations are neglected and there is zero 
vorticity, giving the following heirarch of equations. 

du (P0) 

"17" = _v/*"», 

V u ™ = 0 , V X u<"»=0, 

flu (PI) 

V-u<pl»=0, vxu< / 5 | )=0 . 

(3) 

+ ( n ™ . V ) u ™ = - V P " ' 1 » , 

The potential part of the core solution is thus given by the 
classical two-dimensional water wave solution, 

•j(P0) = cos I 
cosh 2TT (h +y) 

sinh 2irh 
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Fig. 2 Streamlines (^ = constant) in the cross section plane of the 
channel. Depth to half-width ratio hll = 1.0 and 0.5 in the figures on the 
left and right, respectively, kh = 5.0, 1.0, and 0.25 in the top, middle, 
and bottom figures, respectively. 

„(P0) 

p{P0) = C O S 0 

smh2n(h+y) 
sine . — , 

sinh 2TT« 

cosh27r(A+>') 

27T sinh 2ir/j 
(4) 

/(«) = 

I,(-PI) 

p(PD _ 

yd) = 

— rr A2 cosh 4ir(/! +.y) cos 26, 

TTy42sinh 4ir(fi+y)sin26, 

— (1 -cosh4Tr(/!+.y) 

+ cos 20[3 cosh 4TT(/! + y) - 1 ] 1, 

coth 2-wh 1 + 
2 sinh2 27r/? 

cos 26, 

6 = 2irx-t, A = 
1 

sinh2 2-wh 

This motion is purely periodic and lies in a plane parallel to 
the side walls. 

Next we consider the governing equations for the velocity 
u* and pressure P*. This part of the core velocity is affected 
by the presence of the viscous boundary layers. The quantity 
of practical interest is the steady streaming motion in the core, 
and therefore we will only consider the time average of the 
velocity u* averaged over one wave period. As discussed in the 
Introduction, this may be determined in the conduction limit 
of Longuet-Higgins [2], namely when e2 < < R e - 1 . (This 
being equivalent to Rs < < 1 discussed in the Introduction.) 

In this limit the governing equations for the time average 
velocity and pressure have a particularly simple form, 

V2ii* = VP*. 

V«ii* = 0, (5) 

where an overbar denotes a time average over one wave 
period. 

The core problem is completed with the followed boundary 
values which are derived from the boundary layer solutions 
(see Appendix 1), 

(6) 

V(y), T, and U are given in Appendix 1 by equations (a), (b), 
and (c), respectively. 

Since the boundary conditions are independent of x, we 
consider solutions for the velocity field ti* which are functions 
only of y and z. Consequently, the motion in the x-direction 
decouples from the motion in the cross-section plane. The 
problem for it*, i.e., the streaming motion in the direction of 
wave propagation, is therefore, 

Sides: w 

Surface: 

Bottom: 

' = w 

du* 

~dy~ 

u* = 

' = 0 , 

= T, 

U, v 

V* 

V* 

* = 

= V(y) 

dw* 

w*=0 

at 

= 0 

at 

z = 

at 

y= 

±h 

y = 0 

-h. 

d2!i* d2li* dP* 

Ix = G, (7) 

(0,Z) = T, 

dy2 dz2 

with the boundary conditions 

w*(y, ±/) = 0, 

du* 

~a~y 
u*(-h,z) = U. (8) 

The motion in the cross-section plane is governed by 

dP* 

_ dP* 
= 17' 

d2v* d2v 
+ dy2 

d2w* 

dz2 

d2w* 

dy2 

dv* 

dz2 

dw* 

dy dz 
-0, (9) 

with the boundary conditions 

v*(y,±l)=V(y), w*(y, ± 0 = 0, 

dw* 
v*(0,z)--

dy 
« U ) = 0, 

v*(-h,z)=w*(-h,z) = 0. (10) 

Note that a velocity field u* which is independent of x requires 
that the pressure gradient in the x-direction be a constant G, 
i.e., independent of y and z. Furthermore, such a solution is 
likely only to be valid away from the ends of the wave tank. 

The motion in the direction of wave propagation has been 
previously considered by Mei and Liu [1] and therefore it will 
not be examined here. For the motion in the cross-section 
plane it is convenient to introduce the stream function 4> 
defined as 

-. W -. W v* = , w* = , 
dz dy 

which has the governing equation, 

/ d2 d2 \ 2 

Due to the flow symmetry about the channel centerline, it is 

(ID 

(12) 
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sufficient to solve the problem in the region 0 < z < + /. 
Using the symmetry condition at the channel centerline z = 0' 
the boundary conditions on the stream function become 

dz1 

dz 

^ = - ^ = 0 , y=-h. (13) 
dy 

The solution for \j/ is 
CO 

i> = Yd bmfm> 
m = l 

i/-,„ = sin Qmy \ — tanhj8m/ cosh (3,„z -s inhft„z 

+ /_, 5,,,,, sin a„z — tanh a„h cosh a„.v -s inh a„.y , 

W 7 T rt7T 

P/n 7~~ » ^ H . • 

£>,„ and B,„„ are constants determined from the boundary 
conditions, the details of which are given in the Appendix 2. 

Discussion 
Shown in Fig. 2 are streamlines (>/< = constant) in the cross-

section plane of a channel (0 < z ^ /, - h < y < 0) for the 
depth to half-width ratios h/l = 1, 1/2 and kh = 0.25, 1.0, 
5.0 (h = h/X, I = //X). These curves represent a cross-
sectional veiw of the stream surfaces since there is an ad­
ditional superposed flow in the direction of wave 
propagation. Furthermore, a duplicate pattern is present in 
the other half of the cross-sectional plane, - / < z < 0 , due to 
the flow symmetry. The motion in Fig. 2 is clockwise; toward 
the sidewall near the free surface and then down along the 
sidewall. Note that it is easy to verify that the components of 
the Lagrangian or mass transport velocity in the cross-
sectional plane of the channel are equal to the Eulerian 
velocity components v*, w*. Consequently, the streamlines in 
Fig. 2 describe the mass transport in the transverse direction. 
Furthermore, if we combine this motion with the drift motion 
in the direction of wave propagation, we find that fluid 
particles typically move in a spiral-like fashion. 

From Fig. 2 we observe that this transverse streaming 
motion intensifies as kh decreases, i.e., as the wavelength 
increases for fixed depth. This relatively strong circulation in 
the cross-section plane at small values of kh may partially 
explain why experimentalists have encountered difficulty 
attempting to measure mass transport, which was believed to 
be only in the direction of wave propagation [12, 13]. On the 
other hand, there is very little direct quantitative 
measurements of motion in the cross-sectional plane. This 
may be due to the fact that the majority of the experimental 
work has been directed at sediment transport near the bottom 
where the transverse velocity w* vanishes. In addition, 
velocity measurements taken across the depth of the channel 
are usually performed along the channel center line where the 
transverse motion also vanishes. Russell and Osorio [12] state 
that for kh < 0.3 the flow patterns varied unsymmetrically 

and " . . . usually involved flows in directions other than in 
the direction of wave propagation." Whether the present 
analysis pertains to what they observed is unclear, especially 
since they claim that sidewall effects in the experiment were 
unimportant. Furthermore, the experiments of Russell and 
Osorio were strongly affected by surface contamination which 
is neglected here. The unsystematic or erratic motion which 
has been reported for small kh suggests that these flows may 
be unstable. Craik [5] found that the two-dimensional drift 
motion in the direction of wave propagation is unstable to 
spanwise-periodic disturbances. A similar stability analysis 
for the transverse streaming motion discussed here would be 
useful. 

The only experiments giving a good qualitative description 
of an observed transverse flow are due to Carter [14], Carter 
observed two cells near each sidewall separated at about the 
half depth point with the flow down along the wall in each 
cell. With the exception of the direction of flow near the wall, 
clearly such a pattern is in poor agreement with the single cell 
predicted here. Unfortunately, the range of flow conditions 
for which the double cell structure is observed is not made 
clear. This pattern again raises the question of stability. We 
should note that extending the theory to include large 
streaming Reynolds numbers Rs is not likely to explain the 
two cell pattern. However, a large Rs theory might be a more 
realistic flow on which to consider the stability of laboratory 
scale experiments. 

I am most grateful to Professor S. Stewart for his com­
ments concerning the original manuscript. This work was 
partially supported by the National Science Foundation 
(MEA 81-07564). 

References 

1 Mei, C. C , and Liu, P. L-F., "Mass Transport in Water Waves. Part I: 
Theory," Ralph M. Parsons Lab. Water Resources Hydrodyn., MIT Report 
No. 146, 1972. 

2 Longuet-Higgins, M. S., "Mass Transport in Water Waves," Phil. 
Trans., Series A, Vol. 245, 1953, pp. 535-581. 

3 Stokes, G. G., "On the Theory of Oscillatory Waves," Trans. Camb. 
Phil. Soc, Vol. 8, 1847, pp. 441-455. 

4 Liu, A-K., and Davis, S. H., "Viscous Attenuation of Mean Drift in 
Water Waves," J. Fluid Mech.,Vo\. 81, 1977, pp. 63-84. 

5 Craik, A. D. D., "The Drift Velocity of Water Waves," J. Fluid Mech., 
Vol. 116, 1982, pp. 187-205. 

6 Dore, B. D., "On Mass Transport Velocity Due to Progressive Waves," 
Q.J. Mech. Appl. Math., Vol. 30, 1977, pp. 157-173. 

7 Mei, C. C , and Liu, L. F., "The Damping of Surface Gravity Waves in a 
Bounded Liquid," J. Fluid Mech., Vol. 59, 1973, pp. 239-256. 

8 Miles, J. W., "Surface-Wave Damping in Closed Basins," Proc. Roy. 
Soc. London, Series A, Vol. 297, 1967, pp. 459-475. 

9 Keulegan, G. H., "Energy Dissipation in Standing Waves in Rectangular 
Basins," J. Fluid Mech., Vol. 6,1959, pp. 33-50. 

10 Case, K. M., and Parkinson, W. C , "Damping of Surface Waves in an 
Incompressible Liquid," J. Fluid Mech., Vol. 2, 1957, pp. 172-184. 

11 Stuart, J. T., "Double Boundary Layers in Oscillatory Viscous Flow," J. 
Fluid Mech., Vol. 24, 1966, pp. 673-687. 

12 Russell, R. C. H., and Osorio, J. D. C , "An Experimental Investigation 
of Drift Profiles in a Closed Channel," Proc. 6th Conf. on CoastalEng., 1957, 
pp.171-193. 

13 Allen, J., and Gibson, D. H., "Experiments on the Displacement of 
Water by Waves of Various Heights and Frequencies," Min. Proc. Jnstn. Civ. 
Engrs., Vol. 13, 1959, pp. 363-386. 

14 Carter, T. G., "Mass Transport in Water Waves, Part II: Experiments," 
Ralph M. Parsons Lab. Water Resources Hydrodyn., MIT Report No. 146, 
1972. 

15 Phillips, O. M., The Dynamics of the Upper Ocean, Cambridge Univ. 
Press, London, 1977. 

A P P E N D I X 1 

(a) Consideration of the Boundary Layers 
For the viscous layers near the wave channel sidewalls, we 

rescale the distance normal to the wall by introducing the 
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inner variable Z = Re1/2 (/ ± z), the + and - being for the 
sidewalls at z = -I and + /, respectively. With this rescaling 
the momentum equation in the direction normal to the wall 
gives the familiar result that the pressure P is approximately 
constant across the boundary layer, i.e., dP/dZ = 0, with an 
error of order Re "1 / 2 ve, w being the boundary layer velocity 
normal to the wall. Consequently, the pressure within the 
boundary layer is given by the core pressure evaluated at the 
sidewalls z = ± /, the leading order terms of which are simply 
the potential flow pressure field 

P = P<™ (x,y,t) + ePlP,) {x,y,f)+ . . . 

For the velocity field within the sidewall boundary layers we 
have 

u = u <a" (x,y, t) + u^m (x,y, Z, t) + 

e[«<pl> (x,y,t) + u^ (x,y,Z,i)]+ • • • 

v = v™ (x,y,t) + vm (x,y,Z,i) + 

e[y(/,1» (x,y,t) + vim) (x,y,Z,t)]+ . . . 

w = Re-1/2w<fl0> (x,y,Z,t) + eRe-l/2w^ (x,y,Z,t)+ . . . 

Here uiPK> (K = 0,1) are equal to the two-dimensional 
potential flow velocity present in the core (equations (4)), and 
u(BK> {K = 0,1) are the deviations from the potential flow 
which are necessary to satisfy the no-slip condition on the 
sidewalls. Note that the Re^1 / 2 appearing in the expansion for 
the Z-component of velocity is a consequence of the rescaled 
form of the continuity equation which must be satisfied. 

After expressing the remaining governing equations in 
terms of the inner variable Z, and using the fact that the 
potential flow solution u(P0), P (P0) are functions only of x and 
y and satisfy the equations (3), we obtain the following 
equations for the leading-order boundary layer correction 
ABO) 

du(B0) d2u(BO) dv(B0) d2v(B0) 

dt dZ2 ' dt dZ2 

dum dv(B0) dwm 
+ — + ^T=- =0 dx dy dZ 

At this order the no-slip and matching conditions require 

U(B0) = _„(«) 

v 
(BO) •V (P0) 

V(B0) 

U(B0) _ 0 

y(S0) _ 0 

W™ - 0 

and the solution is found to be 

on Z = 0, 

as Z—oo, 

u 
(BO) 

,,(B0) 

W 
,(B0) = 0, 

cosh2ir(h+y) 

sinh 2-7rh 

smh2ir(h+y) 

sinh 2irh 

) = 2irx-t. 

-zi-Si cos(0 + Z/V2), 

- Z / V 2 sin(0 + Z/V2), 

In a similar fashion we obtain the governing equations for 
the second-order boundary layer velocity u(fi,) as 

dum) d i 

dt dx 

d d2w<fll> 

dy1 dZ2 

dv(m) d 
™ + _^_ \U(mv(B0) + v(P0)u(B0) + u(B0)v(B0)-, + 

dt dx1 

d 2 dVB 1 ) 

— [2v(P0)vVW + vm 1 = — - = -
dy dZL 

duSm df^_ 
dx dy 

+ ̂ z~=°-
In obtaining the preceding equations, we have used the 
continuity equation satisfied by the leading-order solution to 
express the Reynolds-stress terms in a convenient form. As 
already discussed, we are primarily interested in the time-
average velocity at second order. Consequently, after sub­
stituting u(P0) and u(m into the equations for u(m) and taking 
the time average over one wave period, we obtain 

d2a^ 

^ z 2 " ' 
d20(Bl) 

= -4V(y)[ 
dZ2 

Sa(Bl) dtfBl) d^(Bl) 

g-V2z_ e -Z/VS c o s . (Z/V2)], 

+ = 0, 
dx dy ' dZ 

sinh 2TT(/J +y) cosh 2ir(h +y) 
V(y) = - ir , 2 

sinh2 2TT/I 

The no-slip boundary condition requires 

„(fli) = „-(fli) = vp(fli)=o on Z = 0, 

and as Z — oo the matching with the core solution at order e 
gives 

u*(x,y, ±l) = u'-m\x,y,Z - oo), 

v*(x,y, ±/) = v(m\x,y,Z - oo), 

w*(x,y, ± 0 = 0. 

Recall that the Z component of velocity in the boundary layer 
is of order eRe"1/2; hence, the zero on the right-hand side of 
the last equation. With these conditions, the boundary layer 
solution is found to be, 

w<SI> = 0, 
,-,(Bl) 

•> («" 

V(y)[l • -V2Z - 4 e -Z/V2 sin(Z/V2)]. 

can be obtained from the continuity equation, but since 
its effect on the core is of higher order it is not presented. 
Therefore, at the sidewalls the matching conditions for the 
core become, 

u* (x,y, ± 0 = w*(x,y, ±!) = 0, 

7T sinh 2-w(h+y) cosh 2ir(h+y) 
v*(x,y, ±l) = V(y) = — 

sinh2 2-xh 
(«) 

For the bottom and free-surface boundary layers the 
analysis follows that of Longuet-Higgins [2] with a minor 
modification. Here we must include an additional component 
of velocity in the cross-channel or ^-direction. However, there 
will be no leading-order term in this component of velocity. 
The flow is being driven by a two-dimensional wave motion in 
the x - y plane, i.e., u(P0) = (uiP0), v(P0>, 0). Since w™ is 
zero, the boundary conditions will be satisfied at leading 
order without requiring a correction to the z-component of 
velocity in the boundary layer. The first nontrivial con­
tribution to the boundary layer velocity in the z-direction 
appears at second order due to the matching with the 0(e) 
velocity in the core. Furthermore, in the boundary layers the 
z-momentum equation decouples from the equations in the x 
- y plane. This is because the leading-order velocity in the z-
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direction is zero. Consequently, the Reynolds stress terms, eu 
• Vu, which appear in the governing equations at second 
order due to the leading-order solution, are identical to the 
two-dimensional case of Longuet-Higgins [2]. That is, at 
second order no Reynolds stress term is present in the z-
momentum equation and the momentum equations in the x -
y plane are the same as those given by Longuet-Higgins. 

In particular, in the surface and bot tom layers the z-
component of velocity has the form 

w=ew ( B 1 ) + . . . . 

In both of these boundary layers the time-average velocity 
satisfies 

= 0. 

£ s i d e s « 2^(o)a)2Re' 

dN2 

where the boundary layer variable N = ReW2n, n being the 
position in the flow field measured along the normal to the 
surface (i.e., at the bottomy = - h,N = Y = Re1/2 (y + h). 
The boundary conditions on w(sl) at the free-surface (shear-
free) and bottom (no-slip) are, respectively, 

— — = 0 at N=0, 
dN 

w ( S 1 )=0 at r = 0 , 

and therefore the solution in these boundary layers is 

w(fll) = constant; free surface, 

w ( B , )=0; bottom. 

Consequently, the matching conditions with the core at the 
surface and bottom are, respectively, 

dw* 
= 0 at v = 0 

dy 
w* = 0 at y= -h 

Due to the decoupling of the governing equations, the 
matching conditions for the velocity components in the x and 
y directions follow from the results of Longuet-Higgins [2], 
and therefore their derivation will not be repeated. Thus, 

v*=0 at y = 0, -h, 

dii* 

~dy~ 
• T = 8 T T 2 coth27i7i at y = 0, 

u* = U= 
2 sinh 2irh 

at y= -h. (c) 

Recall that here we are using the Eulerian velocities and 
therefore some manipulat ion is required if these expressions 
are to be obtained from the Lagrangian form of the results 
given by Longuet-Higgins [2]. 

A further comment is in order. Note that the matching or 
boundary conditions on the core velocity li* are discontinuous 
at the corners of the channel cross section. The velocity in 
reality will vary smoothly but rapidly near the corners and a 
more complete analysis requires the introduction of sublayers 
in each corner which matches the two intersecting boundary 
layers. However, these sublayers or corner solutions are 
passive as far as the leading-order interior motion is con­
cerned, i.e., they do not influence the core mot ion considered 
here. One should be aware, however, that the present solution 
is not uniformly valid as you approach the corners. 

(b) Viscous Dissipation in the Sidewall Layers 

From the boundary layer solution we can determine the rate 
of energy dissipation due to the sidewalls, and compare it to 
the other dissipative mechanisms present. The average rate of 
energy dissipation per unit length due to the two sidewalls of a 
wave tank is, 

l-Albr) +h^r) \dzdy 

= /x(co«)2 Re1 

2V27T 
coth kh, 

where 

Re' A. 

For a channel of width 2/ the average rate of energy 
dissipation from the potential flow in the core and the viscous 
boundary layer at the bo t tom is 

2/ 
-Ecore =47r /*(aw) 2 ~coth kh, 

A 

1 2/ 
^bottom = ^i*(o)a)2 — ReW2 csch2 kh, 

see Phillips [15]. The boundary layer at the surface makes a 
negligible contribution to the overall energy dissipation, since 
the velocity gradients are of the same magnitude as those in 
the potential flow and the layer is thin. Consequently, the 
sidewall boundary layers are the dominant dissipative 
mechanism when the channel is sufficiently narrow and deep 
so that //A < < Re 1 / 2 and //A < < sinh 2 kh. In this case, 
following Phillips [15], we determine the at tenuation coef­
ficient of the wave mot ion as 

7 = 

where 

-^ sides 

IE 

Re,1/2 

CO 

2V2 

= .. 

Rer 

V 

\/2 

I 

E = k~xlp(wa)2 coth kh is the total mean energy per unit 
length, potential plus kinetic energy, due to the wave motion. 
The energy density of the wave motion decreases as 
exp( -270 and the amplitude as exp( -70- Note that 7 is 
independent of depth. This result has been found previously 
by Mei and Liu [7]. They also discuss a possible mechanism by 
which energy is transferred from the two-dimensional wave 
train to the sidewall boundary layers. In particular, they find 
that " . . . the free-surface meniscus is an important passage 
via which the wave energy is lost from the essentially inviscid 
interior to the side-wall boundary layer." 

A P P E N D I X 2 
The solution for \j/ satisfying the governing equation (12) 

and all but two of the boundary conditions (13) is 

^ = YJ bmi/„. 

i<m = sm(3my tanh /3 m / cosh ft„z - s i n h fimz ] 
00 

\jBmn sin anz\ — tanh anh cosh any - sinh any 
n = 1 \- R 

m-K nit 
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The remaining two boundary conditions that determine b„ 
and Bmn are 

dy oz 

Applying the first condition and defining a = h/l we find 

2 
B„ 

2 f' 
YHnl]0

G:M)sma„zdz 

4 . , m-K , /727T 
cosnnr cosnir smh tanh 
2 <T a 

( ( v ) - ' ) • 
where 

Hn =(h~ltanh a,,/; - a„)cosh a„/i + a„ tanh a„# sinh a„h 

G„,(z) = (3,„ cos(3,„A ( — tanh ft,,/ cosh (3,„z - sinh $mz) 

Finally, applying the last condition gives 

D *« |/v» sin 0my + X) B„mF„{y) 
» = i 

^ ) 
w = l 

where 

L,„ = (/"' tanh /3,„ / - ft„ )cosh ft„ / + /3m tanh ft,, / sinh /3m / 

/ ^ O ) = a:,, cos a„ll — tanh <*„/! cosh any - sinh « „ / ) 

Consequently the coefficients bm are determined from the 
following system of an infinite number of linear equations 

oa 

®r Lr + 2./ bmAmr=qr, 1,2, 3, . . . , 
m = l 

where 

oo 

n=i 

2 f° 2 r° 
/ V = -T- I F„(y) sin/3^ dy 

« J -h 

qr = 

/ 7T((n(T)2+/-2)2 

2 

cosr7r cosn7r tanh/7^crsinh«7T(j, 

/) 
j _ A F(y) sin/3, > ' * ' = 

2r 
(4/j)2+r 

coth2-?r/j. 

The coefficients £>r were determined numerically retaining 
20 terms in the summations over m and n. Results found by 
retaining a greater number of terms (e.g., 40 and 50) showed 
almost no difference from those found using 20 terms. 

STANDARD INTERNATIONAL UNITS 

Effective July 1, 1974, all manuscripts submitted to the JOURNAL OF APPLIED MECHANICS must use 
Standard International Units wherever units are used in text, figures, or tables. In addition to the SI units, 
other units may be included parenthetically or in footnotes if the author so desires. Authors of manuscripts 
currently being processed will be requested to append SI units if they are not already included. 
A handbook entitled ASME Orientation Guide for Use of SI {Metric) Units is available to authors on 
request to the Technical Editor of the JOURNAL. 

Professor L. B. Freund 
Brown University 

Division of Engineering 
Providence, R.I. 02912 

ASME is also preparing a series of text booklets for specific applications to various fields. 
See page 404 for a list of titles. 

250/Vol. 50, JUNE 1983 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



R. F. Gans 
Associate Professor, 

Department of Mechanical Engineering, 
University of Rochester, 
Rochester, N.Y. 14627 

Mem. ASME 

Boundary Layers on Characteristic 
Surfaces for Time-Dependent 
Rotating Flows 
Time-dependent motion of a fluid in a container rotating at Q is characterized by 
boundary layers on the container surfaces if v/Q, where v denotes kinematic 
viscosity, is small compared to the square of a typical length of the container. Let 
the frequency of the motion, measured in a corotating coordinate system, be tofl. If 
to — 1, then the length scale of the boundary layer is (u/Q) Vl, unless I to I is equal to 
twice the normal component of the unit rotation vector. If I to I does equal twice the 
normal component of the unit rotation vector, scales of (v/QL2)'/lL and 
(p/QL2)'A L are possible. If the normal vector and rotation vectors are parallel, the 

former scale vanishes. 

Introduction 

The study of flow in rotating systems almost always deals 
with situations for which the viscosity is small and boundary 
layers appear on bounding surfaces. In many circumstances 
free shear layers appear, emanating from discontinuities on 
the bounding surfaces. 

The earliest work is that of Ekman [1]. References [2] and 
[3] contain recent review articles. Greenspan's monograph [4] 
contains a unified presentation. Much of his notation will be 
adopted in the following. 

The typical boundary layer is the Ekman layer, within 
which the dominant balance is between the viscous and 
coriolis forces. The associated length scale is (VR)'/j, where v 
and Q denote kinematic viscosity and rotation rate. Time 
dependence modifies this balance, usually benignly. At 
frequencies much greater than the rotation rate, the Ekman 
layers go smoothly over to Stokes layers. In the inertial range, 
where the absolute value of the frequency is bounded by twice 
the rotation frequency, the Ekman layers remain Ekman 
layers unless the frequency equals plus or minus twice the 
normal projection of the rotation vector. What happens in 
this circumstance is the subject of this paper. 

Let k and n denote unit vectors parallel to the rotation axis 
and normal to the bounding surface (See Fig. 1). Then fik-n 
= fisinfl is the normal projection. If the flow is proportional 
to exp / (flto?), then the exceptional case is one for which to = 
±2sin0. (The classical examples of this are the Stewartson 
layers [5] (see also [4]), for which 6 = ir/2 and to = 0.) The 
inviscid equations of motion are hyperbolic in space when 
0< ltol<2. 

The boundary layers described in the following would form 
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within a fluid-filled spinning container were the container to 
oscillate at an exceptional frequency, defined by its basic 
rotation rate and geometry. A direct analytic demonstration 
of the role of these boundary layers in a global problem is 
difficult, primarily because the inviscid equations of motion 
are separable only in Cartesian and cylindrical coordinates. 
One example is given in [6]. A general linear problem would 
need to be dealt with numerically. However, the choice of 
numerical scheme will be better assisted by an understanding 
of the basic boundary layer structure to be expected. 

This paper discusses boundary layers on characteristic 
surfaces of finite area. (Stewartson layers are a special case.) 
The plan of the paper is: 

(1) to formulate the linear boundary layer problem in 
general; 

(2) to discuss the special cases sinf? = 0 (Stewartson layers) 
and cos0 = O; and 

(3) to examine a case for sinfl and cos0 of order unity. 

Formulation 

The general differential equations for boundary layer flow 
in a rotating system can be obtained by following and ex­
tending the procedure outlined in Greenspan's book [4]. 

Let an incompressible fluid with kinematic viscosity v be 
contained in a volume with a characteristic dimension L. Let 
the volume rotate about an axis k at fl, and imagine the fluid 
to be corotating. Suppose that some small perturbation, either 
boundary motions or a body force, causes the fluid to have 
some small additional motion. Then the velocity field in the 
fluid, v, can be written 

v = fiL(kxr + eq), (l) 
where e is a small parameter measuring departure from solid 
rotation. It is convenient to work in a rotating coordinate 
system and to measure length, time, and velocity in units of L, 
fi_', and QL. The governing equations become the familiar 
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Fig. 1 Sketch of a characteristic layer bounded by Ekman layers (see 
text) 

dt 
+ 2 k x q + vp=Ev 2q; v q = 0, (2) 

where p denotes the reduced pressure and E = v/Q,L2 is the 
Ekman number. When E < < 1 a boundary layer formulation 
is appropriate. That assumption is made, as is the assumption 
that e = o(E), so that the problem is strictly linear. 

Time dependence is incorporated by assuming a simple 
exponential variation, letting q(x,0 = u(x)e'"'. It is not 
necessary to restrict the magnitude of w, but the interesting 
cases are those for which Icol <2 . The inviscid equations, (2) 
with E set equal to zero, are hyperbolic in space when 0 < Ico I 
<2 . This is also the range for which free oscillations of an 
inviscid rotating fluid are possible. 

The boundary layer analysis is based on dividing u into u(x) 
and u(x), an interior and boundary layer component. The 
boundary layer component u is distinguished by a rapid 
variation normal to the boundary and an exponential decay 
away from the boundary. It is most easily analyzed in terms 
of an orthogonal curvilinear coordinate system xu x2, x3 in 
which the velocity components are u, v, w, the boundary of 
the container is xx = 0, and the normal vector n = x,. The 
most general such system can be defined in terms of its dif­
ferential line element as 

ds2 = h\dx\ + h\dx\ + h\dx\, 

and the boundary layer hypothesis can be expressed as 

du 
dx\ > > 

du 
9x2 

du 

dx3 

(3) 

(4) 

It is also necessary that the boundary shape vary slowly 
enough that the spatial derivatives of the unit vectors and 
scale factors be at most 0(1). 

The general boundary layer equations are derived from (2) 
as follows. Let 

u = u » n - n x ( n x u ) (5) 

(and drop the tilde as unnecessary in the sequel). The 
divergence condition serves to eliminate n»u = u: 

(n- v + v .n)w= - n - v x ( n x u ) + v ( logh,)«nx(nxu) (6) 

The second term on the left will be negligible. 
The normal component of the momentum equation serves 

to eliminate the reduced pressure: 

n . v p = 21e(nxn)+[£(n- v ) 2 -/co]« 

- E v ( l o g h , ) . ( n . v ) n x ( n x u ) + 0(£)+fl(£n- v M) (7) 

The first term on the right-hand side dominates the pressure 
unless k x n =0. In all cases for which the pressure is im­
portant, the term proportional to v(logh!) is negligible 
compared to [E(n> v )2 - ico]u. 

The governing equations for the tangential components of 
the velocity are obtained by adding and subtracting nx and in 
x (n x ) the momentum equation. The identity 

/ \ 
/ \ 

/ * - . 20 - ^ 

^ F B 

Fig. 2 The conical surface 

n x u ±in x (n x u) = (v =F iw) ( ±ix2 + x3) (8) 

allows the equations to be converted to scalar equations: 

[ i ( co-2n .k) -£ (n« v)2][v-iw] 

_ / 1 d 1 d \ 
= I — — - — ) / ? - 2 i [ x 2 . k - i x 3 . k ] w 

V h2 dx2 h3 dx3 / 

[i(o) + 2n-k)-E(n- v)2][y + iw] 

/ 1 d 1 d \ 
(— — + -— — )Jf7 + 2i[x2-k + ix3.k]W 
V«2 dx2 h3 dxj / 

(9) 

These equations are of constant coefficient form in the 
coordinate Xi. Thus they admit solutions of the form exp/^j , 
and the boundary layer hypothesis requires I/J > > 1 and Re 
fi > 0. If o)±2n-k is not zero, then the right-hand sides of 
these equations are negligible, and one obtains 

£> 2 =i(co±2n.k) . (10) 

These are essentially time-dependent Ekman layers. 
If w = ±2k«n, a more subtle analysis is called for. The two 

extreme special cases, k-n = 0 and lk»nl = 1, have been 
examined, the former by Stewartson [4, 5] and the latter by 
Gans [6], These two cases, as well as a relatively general case, 
can be derived from a specialization of the coordinate system. 

Surfaces for which oi ^ ±2k»n will be termed Ekman 
surfaces, and surfaces for which the co = ±2k»n will be called 
characteristic surfaces. The outward normal to Ekman 
surfaces will be denoted by nE. The transition between 
characteristic and Ekman surfaces will be supposed to be 
abrupt, and marked by curves T. Figure 1 shows a general 
case. E c and E£ denote the characteristic and Ekman sur­
faces. The characteristic layer is shown schematically, an­
ticipating the result that it is always thicker than the Ekman 
layer. 

If f,ij denote the characteristic coordinates of the inviscid 
equations, then Lc is just f = constant. The conjugate 
characteristics shown are 77 = constant. Free shear layers may 
occur on such surfaces. 

Characteristic Boundary Layers on a Conical Surface 

This section examines the surface formed by making two 
horizontal slices through a vertical cone. Figure 2 shows the 
surface. An x, y, <j> coordinate system is defined. In this 
system x = 0 defines the surface, the differential line element 
is ds2 = dx2 + dy2 + r2d<j>2, so that hx = 1 = h2, and 

hi=r = R+xcosd+ys'm6~R+ysmd. (11) 

The length scale is chosen so that the curves T are given by y 
= =Fl; n»k = sin0. The reader will note that the bounding 
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surfaces of a right circular cylinder can be obtained in the 
limits sin 0—0, R fixed (for the curved outer wall) and 
cos0—0, R fixed (for the end plates). This will allow one to 
use this system to explore those two special cases. 

Let w = 2sin0. (The analysis for o = -2sin0 is the same.) 
Define Q* = v±iw, and suppose these to be proportional to 
e1", where l/il > > 1 and Re fi > 0. The governing equations 
(9) may then be rewritten as 

—EJX2Q =2icosdu 
- ( 

dp_ 

dy 
+ • 

' ) 

(4<sin0-E/x2)Q+ = -2<cos0u- ( — -—p) 
\ dy r / 

(12) 

where solutions proportional to e""* have been assumed. 
Equations (6) and (7) can be used to eliminate u and/? in favor 
of v and w, and hence Q+ and Q~ . When those expressions 
are substituted into equation (12) the result is a general 
formulation for characteristic boundary layers on the conical 
surface: 

-E^Q + 2—7-
ix L dy 

+ -sin0Q-
r 

1 
+ -s in 

r 
in0Q+] 

_ .2isind-Eix2 cv d 

~' V tidy2 

1 
+ ^(m2-

'2 1 d 
+ -(2m + sin0) dy 

- sin(9)l < 

. dy2 ' r dy 

1 • n d 
+ -sin0-

r • (w —sim in^)2]e) (13) 

icosd \-dQ+ icosd r 
(4ismd-Eix2)Q+ 2 : ^ — + -sin0Q + 

ix L dy 

+ -sm6Q-
r 

"I .lismB-Ea2 (T d 1 . 

J = / — 2 ^ — I L ^ + 7S1 sin0-
dy 

^ ( W + s i n 0 ) 2 ] c r - [ | , 

dy 

- (2m - sin0) — 
r dy 

\(m2 sin20)]e-]. (14) 

The right-hand side of equation (14) is always negligible. 
The right-hand side of (13) is negligible unless cos0 = O. E/x2 

can equal 4/sin0 and an o(l) value. If sin0 = 0, both EJX2 art 
0(1). The two special cases, sin0 = O and cos0 = O, will be 
considered first. 

The Case, sin0 = O. Let sin0 = O. Ey? will be 0(1) and the 
right-hand side of each equation is negligible. By inspection 
<2~ «exp iE/xi/2 y and Q+ a e x p - iEix3/2 y; the boundary 
layers are Stewartson layers. Since the scale is large compared 
to the Ekman scale, the boundary conditions (in y) are those 
of Ekman compatibility, which can be written [4] 

n , . u = - i ^ n £ . v x [ [ „ £ x „ + ^ T u ] ^ - i F F ] ( 1 5 ) 

where nE denotes the normal to the Ekman surfaces bounding 
the characteristic surface. In the case that the Ekman surfaces 
are the flat ends of a cylinder n£ = ± k and this approach will 
yield exactly the result originally found by Stewartson [4, 5]. 

The Case, cos0 = O. 
equation (14) is 

When cos0 = 0 the solution to 

Q + = Q o + 0 > ) e x p 2 - ^ - * . 

Equation (13) becomes a second-order equation in.y: 

(16) 

d2Q~ 1 dQ~ 1 
-71-+--T j(m-\)2Q-+Eix*Q=Q. (17) 

dy2 r dy r 
This is recognizable as Bessel's equation of order m - 1 (after 
the variable change to r=R+y). The boundary conditions 
are those derivable from (15), remembering that only Q~ 
participates because Q+ varies on the Ekman scale and is 
negligible. The result, to lowest order, is that Q must vanish 
atr = R±l. Thus 

.?/-( Jm-\ (k„r) Ym-\(knr) 

Jm-x[k„(R + \)] Ym-Akn (R + l)] 
]e"nx 

(18) 

where £/4 = k„ and k„ satisfies the eigenvalue relation 

Jm-dkn(R-i)]Y„,-l[k„(R + l)] 

-Ym_1[k„(R-l)}Jm^[kn(R+l)]=0: (19) 

(If n£«k = 0, equation (15) fails. An alternative formulation 
leaves the conclusions unchanged.) 

The coefficients a„ are found by expanding the boundary 
conditions in the given eigenfunctions. If v0, w0 are the values 
v and w are required to take on the wall, then 

Qo(y)=v0 + iw0 

and 

(u0-iw0)r$„(r)dr 

(20) 

where $„ denotes the function in braces in equation (18). 

The General Case. When sin0 and cos0 are both 0(1), 
equation (14) has the solution 

Q+=QoHy)exp2 

Equation (13) reduces to 

1+ / 

(2&SC0)' -x. 

dQ~ 1 iE»? 

dr 2r- sin20 ' 

which has the solution 

Q - « 
l 

V? exp-
iEy? 

2cos0 y-

(21) 

(22) 

The boundary condition (15) can be written, in this case, as 

=FI>= — ViixEVlw, 

to leading order. The upper sign applies at r r , y = - 1, and 
the lower at y = 1. Let Q~ ocexp-i[My + 4/], where 
M=£/i3 /2cos0. Identification of v and — w with the real and 
imaginary parts of the exponential leads to the eigenvalue 
relation 

=Fcos(i/'::FAf)= - ViixE'Asm(\p^M), 

from which \p = 7r/2 and M = nir,ixE'A/2. In the former case 
the analog of the E'A layers arise and in the latter one obtains 
E%A layers. 

(Alternatively one can let vTf = Asinky and Vnv = Bcosky. 
Then Q~ = Asinky — iBcosky. The differential 
equation gives k=En3/2cosd and B=— A. The matching 
condition gives the same result as that cited in the foregoing.) 

When M=mr there is a single root with Re(/*)>0 when 
n>0, and two when « < 0 . When M=fxEVl/2 there is one 
admissible /x. Denote that by ix0 = (cos0/£,l/2)!/z. 

Let 2fx„ = (2 Icos0« I TT/E) I/J . Then the roots for M=mr are 
given by 2/x„ for n > 0 and /i„(l ±iV3) for n <0 . Thus Q" can 
be represented as a complex Fourier series: 
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v7£T =A0e»ox+ Yl einyeli'<x[a„ei^x 

/ l = — oo 

00 

+ b„e~^x] + ]2 e-"nyC„e2""*, (23) 

which can be rewritten in the more useful form 

VrQ" =A0e
t'ox+ 2^ sin/j7ye''"x[/4/,cosvT^„A: 

« = i 

+B„siny/3iinx + C„et,«x] 

— i 2^ cosnirye>l>ix[A„cosV3iJ.nx + B„sm'J3n„x-C„eti>tx], 

(24) 

where the boundary conditions determine A0, A„, and C„. 
The leading term of the normal velocity u must also vanish. 

In solving for u one needs to differentiate the series (24), and 
there is no guarantee that the result will converge. An 
alternative boundary condition is that the flux being trans­
ported through the layer be independent of y at any given 
instant. Imposing this condition on the integral of (24) leads 
toB„ = (An - 2CJ /V3 . 

Discussion 

Boundary layers (and free shear layers) have been shown to 
have scales of variation of E'A and E'A when the surface is a 
characteristic surface for the associated inviscid problem. The 
formulation given can be adapted to specific problems, 

although such an adaptation may not be practical in cases 
where an inviscid solution is not available. In such cases 
knowledge of the scale of variation can be used to design an 
efficient numerical scheme. 

In the usual Ekman layer problem the balance is between 
the viscous force and a combination of the leading terms of 
the coriolis force and the inertial force. For the characteristic 
layers the primary balance is between the coriolis and inertial 
forces, leaving the viscous force unbalanced. In that case the 
viscous force is balanced by a combination of horizontal 
pressure gradients and the weak coriolis force associated with 
local normal velocities. When cos 0 = 0 this weak coriolis force 
vanishes and the horizontal pressure gradient is also weakened 
in consequence. This explains the dissappearance of the EVl 

layer in that case. 
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Flow Inside a Pneumatic Tire: A 
Peristaltic-Pumping Analysis for 
the Thin-Tire Limit at Very Low 
Forward Speed' 11,2 

The flow inside a pneumatic tire is analyzed in the limit where the cross-sectional 
diameter of the tire is small in comparison to the wheel diameter, and where the 
forward speed is sufficiently low that centrifugal pressure gradients can be 
neglected. The movement of the contact point around the circumference of the tire 
produces an internal flow by a mechanism analogous to peristaltic pumping in long 
flexible ducts. Analytic expressions for the flow velocities and pressures predicted 
by this model are derived, and are related to tire velocity and load. 

Introduction 

The air inside a pneumatic tire is set in motion, relative to 
the tire, by the movement of the ground-contact region 
around the periphery. Hot-wire-anemometer measurements 
[1] have shown that the internal velocities can reach 20-30 
percent of the forward speed, for a typical range of loads. 
Speeds of this magnitude affect the heat transfer from the tire 
wall to the air inside, to a degree that is comparable with the 
heat transfer from the tire wall to the air outside. Thus, an 
understanding of the flow and heat-transfer characteristics of 
the internal flow is a necessary step in quantifying rolling 
resistance and the temperature buildup of the contained air. 

The present study was undertaken in an attempt to provide 
some understanding of the problem, by treating a limiting 
case for which an analytic solution is possible. The limit 
chosen is that of a thin tire, (i.e., one whose cross-sectional 
diameter is small compared with the wheel diameter) which 
moves at a forward speed low enough to permit the cen­
trifugal pressure gradients to be neglected. In this limit, the 
flow is equivalent to that in a thin, flexible-walled tube, along 
which a constriction moves at a constant speed. The motion 
resulting from the movement of the constriction is called 
peristaltic pumping (see, for example, [2]) and can be 
analyzed very simply in the limit of small values of the 
Reynolds number (where the Reynolds number is based on the 
speed of the constriction, the cross-sectional diameter, and the 
kinematic viscosity of the contained air). The following 
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sections contain a review of this analysis, and an extension to 
the present case, where the tube is not infinitely long, but 
rather is periodic. The case analyzed is that of an adiabatic 
flow, i.e., no heat transfer is allowed between the air and the 
tire wall. The rate of temperature buildup of the contained air 
due to viscous dissipation is calculated. Results for a sample 
case are given in the next section, and the final section con­
tains remarks on the nature of the approximations made and 
the extensions required to treat the case where centrifugal 
pressure gradients cannot be neglected, the Reynolds number 
is larger, and the cross-sectional diameter is a significant 
fraction of the wheel diameter. 

Analysis 

Jaffrin and Shapiro [2] present a description of the 
mechanism of peristaltic pumping, by considering the case of 
a long flexible tube of diameter d, along which a restriction 
slides from left to right at speed c (see Fig. 1). If the ends at 1 
and 2 are closed, the pressure at 1 will rise above that at 2, to 
the level required to force the required mass flow through the 
restriction. The required mass flow, in turn, is given by the 
cross-sectional areas of the tube and restriction, and by the 
speed at which the restriction moves. The flow pattern 
described in the foregoing becomes steady if it is viewed in a 
coordinate system fixed to the restriction (see Fig. 2): the flow 
and the wall then move from right to left. The wall speed is 
equal to c if longitudinal extensions of the wall material are 
neglected, which is the case assumed here. 

If now the ends of the tube are opened partially, and if the 
pressures imposed at the two ends differ from those that were 
developed in the closed-end case, the result will be that a 
certain amount of mass flows into and out of the tube at 
Stations 1 and 2, and the mass flow through the restriction is 
altered (see Fig. 3). This flow pattern has the appearance 
shown in Fig. 4, in the coordinate system attached to the 
restriction. 
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Fig. 1 Peristaltic pumping, tube-fixed coordinates Fig. 4 Open-ended case, restriction-fixed coordinates 

—-T 

Fig. 2 Peristaltic pumping, restriction-fixed coordinates 

© © 
Fig. 3 Open-ended case, tube-fixed coordinates 

The flow inside a tire is now modeled by taking a finite 
length of this tube, and joining the free ends (see Fig. 5). Note 
that this configuration is viewed in a coordinate system which 
translates with the axle: the roadway moves from right to left 
at speed c, the tire surface moves with a constant angular 
velocity 0, and the internal flow is steady. The radius R 
locates the centroid of the undeformed cross section, n is a 
cylindrical coordinate, and a denotes the radius of the local 
tire cross section, which is taken to be circular in the present 
work. 

The key to solving for the flow pattern is to find an ex­
pression for the mass flow being transported past any station, 
in terms of the local pressure and tube geometry. For steady 
flow, the mass flow is the same at all positions around the 
circumference, and is equal to the value that will make the 
pressures equal at the two ends of the tube length shown in 
Fig. 4, i.e., periodic in the angular coordinate of Fig. 5. 

In the low Reynolds-number, thin-tire limit, the relation 
between mass flow, pressure gradient, and tube geometry can 
be written very simply: the vorticity introduced by shear 
stresses at the walls diffuses toward the center of the cross 
section at a rate that is large compared to the rate at which it is 
converted along the tube. Thus, there are no distinct regions 
of boundary layer and core flow; rather, the entire cross 
section is filled with a viscous flow, whose properties adjust 
immediately to the wall conditions imposed at that station. 
This is the limit described by the Hagen-Poiseuille flow in a 
tube (see, for example, [3], Section 5.2) where the inertial 
terms in the momentum equation are neglected, and the 
pressure gradient and shear stress gradient are equal at each 
station. The Poiseuille-flow behavior can also be derived 
formally from the equations of motion as the Reynolds 
number ca/v and radius ratio a/R both approach zero (where 
v is the kinematic viscosity). 

The momentum equation is (see Fig. 6 for definition of the 
coordinates): 

dp _ JX d A dw' \ 

~~dx ~ ~r ~dr\ ~dr ) 
0) 

where p is the pressure, JX the dynamic viscosity, x=x4> = R<j>, 
and w' is the increment in the ^-component of velocity that is 
added to the solid-body motion, i.e., v^ = U /i+w' *=tiR + w'. 
The gradients of pressure in the r and i/< - directions are 

Fig. 5 Tire-flow model 

proportional to higher powers of the Reynolds number and 
radius ratio. The solution is the parabolic profile: 

dp/dx 

4M 
{r2-a2) (2) 

m 

This solution is now applied in the same manner as in 
lubrication theory, i.e., both the pressure gradient and the 
local radius are allowed to vary with x. The mass flow m is 
given by (here p denotes the density): 

TraA dp/dx 

p JO 8/x 

The moving wall transports an additional mass flow pcA, 
where A = ira2 is the local cross-sectional area and c = UR in 
the thin-tire limit. Thus, the total mass flow is 

ira*pdp/dx 

= \lW' 2-irrdr-- (3) 

m = ira'-pc + 8/a 
(4) 

— = — j-(m-ira2pc) (5) 

This can be solved for the local pressure gradient: 

dp 8/x 

~dx 

The variation of cross-sectional area around the tire leads to 
positive and negative values of the pressure gradient; the value 
of mass flow is determined by the condition that the pressure 
be periodic, i.e.: 

f + ' dp 
-i dx 

dx = 0 (6) 

where l=vR. This condition can be written entirely in terms 
of the distribution of cross-sectional area A/Am, which is 
assumed given {Ax is the cross-sectional area of the un­
deformed tire). Substituting equation (5) into (6) gives: 

m _ r +' dx ;p+ ' dx 

~p~^AZ~~\~i A/Aj\-i (A/AX)2 ( ) 

The pressure distribution is then found from: 

dp_ 

dx pcAc 

A 

87[>C (A/A„)2 (8) 

At each station x, the local centerline velocity wc' and cross-
sectional-average velocity w' are given by: 

256/Vol. 50, JUNE 1983 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 6 Cylindrical coordinates (r, </>, Z) and toroidal coordinates (r, 0, i/-) 

c 

2vv' 
c 

4P 

(9) 
A 00 87T^C 

Finally, the increments in rolling resistance AF and power 
consumption AP caused by viscous dissipation can be found 
by integrating the local rate: 

f +/ f " / dw' \ 2 

AP=AF.c=\ \ J ) livrdrdx (10) 

The integration over the radius can be done analytically, 
giving: 

AP _ r +' / A \ : 

:uc 2 .2 / = J- / \AZ) 
dx 

8-irixC %-KflC 
dx (ID 

The expressions in the foregoing display the scaling laws 
and functional dependences that apply at low Reynolds 
number. It should be noted that the right-hand sides of these 
equations depend only on the area distribution (and, thus, on 
the load or tire deflection), while the left-hand sides give the 
scaling parameters: c for the air velocity and \ic/A„, for the 
pressure gradient. The dependence of pressure gradient on the 
first powers of viscosity and velocity is typical of flow at very 
low Reynolds number. 

Results for a Sample Case 

The relations derived in the preceding section are next 
applied to a specific example, in which the (circular) cross-
sectional area of the tire is reduced, over a portion of the 
circumference, according to a cosine law: 

A 
A.ra 

= 1, \x\>L 

1 -
AA 

1 + cos -

Ac 

\x\<L (12) 

Note that the angular extent of the area change is 2L/R. 

oh 

I 

Fig. 7 Distribution of cross-sectional area 

Fig. 8 Pressure-gradient distribution 

Am . [p-p(180°l 

Fig. 9 Pressure distribution 

_|_ _L _L _1_ 

+1 

X/R (degrees) 

Fig. 10 Distribution of peak velocities 

For this case, the integrals required for the mass flow 
determination can be found in closed form: 
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T 
AA 

Fig. 11 Tire deflection model 

L L f > d(x/L) 
L% — L Y -

R R J - i A/A I 
pcAc 

2 T T - 2 + 
R R J 

(dx/L) 

' C4A4oo)2 

(13) 

where 
1 d ( x / £ ) 

J - i A/A, 

d(x/L) 

-> JATAU2 

2 -
ZVi 

Ac 

(-£) 
(14) 

Figures 8-10 show the distributions of pressure gradient, 
pressure, and centerline velocity for AA/A„=0A and 
2L/R = 7r/3. These distributions are symmetric with respect to 
x = 0 because the assumed area distribution was symmetric. 
They show uniform values of the pressure gradient and 
velocity in the undeformed port ions of the tire. 

The velocity variation displays the same scaling law noted 
in the experiments cited earlier [1]: for small changes in area, 
the general formula can be approximated as follows: 

pcAc 

= 1 
AA 

2-KR Ac 

A„ 
dx N 

AA 

~A~I 

8TT^IC 

AA 

2irR/ Ac 

C / max 

/ AA \ 
(16) 

where the subscript denotes the maximum value, which occurs 
at the point of minimum cross section. The area change, in 
turn, can be related to tire deflection in several ways [1 ,4 ] ; the 
formula used by Schuring et al. [1] considers the deflection as 
due to the removal of a sector from an initially circular cross 
section (see Fig. 11). 

AA 

ira2 

1 

2-K 
- s i n a ) ; 

a = 2arcsin 
( ! ) 

For small deflections, these reduce to : 

AA ~3 
a 

\2ir 

4V2 / 8 

"37 \ a / 

3/2 

(17) 

(18) 

If this relationship is used, the peak velocity scales with tire 
deflection according to : 

w/)„ = 2 c ( l -
L \ 4V2 / 5 

2~7^7 "37 V a / 
(19) 

This is essentially the same result as that of reference [1], 
except that it contains a further dependence on deflection, 
implied by the L/R term, since the length of the footprint 
region will change with load. 

The dependence of peak velocity on tire deflection involves 
only the continuity equation, and thus is independent of 
Reynolds number . The other scaling laws derived in the 
foregoing apply only for the low-Reynolds-number limit, and 
were not observed in the experiments of reference [1]. For 
example, the measured distribution of peak velocities (see Fig. 
6 of [1]) does not have the symmetry shown in Fig. 9 for the 
present limiting case. 

Concluding Remarks 

The model used in the foregoing illustrates some of the 
fluid-mechanical features that are present in the flow of air 
inside a tire: the motion of the footprint region around the 
periphery causes a mass flow, relative to the tire wall. The 
particular value of the mass flow that will occur is that value 
whose associated pressure d rop will meet the periodicity 
condition. 

In the low Reynolds-number limit studied here, the pressure 
drop and viscous shear stresses are in complete equilibrium at 
every station, and so the flow experiences negligible ac­
celerations. In the case of automobile and truck tires, 
however, the flow takes place at much higher Reynolds 
numbers , where the effects of viscosity are confined to 
boundary layers that do not respond immediately to the local 
changes in the cross-sectional area. Moreover, these boundary 
layers are probably turbulent . In addition, the centrifugal 
pressure gradients that are present in the auto and truck-tire 
case are not negligible, and undoubtedly produce substantial 
secondary flows. Thus , in the next level of approximation, the 
effects, on peristaltic pumping, of turbulence, boundary-layer 
development, and radial pressure gradients must be con­
sidered. The present model , which applies to laminar, fully 
viscous, zero radial-pressure-gradient flows, will provide a 
useful starting point for the addition of these more complex 
features. 

Although the predictions of the present model are restricted 
to very low Reynolds numbers (for example the rolling 
resistance and the rate of temperature rise), nevertheless the 
scaling law for the center line velocity is not so restricted, 
because it is based on the continuity equation, which is not 
affected directly by viscosity. The peak velocity will be 
proport ional to the first power of the cross-sectional area 
change for any model of the flow, al though the magnitude of 
the peak and its variation through the footprint region will be 
sensitive to the details of how the boundary layers are. 
represented. Thus , the ability to correlate center line velocity 
data is not a valid test of whether a particular analysis ac­
curately models the boundary-layer behavior of the flow (and 
thus also the heat-transfer properties of the flow). 
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Superpotential Solution for Jet-
Engine External Potential and 
Internal Rotational Flow Interaction 
For flows with prescribed parallel shear far upstream, the vorticity generation term 
in the disturbance stream-function (\p) equation and the Bernoulli "constant," 
both of which vary from stream surface to stream surface, are explicitly evaluated 
as power series in 4> with curvature-dependent coefficients, for axisymmetric flows 
using some invariant properties of vorticity. By casting the linearized stream-
function equation in conservation form, extended Cauchy-Reimann conditions are 
obtained, implying a "superpotential" <f>* satisfying a "Laplace-like" equation 
useful for solving flows past prescribed shapes; the corresponding tangency and 
Kutta conditions, interestingly, take a "potential form," so that simple changes to 
existing potential flow algorithms extend their applicability to strong oncoming 
shears with arbitrary curvature. The theory, which applies to duct flows behind 
actuator disks generating shear, is sketched for both "analysis" and "design" 
formulations; here, we address the interaction between external potential and in­
ternal rotational jet-engine flows occurring through both an assumed actuator disk 
and a trailing edge slipstream, and provide representative numerical calculations. 

1 Introduction 

In many aerodynamic problems, the important effects of 
oncoming shear usually require a direct attack on Euler's 
equations or on a very complicated stream-function equation 
useful in only the simplest applications. The shear, for 
example, might result from radially varying work imparted by 
turbomachinery blade rows, or, from the effects of 
nonuniform winds. This paper, using the "superpotential" 
approach outlined in the Abstract, shows how small 
disturbances to strong shears with arbitrary curvature can be 
solved, making only simple changes to existing potential flow 
algorithms. Both the "analysis" problem, solving for 
pressures induced by prescribed geometries, and the "design" 
problem, solving for shapes inducing prescribed pressures, are 
easily handled within the theoretical framework. A par­
ticularly challenging problem not yet tackled by existing 
computational methods is the jet-engine external potential 
and internal rotational flow interaction occurring through an 
actuator disk and a trailing edge slipstream. The power, 
flexibility, and simplicity of the superpotential is applied to 
this very important engineering problem and numerical results 
are obtained; however, lack of experimental data precludes 
comparisons. 

The basic ideas derive from an invariant property of 
vorticity: for axisymmetric flow, the vorticity convected along 
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a stream surface changes only in proportion to its length. If a 
parallel shear flow is prescribed in some part of the flow 
domain (not necessarily upstream infinity), then the nonlinear 
vorticity generation term in the disturbance stream-function 
(\p) equation governing the remaining perturbed flow and the 
Bernoulli "constant," both of which vary from stream 
surface to stream surface, in principle can be evaluated ex­
plicitly as functionals of the base flow; here, they are ex­
panded in powers of \p with variable shear-dependent coef­
ficients. The linearized stream-function equation, put in 
conservation form, implies the existence of a "super-
potential" 4>* satisfying extended Cauchy-Riemann con­
ditions: the </>* equation is potential-like, and the 
corresponding tangency and Kutta conditions, interestingly, 
take the usual potential form, indicating only minor required 
changes to existing potential flow algorithms! For our jet-
engine problem, the only difference with irrotational form­
ulations turns out to be an additional but discontinuous 
coefficient in the governing equation; this interfacial 
discontinuity, handled carefully, is stably implemented. The 
approach taken is quite general and obvious applications to 
other applications will be seen by the reader. 

Our superpotential results, actually, appeared quite for­
tuitously in the course of extending the stream-function 
approach of references [1,2] for aerodynamic "design" or 
"inverse" problems to flows with oncoming shear (these 
formulations solve for shapes inducing prescribed pressures 
subject to geometric constraints). The design formulation for 
rotational flow is presented in this paper, but calculations and 
engineering applications are deferred to future papers; here, 
we concentrate instead on "analysis" problems solving for 
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pressures induced by prescribed shapes satisfying Kutta-type 
conditions that are more conveniently handled by potential­
like formulations (analysis problems prefer auxiliary con­
ditions described by potential jumps that control vortex 
strength and lift, whereas design problems prefer shape 
constraints described by stream-function discontinuities that 
control source strength or mass efflux). In particular, we have 
selected a very difficult analysis problem involving the in­
teraction of an external potential flow and an internal 
rotational flow, a problem of significant interest in jet-engine 
nacelle design not previously considered. Although our 
numerical results are preliminary and, of course, subject to 
improvement, what is demonstrated is the power, simplicity, 
and flexibility of the superpotential approach. In the 
following, the general theory, the required linearizations, 
application, and numerical results are presented. 

2 The Rotational Flow Equations 

Let U and V be the full velocities in the streamwise (x) and 
radial (/•) directions, P be the static pressure, and p be the fluid 
density. The governing momentum and continuity equations 
for a steady axisymmetric flow without swirl are UUX + VUr 

= ~PX/P, UVX + VVr= -Pr/p,andUx + Vr + V/r= 0. 
A stream-function ^ can be defined satisfying yr = rU, ¥x 

= -rV, and ^xx + ^rr - ^lr/r = r{ where f = Ur - Vx is 
the vorticity. To obtain more specific information, we note 
the dependence of f/r on ^ alone, that is, f/r = / ( ^ ) where 
the function / , fixed for the entire stream surface, can be 
explicitly written once the flow is known in any particular 
region of space. Thus, 

*« + *„-—Vr^A*) CD 
r 

For simplicity we assume a parallel shear flow far upstream 
with prescribed U = U,„(r) and V = 0. The stream function 
for this mean flow ipm(r) satisfies r2 f(\pm)= i/m - i/<m /r. 
From this, the derivatives d"f(\l/m)/d\l/"„ are easily written in 
terms of r and Um(r). Now if our mean flow is slightly per­
turbed, a disturbance stream-function \j/ satisying ¥ - ¥,„ + 
\p can be introduced which satisfies 

txx + 4'rr 4>r 
r 

i2,Mm + M-Mm) = r2^ 

2l(dM,„) 1 ,d2MJ , 1 nd'Mm) 

(. d\pm 2 v dtf,. + 6 * dtf„ • • ) 

or, more explicitly, 

r ( 
<Jn Jl 

Un. '-> 

1 / UZ U'mU'm 3U^ U;„2 3U'm\ 

2 \Uj„r U%r Uj„r2 Ul,r2 U2^) 

+ 1 (JJLL- 3U»'u;» _ *HL- JJL + 3U"»U< 
6 \ul,r2 uy Ul,r> U?„r2 Ul,r 

. nu;;,u;„ 
Ut r3 

^ _ w j _ iot/;„2 _ i5t/;„ \ 
Ulr4 ULr3 Uir* Ulr5 ) f 

15 U" 

(2) 

Equation (2) explicitly evaluates the vorticity generation term 
by expanding / in powers of \ji with curvature-dependent 
coefficients (small disturbance assumptions are implicit in the 
use of Taylor series). 

A similar analysis applies to the Bernoulli "constant" in the 
usual pressure integral, which varies from streamline to 
streamline. It is convenient to define a function J within a 

"true constant" by J'(¥) = / ( * ) . Then, the streamwise and 
radial momentum equations and the definition of vorticity 
lead to the Bernoulli equation 

P/p+ L (U2 + V2)-JC*) = C (3) 

where the constant C, fixed throughout space, does not 
change from stream surface to stream surface (the "variable 
constant" appears through / (*) ) . / is easily determined in any 
particular example. Suppose that U,„(r), and hence i/m(r), are 
given analytically upstream (this is not required in our later 
work). This functional relation can be inverted to yield r = 
g(\j/m), which is substituted in/(>/<,„) = U'm(f)/r to provide the 
required integrand in J = J* / W d^. If we now write 
equation (3) using conditions at infinity, we have 

p 2r p 2r r 

or, 

CP = 
P-Pm(r) 

1 
P0%, 

2tf„. *, + # + # , 20 JWm + +)-J(+m) 

£/i, £&f 
(4) 

where Cp is a nondimensional pressure normalized by a 
dynamic head based on the reference velocity [/ref. Then, 
replacing the derivative-like / term in equation (4) by its 
Taylor series approximation lead to 

P-Pmir) 2+mr+r + ti + tf , 2U;„ 
c, 

•pOkt 
u2^2 

U' 

u2^ 

U" 

,Umr2 U^/Uia 
(5) 

In summary, equations (2) and (5) provide explicit working 
equations with coefficients expressed in terms of known 
upstream conditions; they were obtained using some invariant 
properties of the stream function and the vorticity in 
axisymmetric flow. The linearized equations and their con­
sequences are discussed next. 

3 The Linearized Problem 

In many engineering applications, simplifications are in­
troduced by applying boundary conditions along slits. For 
these small-disturbance flows, the foregoing equations can be 
linearized; then, it turns out, that the notion of the velocity 
potential can be extended without difficulty (we will show 
how existing potential flow algorithms can be simply 
modified to handle strong shears). Let us now drop the 
nonlinear terms in equation (2). It is almost remarkable that 
the linearized equation can be cast in the conservation form 

\ rUTet / dr\ 

3 / Um i/v U'm ^ 

dx \ rUrsS / dr \ rU!ef rU, ) -
This implies the "extended Cauchy-Riemann conditions" 

t/ref r Unt r 

* ? = - U„r r 

(6) 

(7) 

(8) 

where 4>*{x,r) is our "superpotential" (</>* derivatives are not 
velocities unless £/,'„ = 0). Equations (7) and (8) in turn show 
that 4>* satisfies the "potential-like" equation 
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/ 1 2U' \ 

*«+*£+( — - - ^ W ^ o (9) 
Thus only minor changes to existing potential flow finite-
difference or finite-element algorithms are needed. The 4>*/r 
term in irrotational flow, incidentially, couples the effects of 
thickness and camber; here, we see that mean vorticity in­
troduces additional coupling. The corresponding tangency 
conditions obtained from equation (8) are 

^ r e f 

where r = R is a suitable mean radius and F± (x) are 
streamwise surface slopes. For bodies with trailing edges, 
Kutta's conditions is required and a formula for Cp must be 
obtained. The linearized expression for Cp simplifies as 
follows: 

CP=-2TT <n> 
<Aef 

In summary, the Laplace-like equation (9) is solved together 
with the potential-like tangency condition in equation (10) and 
a trailing edge "potential jump" specified through a branch 
cut as inferred from equation (11). The strong resemblance to 
potential flow formulations allows us to "think ir-
rotationally" in algorithm development. 

Flows in ducts, for example, can be trivially solved. In 
contrast, flows through engine nacelles have constant Um 

externally and nonzero U'm(r) behind assumed actuator disks; 
here, a specific U'm(r) is inferred from the radial blade 
loading, and Kutta's condition is handled "irrotationally," 
with the "potential jump" [</>*] through the trailing edge 
slipstream specified but as a functional of x and 4>* (the 
discontinuous coefficients in the differential equation will be 
addressed more completely later). This "analysis" for­
mulation solves for the surface pressure induced by a 
prescribed shape subject to Kutta's condition. In "design" or 
"inverse" problems, the shape that induces a prescribed 
chordwise pressure subject to auxiliary shape constraints is 
required. For nacelle flows, one might specify trailing edge 
closure or edges with opened cusps to model displacement 
thickness effects; a convenient dependent variable is the 
stream-function, because the jump [\jj\ controls gap and mass 
efflux directly, while [\J/X] automatically controls the included 
angle. These "Kutta-like" edge constraints would be solved 
with the linearized stream-function equation and the mixed 
Dirichlet and Newmann boundary condition 

Um(R±) 2U'm{R±) 
Ifi R tr(x,R±)+ yr, t(x,R±) = Cp%x) (12) 

The requried surface coordinates are then obtained from 

dF± /dx = - ¥ x / * r =-^x (x,R ± )/R Um{R±) (13a) 

F±(x) = -\l/(x,R±)/RUm(R±) + constant (13ft) 

Similar remarks apply to design problems in annular or 
coannular ducts and pipes (for a more complete discussion on 
stream-function methods in aerodynamic design, the reader is 
referred to the references previously cited). Applications to 
these geometries are the subject of current research. 

4 Application to Jet-Engine External Potential and 
Internal Rotational Flow Interaction 

We will examine the flow through a finite-length axi-
symmetric nacelle immersed in a uniform freestream. Without 
power addition, the flow field is easily modeled by potential 

UNIFORM ONCOMING FREESTREAM 

Fig. 1 Jet-engine external potential and internal rotational flow in­
teraction 

methods; here, the internal flow is irrotational up to an 
assumed actuator disk, beyond which the flow is rotational 
due to radially varying work imparted by the turbomachinery 
(Fig. 1). Thus, the flow field is potential externally and 
"superpotential internally" and in the downstream plume; 
matching conditions at the disk and plume interfaces connect 
both dependent variables. 

For the external irrotational flow, subscripted " e , " the 
superpotential is a true potential, and the oncoming 
freestream is constant with U„,(r) = £/«,. We introduce the 
nondimensional variables x = x/c, f = r/c, and <j>e (x,r) = 
(j>*{x,r)/Uxc where c is the semichord and take UK{ = U„. 
Then the governing equations become 

$ex.+4,e..+ —4>e.=0 (14a) 

4>e.{x,R + ) = F'e{x) (14ft) 

CPe = (Pe -Pm)/ — pUl = -2iex (14c) 

Now consider the internal flow. So that our previous 
linearizations are physically meaningful, Utcf is chosen as a 
suitable "maximum speed." Here we assume a prescribed 
internal parallel shear flow originating at the actuator disk 
("upstream infinity" in the context of Sections 2 and 3) with a 
horizontal speed that increases monotonically outward, 
resulting in a maximum speed U found at the blade tips. With 
t̂ ref = Um{R-) = U and a different normalization, namely, 
4>i{x,r) = 4>] (x,r) I Uc and Um{r) = U U(f), the internal elliptic 
equations (subscripted " /" ) becomes 

^ + <^ + (7-2 |K= 0 (15a) 

*if{x,R-) = FHd (15ft) 

Cp. = (/>,. -Pm(rW y p& = -24>ijt (15c) 

F'e and F\ being actual geometric slopes; also, we note that 
other normalizations are possible, for example, Um in­
ternally, but the quadratic terms in Cp would then be 
retained. 

Next, pressure continuity through the trailing edge plume 
or slipstream is computationally applied along a mean radius 
R for simplicity. Because CPe and Cp. a r e normalized dif­
ferently, pressure continuity does not imply Cp continuity. 
Setting Pe = Pj along r = R and using equations (14c) and 
(15c) lead to 

We - * i ) i = ~ J + 5 * - ( 1 6 ) 

put, 
where (U/Ua)

2 = 1 + 8. If we now denote [0] = 4>e - <£, 
and <Aavg = l /2(0 e + 0,), we obtain 

Pa-P,„(R) 8 
[<t>h = + < W (17) 

PUl(l+~8) l + y 5 
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Integrating with respect to x from the trailing edge x,e to x, 
the wake matching condition 

Pm-P,„{R) 
[4>](x) = l<t>](xTE) + : — (X-XTE) 

+ T8 

P < I + T « ) 

l^vg(x,R)'-^vJxTE,R)} (18) 

is obtained for a "potential jump" with two "power 
corrections" to the irrotational [(j>]iXle) term. This is not a true 
jump, of course, since the superpotentials are normalized 
differently, equation (18) merely describing a difference 
between two variables to be enforced numerically; our 
normalizations were in part motivated by the desire to keep 
the computer algorithm as "irrotational" and original as 
possible. For reference, specialized forms of equation (7) are 
given; in the external flow, with U,„(r) = UK{ = U„, we set 
i/-c = c2U„ \j/e(x,f) so that 

% = * „ (19) 

Internally, we reference \j/ to U\ then i/<, = c2 {/i/-,-(*,/•") leads to 

(20) 

Finally, we discuss actuator disk matching conditions. 
Actuator disks mathematically idealize changes to flow 
properties imparted by turbomachinery; for our purposes, the 

particular model is arbitrary and unimportant, because we are 
interested more in the effects of power addition arising from 
slipstream interaction. First, continuity of disturbance 
stream function through the disk requires that i/-,- = \//e 

/ ( l +<5)1/2; then continuity of the horizontal speed \j/r/r (see 
equation (7)) leads to the matching condition 

U4>e "it, 
r 

(1+5)1 
(21) 

used numerically, where a i/-,- was rewritten in terms of \fe. 
Equation (21) was motivated by a finite-difference column 
relaxation solution method where lines of constant x are swept 
from upstream to downstream. Knowing the external flow left 
side, and hence the gradient 4, . allows us to march into the 
rotational flow (\j/e is obtained by integrating equation (19) 
with respect to f, from the center line f = 0 where <pe = 0). 
This completes the analytical formulation; next, we review 
some numerical issues connected with the discontinuity of 
actual physical quantities through contact surfaces. 

Because the <t>* coefficient in the governing field equation 
changes discontinuously through the disk and the slipstream, 
the usual potential-flow difference formulas must be 
reexamined since certain smoothness properties are implicitly 
assumed. A continuous function/(r) with continuous first and 
second derivatives at r = r,- can be described using// = (/} +1 
- / , -- , ) / (0+ i - 0 - i ) a n d / 7 = 4 ( / } + 1 -2fj +/ ;_1)/(r J y + i 

first [)2 . If / is discontinuous at rh we cannot define a 
derivative unless it is continuous; then , / /= (/}+, - / / - i " ~ 1/1)/ 
(O'+i _ 0 - i ) where the discontinuity [f] is subtracted out. 

Fig. 2 X = 2 rotational flow solutions 
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If, in addition, f" is continuous, we can w r i t e / / = ((fj+ { 

-ff)/(rj+l - o ) - (fr-fj-i)/(rj - r ,_ , ) ) / ( l /2( r , + 1 -r ,-- i)) . 
These extended formulas allow discontinuities in / , provided 
/ ' and / " are continuous; they are commonly used to dif­
ference through aerodynamic wakes. In wing flows the 
velocity normal to the wake is always continuous, but "(t>z" 
and "4>zz" through an assumed flat wake is "not-these 
formulas are used only with the restriction to the weak 
discontinuities allowed in small disturbance theory. For our 
jet-engine problem we must be certain that the usual dif­
ference formulas used through the slipstream are not 
physically unrealistic; / should be precisely defined and the 
assumed continuities i n / ' a n d / " checked. Let us define/ = 
((/>e, externally; (/>,-, internally) noting again that 4>e and </>,• are 
normalized differently. In the slipstream <t>* /£/„ and <j>* /U 
both equal the streamwise plume slope; thus the non-
dimensional variables so defined allow for / ' continuity, as 
required (/" continuity, related to smooth curvature, is also 
assumed). When the customary "mean difference equation" 
is used in the wake for /„, = \/2(4>e + </>,), the difference 
approximations for the differential equation appear exactly as 
they would in potential flow formulations, except that the 
jump in/satisfies equation (18), more complicated, but easily 
implemented. 

5 Calculated Resutls and Closing Discussion 

Our new approach for inviscid rotational flow allows a 
simple "potential-like" solution to those problems where 
velocity shear is important. The ideas were developed for 
cylindrical axisymmetric flows without swirl; but the same 
approach, with similar results, extends to "mathematically 
axisymmetric" flows for arbitrary, say body-fitted, three-
dimensional coordinate systems, using properties of vorticity 
special to these systems. Our particular jet-engine problem, 
because of the obvious complications, has not been examined 
in the literature; thus, we insist on a simple streamwise nacelle 
section, so that physical intuition can check anticipated and 
unanticipated results. We will use an external profile 
corresponding to the upper half of a symmetric unpitched 10 
percent thick parabolic arc airfoil and assume a perfect cir­
cular cylinder internally, with a chord-to-diameter ratio of 
two. Thus we qualitatively expect an "airfoil-like" external 
surface Cp with stagnation peaks near both edges, and in­
ternal flow which, being energized by power, continues 
straight more or less. The modified wake condition in 
equation (18) shows that two nondimensional parameters are 
needed to characterize the shear, namely, 5 = (U/U^)2 - 1 
and X = (Pm(R) - P „ ) / l / 2 p [ / i (the second is related to a 
total pressure increase). For simplicity we assume that U„, is 
proportional to 1 + fr (only the ratio U'm/U appears in the 
governing equation), so that / , the strength, equivalently 
measures 5 ; computationally, we t a k e / = 0, 1,2, and 3 with 
X = + 2 (i.e., the static pressure P„,(R) equals the external 
total pressure plus one dynamic head). Our first set of results, 
shown in Figs. 2{a-d) imply the streamline pattern in Fig. 3. 
As / increases, the external flow expands more, with Cp 

becoming more negative near midchord; at the same time, the 
internal leading edge lip flow expands less, indicating a 
movement of the external lip stagnation point toward the left 
as shown. Since the internal surface is flat, \j/ is constant; in 
this case only, from equation (11), the Cp is proportional to 
the streamwise disturbance speed as in potential theory. As / 
increases, this speed decreases consistently, since the total 
pressure along the body streamline is fixed and the transverse 
velocity is zero. The same computer code was run 
irrotationally using / = 0 and X = 0, with and without ac­
tuator disk logic; calculated internal results showed minor 
discrepancies since disk matching conditions occupied two 
course meshes. Figure 4 shows two solutions for / = 0, the 

f increasing abrupt turn 

Fig. 4 Irrotational flow solutions with / = 0. Top: "flow-through 
nacelle without power. Bottom: Constant radial energy addition 

first with X = 2, the second with X = 0 (in the former case Cp 

uses a different normalization downstream of the disk). A 
velocity slip is clearly seen in the powered flow. These finite 
difference calculations were implemented using a modified 
potential flow code on a coarse 60 X 60 mesh, with 20 over 
the chord, and carried to convergence. 

In closing we emphasize that the superpotential approach 
requires only simple modifications to available potential flow 
algorithms; yet, it is rigorous and founded on the exact fluid-
dynamic equations. The superpotential, we note, is a con­
sequence of linearization but without restriction to shear 
strength; it is not the Clebsch potential often used to represent 
rotationality, nor is it related to Lighthill's "similar" pressure 
function (e.g., see reference [3]), which is restricted to weak 
shears. Its existence, incidentally, was motivated by some 
mathematical constructions used in inviscid hydrodynamic 
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stability theory. The particular application to jet-engine 
external potential and internal rotational flow interaction, of 
course, is not final; many code refinements are due before the 
code becomes a working tool. Direct and inverse applications 
to pipes and coannular ducts are currently in progress and the 
general coordinate approach mentioned earlier is nearing 
completion. Finally, general theoretical consequences to the 
planar limit of our shear flow equations have been obtained 
for thin airfoils, in both analysis and design problems 
(references [4]), and are available from the author. 
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Perturbation Procedures for 
Nonlinear Viscous Flows 
The perturbation theory for transonic flow is further developed for solutions of the 
Navier-Stokes equations in two dimensions or for experimental results. The strained 
coordinate technique is used to treat changes in location of any shock waves or large 
gradients. 

1 Introduction 

A series of papers recently published [1, 2] concern the 
development of a perturbation method for transonic flow 
problems. A basic problem in transonic flow perturbations is 
the treatment of possible movement of discontinuities (shock 
waves) that can make the perturbation invalid. A means of 
solving this problem, using a strained coordinate method, has 
been derived [1] in which the location of the discontinuities in 
the strained coordinate system remain the same throughout 
the perturbation, leading to a final linear perturbation 
equation for the perturbed unknowns. The final solution is 
not linear because of the transformation from the strained 
coordinate system to the physical coordinate system. 
However, since the perturbation equation is linear, the 
principle of superposition can be used, and the effect of 
several different types of perturbations can be easily, and 
inexpensively, estimated. 

The most common application [2] of the method has been 
concerned with extrapolating transonic flow solutions. For 
example, given two transonic flow solutions for the same 
airfoil and Mach number, but at two different angles of at­
tack, then the pressure distribution for any other angle of 
attack can be found by simple proportion and the use of the 
strained coordinate transformation. Applications of this 
technique to two-dimensional, multiparameter flow solutions 
and to three-dimensional, multishock problems are reported 
in [1] and [2]. These examples are concerned with the physical 
perturbation quantities, such as angle of attack, profile 
geometry changes, etc. 

For the present work the perturbation theory is concerned 
with solutions of the Navier-Stokes equations. In particular, 
the application of the perturbation theory to solutions of the 
Navier-Stokes equations and to experimental data is in­
vestigated. In all cases the strained coordinate technique [1] is 
employed to treat shock waves or large gradients in the 
solutions. 

First consider the perturbations of the Navier-Stokes 
equations. The first step in deriving a perturbation equation is 
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to write the governing equations and their associated 
boundary conditions in such a form that only the basic 
equations or only the boundary conditions contain the per­
turbation parameter, otherwise the correct parameter to use 
may not be obvious. In the previous work for the TSD 
equation [2] the perturbation parameter is contained only in 
the boundary conditions. For the Navier-Stokes equations the 
perturbation parameter appears only in the set of equations, if 
these are written in a general body conforming curvilinear 
coordinate system and the variables nondimensionalized with 
respect to free-stream quantities. Both attached flows and 
flows with shock-induced separation are considered. 

The basic principle behind the perturbation theory is that, 
relative to certain physical features of the problems, for 
example, the geometric confines of the airfoil and the shock 
location, the physical processes throughout the perturbation 
are in some sense similar. For instance, if two solutions are 
known (the base and calibration solutions) and have shock-
induced separation, then an interpolated solution will also 
have shock-induced separation. Examples with attached flow 
and with separated flow are calculated with satisfactory 
results. However, in contrast to the earlier potential equation 
work [1, 2], it is found in the present case that the base and 
calibration solutions should not be too close, otherwise 
numerical inaccuracies in the Navier-Stokes solution can 
dominate the perturbation quantities. 

2 Basic Principles of the Perturbation Theory 

2.1 General Concepts. It is usually assumed in per­
turbation theory that the form of the perturbation parameter 
characterizing the disturbance is known or can be easily 
found. For example, in the earlier work [1, 2] on the per­
turbation theory, the transonic small-disturbance equation 
was written in an invariant form and the "natural" per­
turbation parameters were easily discernible from a study of 
the boundary conditions. In the present work, the strained 
coordinate perturbation theory is to be extended to treat the 
Navier-Stokes equations. It is unlikely that these equations 
can be written in a form independent of the free-stream 
conditions and consequently, the choice of the "natural" 
perturbation parameter for a perturbation in free-stream 
quantities may not be obvious. Accordingly, it is proposed to 
write the Navier-Stokes equations in a form where the 
boundary conditions are invariant, and then examine the 
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transformed equations to determine the correct choice of 
perturbation parameters. A further simplification is to use the 
thin layer [3] approximation to the Navier-Stokes equations. 
This latter assumption is consistent, since these are the 
equivalent equations solved in most computer codes, whether 
explicitly coded or not. 

If the reference values are free-stream quantities the steady 
thin-layer Navier-Stokes equations for two dimensions can be 
written [4] in a general curvilinear coordinate system as 

dS 
(1) 

dE dF _ 

d-q 
where Re is the Reynolds number, and (£, ij) are the com­
putational coordinates which are functions of Cartesian 
coordinates (x, y) with a transformation Jacobian J, given by 

J=lxVy-kyVx = y(xiyr,-x,y^ (2) 
The transformation metrics are given by 

%y=-JX1] Vy=JXi (3) 

and the contravariant velocities (£/, V) are related to the 
Cartesian velocities u, v by 

V=r)xu + r\yv 

The vectors E, F, and S are given by 
(4) 

E=J~l 

PU 

puU+^xp 
1 

yMl 

1 

yML 

[pe+p(y-l)]U 

(5a) 

F= 

PV 

puV+rixp 

pvV+riyp 

1 

yMl 
1 

yMl 

[pe+p(y-\)]V 

(5b) 

p= (y-l)pe- -p(u2 +v2) (6) 

where y is the ratio of specific heats. M„ is the free-stream 
Mach number. 

The computational coordinates (£, ij) are chosen such that 
the surface rj (x, y) = 0 represents the body surface. The 
boundary conditions are the tangency and no-slip conditions 
and therefore, on ij = 0, 

V=0 

t/=0 (7) 
The far-field boundary conditions are that free-stream 
conditions, prevail. 
Thus, at infinity 

p=p=e=u=v=1 (8) 
It can be seen then, that, with the exception of changes in 

M a , the basic equation set and its boundary conditions are 
independent of the free-stream conditions. Changes in 
geometry are transmitted through the changes in the matrices 
£x> ?>. I*. Vy a n d the Jacobian J. 

The system of equations (1), (5), and (6) can be written in 
the form 

L(p,p,e,u,v,Ml, ,m) = 0 (9) 

where L( ) is a vector differential operator and m denotes 
the metric terms. Now consider a perturbation about some 
state or geometry denoted by a subscript o, and that the 
perturbation quantities, denoted by the subscript 1, are 
characterized by the parameter e. First consider changes in 
geometry. An expansion of (9) for m then gives 

dL[p0,p0,e0,uoyv0,Ml, ,m0] 
Am-

dm 

+ eL[p,,pt,el,ul,vl,Ml, ,W|]=0 (10) 
where L[ ] is a linear operator, related to L[ ] and which 
depends on the zeroth-order quantities. In general, the metrics 
are functions of the geometry of the airfoil and hence for the 
small perturbations that are considered, Am is given by 

/ dm\ 
' = I ) Am- AO (11) 

where 6 is some geometry parameter such as angle of attack. It 
can be seen from equation (10) that if (dm/dd) — 0(1) then 
the natural choice of perturbation parameter, e, is Ad, i.e., the 
change in the geometry characteristics. Hence, if two 
solutions are known for two cases that differ by a one-

S = J< 

0 

^(V2x + V2y)Uv+ ^VxiVxUn+VyV^) 

l*(y2x + yy)Vr,+ TVy(VxU^+VyV^) 

KPr-ly(4 + r$) -jj~ + ^y(y~l)Mi(rii + r,y)(u
2 + v2)v 

+ - T l T - O M i f e u + l / K l ^ + l / , ) 

(5c) 

p, p, e are the density, pressure, and internal energy, 
respectively. Pr is the Prandtl number, K is the conductivity, 
and a is the speed of sound of the gas. The pressure is related 
to e, p, u, v by 

parameter variation then the solution for any other value of 
this parameter can be found by simple proportion. 

A similar analysis to the foregoing but for Mach number 
variations indicates that the correct parameter to use for 
Mach number changes is AM2^ . 
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O Perturbation Result 

Experiment 
Base Result,Hm = 0.82,a 

Fig. 1 Pressure distribution on the upper surface of a NACA 64A410 
airfoil; Moo = 0.82; a = - 3 d e g 

The perturbation equation, (10), will also model separated 
flow since the physics of such flows are contained in the basic 
equations. However, since separation (or reattachment) is a 
discontinuous phenomenon, the derivatives in equation (10) 
are valid only when the flow does not change type. A 
separated flow cannot be determined from an attached flow 
from equation (10). The perturbation parameter for separated 
flow is an unknown function of Mx and the geometry d. The 
perturbation parameter can, however, be approximated for 
small perturbations by the relation of equation (11) if the 
metric terms m reflect the separated flow zone. Since it may 
be assumed that the Navier-Stokes equations describe the 
physical flow, it follows that experimental data can be used in 
the interpolation theory instead of numerical results. 

2.2 The Strained Coordinate Method. The interpolation 
procedure outlined in the preceding section is only valid for 
smooth functions. A device for treating discontinuous func­
tions using a strained coordinate system has been derived in 
previous papers (e.g., [1]), and the reader is referred to this 
paper for further details. 

3 Application of the Strained Coordinate System to 
the Navier-Stokes Equations 

3.1 Theory for the Navier-Stokes Equations. Consider the 
set of equations, (1): 

H =Re _ ,3S( { ,»> ) 

d£ dr] d-q 

Let both the independent variables (£,?/) be strained such that 
the location of one or more discontinuities or rapid gradients 
are held invariant. The new coordinates are denoted by (£ ' , 
7]') where 

? = « '+e5« ,« ' , i , ' ) + . . . 

i> = ij'+efiijij,tt',ij') + . . . (12) 

where e is the perturbation parameter, 5£, <5rj are measures of 
the movement of the straining points, and £, (£',?/'), JJ, 
(£',r]') are (fairly arbitrary) straining functions. 

Now let the dependent variables be expanded in a series in e. 
Thus 

£($,./) = £ 0 « ' , i / ' ) + e £ i « W ) + • • • 
F(t,il)=F0{Z',ri')+eFi(S',r,') + . . . (13) 

S ( f , i j ) = S 0 « ' , i / ' ) + e S 0 « ' , » j ' ) + • • • 
Using equations (12) and (13), the perturbation equation for 
(1) (the coefficient of e) is 

O Perturbation Result 

—• Experiment 

Base Result M^ = 0.82, a = 0C 

v Calibration Result, Mra= 0.81 

Fig. 2 Pressure distribution on the upper surface of a NACA 64A410 
airfoil; Mo, = 0.82; a = 4deg 

Q Perturbation Result 

Experiment 

o 
© 
n 

Calibration Result, M = 0.81, 
a = 6°. 
Base Result, M_ = 0.82, a = 0°. 

Fig. 3 Pressure distribution on the upper surface of a NACA 64A410 
airfoil; Moo = 0.79; a = 10deg 

dE 

d-q' 

(dFa dE \ 
+ 

„ , / as, ds0 ds0 \ 

^"V-^"v-4 far"J (14) 

Now since e is not contained in (14), it follows that a solution 
to this equation can be applied to any value of e. As in the 
previous work [2], the perturbation equation is not solved; 
instead, the solution of the perturbation equation is assumed 
to be the difference between two complete solutions, differing 
only by a perturbation characterized by the parameter e0. 
Hence, for example, if 

ri = r)' +ea8ri ydZ'.v') (15) 
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and, if for the velocity component, «(£, r/), the two solutions 
are denoted by u0 (£, ij) (base solution) and ul (£, if) 
(calibration solution, e = e0), then, following the previous 
work [5], 

or 

and 

jj = i / ' +e 5r/ r ; , (J ' , r / ' )= r ; ' + — (y-r)') 

(16) 

(17) 

The coordinates f, rj are found from (15) by making the 
straining points coincide. A similar relation to (16) applies for 
all the dependent variables, the most useful of which is the 
pressure coefficient Cp (£, r;). Thus 

Cptt,v)=CPgU',ri') 

+ ±[cPia,v)-cP0^',n')] (18) 
In the present work, only values on the airfoil surface (r/ = 0) 
are considered and only the £ coordinate is strained. The 
coordinate straining function £, (£' , 0) is given by the 
following equation or by a piecewise application of the 
following equation, depending on the number of straining 
points required. 

/ = i ^ 

(£/4; _ kk :_ I ) A j _ i . 

x / / ( ^ , 

-sv.)]^' - & . • _ , ) 

• { ' ) 0 < {' < 1 

where 5 ^ . denote the straining of the point £A. during the 
perturbation and H( ) is the step function. Note that %'A Q , 
8£A N, and 8$A o are zero and %'A N = 1. 

A further result can be obtained from equation (18) for the 
lift and pitching moment coefficients CL, C,„. Consider the 
lift coefficient CL, where 

(19) CL=V ACp($,0)dS 
J o 

where ACp(l-, 0) denotes the pressure jump between upper 
and lower surfaces. Using equations (15), (17), and (18) the 
lift coefficient is then given by 

CL = \1
O[ACPOG',O') 

-[AC (£,0)-AC„ ({',0 •»] 

y.\dH' + j-[dl-di']^ (20) 

Now the basis of the perturbation theory implies that 

[ C . , ( f , i j ) - C . «' , i j ' )]~Q(e) 
" i ' -Po 

m-dn~m 
and also that tf£ = d£' + 0(e). Using these results in (24), it 
can be shown that 

CL=V \AC (£' ,0)rff' + — AC (|,0)rf£ 
J O L €r, 

— A C P o « ' , 0 ) d f (21) 

cL=cLo + TicLl-cLo] (22) 

where CL , CL are the lift coefficients for the base and 
calibration solutions, respectively. A similar result applies for 
the pitching moment Cm, namely 

"LC,„, C,„ J (23) 

3.2 Some Comments on Applications to Separated Flow. 
If the strength of the shock wave is too strong, the flow 
behind the shock will separate and the shock structure will 
probably change from a single shock to a bifurcated shock. 
The separated flow may or may not reattach on the airfoil. If 
separated flows are to be considered in the perturbation 
theory, it is helpful to note the following features. 

It is a basic premise of the perturbation theory that the 
topology of the flow does not change during a perturbation, 
for example, shock waves may not be generated or destroyed 
during the perturbation. Since the appearance of a separated 
flow region is a change in topology, a unified perturbation 
theory that goes from attached to separated flow cannot be 
constructed. However, a piecewise theory can be constructed. 
Hence the emphasis here is on using the perturbation theory 
separately for attached and separated flow regimes. The 
Navier-Stokes equations are sufficient to model separated 
flows, and the theory outlined in the previous section is ap­
plicable. 

The appearance of separated flow can be regarded as an 
additional perturbation to a perturbation due to viscous 
effects for attached flow. It is of some interest to consider 
how the flow behaves with, say, increasing angle of attack, as 
the flow moves from attached to separated. 

It is difficult to conduct an experiment just at the point 
where shock-induced separation occurs. A simplified analysis 
[7] indicates that the transition from attached to separated 
occurs smoothly if the intersection of two CL- curves, one for 
attached flow and one for separated flow, occurs at a point 
that is demonstrably not attached or separated from other 
evidence. If the transition is smooth then this intersection 
point gives the separation point. A study of Stivers' [6] results 
seems to indicate that the transition is smooth. 

3.3 Discussion of Results. A series of results of the 
perturbation theory are shown in Figs. 1-3 where the base and 
calibration data are taken from the experimental results of 
Stivers [6]. The theory has been applied to data with an in­
creasing angle of attack. Since Stivers' data do not give a 
constant Mach number for each test, the data have been 
corrected for Mach number effects using a second application 
of the perturbation theory. 

In Fig. 1 the pressure distribution around the upper surface 
of a NACA 64A410 airfoil at M„ = 0.82, a = - 3 deg is 
shown. This is an attached flow; the base data is at a = - 4 
deg and the calibration solution is at a = - 2 deg. The 
agreement of the present results with the data is excellent. In 
Fig. 2 the pressure distribution at a = 4 deg is shown com­
pared to the data. The base data is at a = 0 deg and the 
calibration solution is at 6 deg. This result is for a shock-
induced separated flow, and the agreement with the ex­
perimental data is again excellent. A further result for a = 10 
deg using the same base and calibration data is shown in Fig. 
3. The agreement with the data is fair; this result is probably 
getting toward the limit of application of the theory. At a = 
12 deg the experimental data indicate that the flow is 
separated at the leading edge. 

It was found that to obtain sufficient accuracy the base and 
calibration solutions had to be further apart than is the case 
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for the earlier potential flow applications. This is attributed to 
the larger relative errors in the experimental data. 

4 Concluding Remarks 

The main object of the present work is to extend some 
recent developments in perturbation theories of transonic 
flow to treat solutions of the Navier-Stokes equations or to be 
applicable to experimental data. The extension of the per­
turbation theory to solutions of the Navier-Stokes equations 
is straightforward; the only additional fact to appear is that 
the necessary base and calibration solutions should not be too 
close together, otherwise the perturbation quantities can be 
seriously degraded by the experimental error. The results 
obtained by the present method compare favorably with 
experimental data. Both separated and attached flows are 
considered. 
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Some Remarks on Transonic 
Potential Flow Theory 
The validity of the commonly used transonic potential equation for flows with 
shock waves is examined. It is concluded that in such cases the potential for­
mulation is inconsistent with the basis assumptions of the theory because of the 
nonconservation of momentum across a shock. The relationship of this momentum 
source to wave drag is also discussed. Another topic examined is the rationalization 
of means to make solutions of the transonic potential equation agree better with 
solutions of the Euler equations. 

1 Introduction 
At present, the main means of predicting transonic flow 

characteristics is by numerically solving either the full 
potential equation [1, 2] or its approximate form, the tran­
sonic small disturbance equation [3,4]. To justify the use of a 
potential equation to describe transonic flows with shock 
waves it is usual to assume that entropy changes through a 
weak shock are negligible and hence, from Crocco's theorem 
[5] the flow can be considered irrotational. However, the 
derivation of Crocco's results requires that mass, momentum, 
and energy be conserved, and since in the present transonic 
potential, computer-codes axial momentum is not conserved 
if there are shock waves in the flow, it is obvious that there is 
an inconsistency in the model. This momentum error is often 
used to define a wave drag of the airfoil. The present study is 
concerned with examining the origin and effect of the in­
consistency of potential flow theory when shock waves are 
present in the flow and also the relationship of the momentum 
error to wave drag. 

In Section 2, a perturbation analysis of the potential theory 
through a normal shock is conducted and it is shown that the 
momentum error produced by the potential formulation leads 
to a "wave drag" proportional to the shock strength, whereas 
the correct result is the cube of the shock strength. Also, a 
possible theoretical basis for modifying potential theory to 
give more realistic shock jumps is described. In Section 3, the 
effect of not conserving momentum on the irrotationality 
assumption is examined and it is concluded that the potential 
formulation is only valid for a free-stream Mach number 
close to unity. An analysis is given which derives a consistent 
potential theory but it is concluded that this theory would give 
worse results than the conventional theory. 

2 Comments on Isentropic Shock Waves 

In this section the behavior of the flow through a one-
dimensional isentropic shock wave is examined. 
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7 - 1 

7 

7 - l 

(1) 

(2) 

The isentropic density relation is 

where q=U/U„. The pressure relation is 

The pressure, density, and velocity are expanded as a series in 
the perturbation velocity u. Let 

q=\ +u (3) 

and expand the relations of equations (1) and (2) in powers of 
u. Hence 

p = p„[l-iW2
0o«-M2

oo[l + (7-2)M2
00]y] 

p=pm[l-yJWlu~^-Mll32] 

(4) 

(5) 

where 
? = 1-Ml (6) 

Through a shock wave, mass, momentum, and energy 
should be conserved. If this is not true then there are errors 
Ei, E2, and E3 in the conservation laws of mass, momentum, 
and energy, respectively. Hence 

El = (PiUl-p2U2)/PmU0, = [l32[u]i- y [«2] + ] (7) 

E2 = (pi+PiU\-p2-p2U
2
2)/(p„+pa,Ul) 

= 7 A e , [ / 3 2 [ u ] i - ( ^ ) [ « 2 ] + ] / ( i + 7 A e ) (8) 

£3=0 (9) 
where subscript 1 denotes a value upstream of the shock, the 
subscript 2 denotes a value downstream of the shock, and 

-t = Mi[3 + (7-2)A^] (10) 
The notation [ ] t defines the jump across the shock. The 
energy equation is satisfied because the isentropic density and 
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pressure relations of equations (1) and (2) are derived by 
assuming that energy is conserved. 

Since [u] t =u, -u2 and [w2] t = u\ - u\ it can be seen that 

Ei = aj>-y«] (11) 

E2 = 7Mia[p2-(^)«]/(l+7M2
00)(12) 

where 

a = ux -u2 

u = W] + u2 

(13) 

Hence if the shock strength a is zero then there are no errors in 
the solution. If the transonic small disturbance equation is 
formulated as 

(/32 - ku)ux + vy = 0 (14) 

where k is a function of the free-stream Mach number, then 
for normal shock waves the jump relation is 

u = 20l/k (15) 

Hence if k = k then the error in mass conservation is zero and 
there is a momentum error 

E,= 
yMl oP 

(l+^Ml) k 
(16) 

This is equivalent to an upstream force on the shock wave. If, 
as is usual in transonic flow calculations, free-stream con­
ditions are enforced at the downstream boundary then a 
contour integral of momentum around the flow indicates a 
total conservation of momentum. Hence the momentum error 
across the shock must be balanced by a pressure force on the 
airfoil. This is sometimes referred to (erroneously) as the 
wave drag. It is directly due to an inconsistency of the isen-
tropic equations through a shock wave. This conclusion was 
obtained by Steger and Baldwin [6]. If the transonic 
parameter k in equation (14) is chosen to be (k-$2) then 
momentum is conserved but there is a mass error 

E{ = -p<j/(k-p2) (17) 

Note that since transonic small disturbance theory assumes 
/34 = 0 the conservation equations are satisfied to the order of 
approximation of the theory. However, the foregoing results 
are also applicable to the full potential equation for which no 
formal limit on /32 is required. 

It can be inferred from the preceding analysis that since 
transonic small disturbance theory has traditionally only one 
flexible parameter, k, it is impossible to remove both the mass 
and momentum errors across a shock. However, it may be 
advantageous to choose the transonic parameter k such that a 
linear combination of the errors is minimized. Thus, if an 
error E is defined as 

E=wlEl +wzE2 

where wx and vv2 may be functions of ux, 
minimized for a given ux. Thus 

yMl 

(18) 

then E can be 

!=<r{p2[ Wt + 
1+yMl w2\ 

- \kwx + 
yMl 

•w2 Vc-(32)]u] (19) 
1 + yMl 

If Wi= l , vf2=0, this reduces to the conventional mass 
conserving result. If 

s ,u 

Fig. 1 Sketch of a streamline coordinate system 

then E=0 if k is chosen such that u = uE where uE is the value 
of ux+u2 given by the Euler equations. To a first ap­
proximation 

uE = uA 2-
Ml(y+1) M l (7+1) 

(l + lJ-M^2) 2 ( 1 + ^ ^ ) 
(20) 

Such a modified small disturbance equation is used by Nixon 

m. 
The existence of the momentum deficit through the shock 

given by equation (16) is often assumed to be the drag. The 
drag coefficient, CD, is given by the relation 

{paa+P„Ul)E2 
CD= =2/34a (21) 

whereas the formal limit of entropy producing drag as given 
by Murman and Cole [8] is, in the present notation 

Cn 
(7+1) 
6Ml ' 

(22) 

and which is third order in a in comparison to the linear 
dependence on a of equation (21). Note that to get the 
complete drag, these drag relations must be integrated along 
the shock wave. 

3 Comments on Momentum Deficit and Irrotation-
ality 

In the following analysis it is assumed that mass is con­
served, since this allows a simple definition of the stream 
function coordinate system. It will be assumed that there are 
possible sources or sinks in momentum and energy. In Fig. 1, 
s is the streamline direction and n is a coordinate normal to 
the streamlines. The velocity u is in the stream-wise direction 
and by definition there is zero flow velocity across the stream 
tube. The conservation equations for mass, streamwise, and 
normal momentum and energy are as follows. 

dpU 
= 0 (conservation of mass) (23) 

Journal of Applied Mechanics JUNE 1983, Vol. 50/271 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



ds ds ds 
(conservation of streamwise 

momentum) 

, 3 0 dp de2 
pui —— = — 1- —— (conservation of normal 

as an dn 
momentum) 

djh + U2/!) 

ds~ 

de3 

Us = -r— (conservation of energy) 

(24) 

(25) 

(26) 

where de^/ds, de2/dn, and de^/ds are the effects due to 
sources in streamwise momentum, normal momentum, and 
energy, respectively. 

The entropy gradients in the streamwise and normal 
directions are defined by 

„ dS dh 1 dp 
7 = fL (27) 

as ds p ds 

(28) 
dS _ dh I dp 

dn dn p dn 

Integration of the energy equation, equation (26), gives 

h+U2/2 = h0(n) + e3(n) (29) 

where h0(n) is the reservoir condition. If the fluid is con­
sidered a calorically and thermally perfect gas, then 

n = CPI — • — 
7 - 1 p 

(30) 

where Cp is the specific heat at constant pressure. Using 
equations (25) and (29), equations (28) can be written as 

dS 

~dn 
3^o 
dn - ( « -

dU 

~dn~ 
•V2 de 

Is 
1 de2 de3 

p dn dn 
(3D 

The quantity {dU/dn - Udd/ds) is the vorticity, f, of the flow 
and hence equation (31) can be written as 

dS dh0 ( 1 de2 3e 3 \ 
T = — - - l / f - ( -) (32) 

dn dn \ p dn dn / 
The entropy gradient in the streamwise direction can be 
written, using equation (24), as 

dS de3 1 dei 

ds ds p ds 
(33) 

Thus there is a streamwise entropy production due to the 
errors e\, e3. It is assumed that any shock waves in the flow 
are sufficiently weak that the entropy production due to 
physical phenomena is negligible. 

Consider now the case where both normal momentum and 
the energy are conserved with no source terms. In this case 

de^ 
dn 

de3 

~dn 

and hence if the reservoir condition h0 is such that 

dho 
dn 

(34) 

= 0 (35) 

(this is usually the case for transonic gas flows) and if the 
entropy production gradient normal to the streamlines is zero, 

dS 

~dn 
= 0 (36) 

Then equation (32) gives the irrotational condition 

r = 0 (37) 

If £i, e3, are expanded as series in terms of a perturbation 
velocity u, [U= Um(l + u)], such that 

ei=ei^u + e2^u2 . . . 

and if 

e^e^u + e^U2 

T=T'O0(l+a7-(I)w + a7-<
2'w2 . . .) 

p = p „ ( l + « / > « + «,<2>w2 . . .) 

then 

dS _ 1 

ds T„ 
(e3<

1)+2£2<
2'«)X 

R 

(\-aTWu-(aTM -aT^2)u2) 

(e,<1)+2e1
(2)M)X 

du 

~ds~ 

( l -V '^-CV' -V' )« ) 
du 

~ds~ 
(38) 

where the subscript 00 denotes free-stream conditions and R is 
the gas constant. Equation (38) can be integrated to give 

AS=^Lw[u]i +e3W[u2}+-) - - ! - « / ' ) [ « 2 ] i e 3 " » 

- — (e1
( 1 )[«]i+e l

< 2 )[«2]+ N)+ — a <"[«2]i e i<"+0(«)3 

(39) 

where A denotes a difference from some reference condition. 
Finally, it should be noted that by using equations (27) and 

(30), 
( Y - D S 

^=Ke R (40) 

where A" is a constant. If the free-stream conditions are the 
reference conditions for equation (40) then 

K= 
(41) 

In an inviscid irrotational continuous flow it can be shown 
[5] that the conservation of mass and energy, together with 
the isentropic relations for p, p ensures conservation of 
momentum. However, if there is a discontinuity normal to the 
streamlines in the flow, then it is shown earlier that this set of 
equations does not conserve momentum through the 
discontinuity. In many transonic calculations this momentum 
deficit is erroneously referred to as wave drag. Since the 
isentropic approximation to transonic flow requires the basic 
assumption that mass, momentum, and energy be conserved, 
there is an obvious inconsistency in the overall theory. This 
momentum error only occurs at a shock wave and from 
equation (39) this error shows up as an entropy production 
term. However, it is possible that a self-consistent potential 
theory can be derived and this possibility is examined in the 
subsequent analysis. 

Consider now the case of a transonic flow that has suf­
ficiently weak shock waves that no entropy production from 
purely thermodynamic means is significant. Assume also the 
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shock wave is normal to the streamlines, thus ensuring 
conservation of normal momentum. Finally, assume that 
total enthalpy is conserved throughout the flow; this is 
consistent with the isentropic model since the necessary 
density/velocity relation is found by assuming conservation 
of total enthalpy. 

In the remaining analysis the error e3 is set to zero, implying 
conservation of total enthalpy and the pressure/density 
relation, equations (40) and (41) are written as 

0? /p„) / (p / P o o r = l + 5 (42) 

where 8 is of order [u] 1, the shock strength, from equations 
(39) and (40). If it is assumed the shock waves are weak, then 
powers of <5 greater than unity can be neglected. Substitution 
of equation (42) into the energy equation, equation (29) gives 

~ " m7"' ( i + a) 
^ P o o ' 

= ^ _ ^ + ( ^ / 2 ) ( 1 _ ^ ) 
7 - 1 Po= \ IPJ 

In terms of the perturbation velocity, this is 
I 

P f, 7 _ 1 

( 7 - D 

(43) 

- ( ' • 

-Ml (2u + u2)} T-' / (1+5) 
1 

7 - 1 

An expansion to second order in u gives 

— =i-Miu-^--[l+Ml(y-2)}Ml-
Poo ^ 

The pressure relation is found by taking 

- ^ - = ( l + « ) ( p / p . ) 1 r 

p i A^2 « 2 A/i0 2 

7 - 1 

(44) 

(45) 

7 - 1 
(46) 

where j32 = 1 —Ml,. 

Across a normal shock wave the errors in the conservation 
of mass, momentum, and energy are as follows: The error 
terms ei,5 only contribute to the values on the downstream 
side of the shock: 

£maSs =PlUl-p2U2=p<x U(l32[u] : 

- 4 Ml) 

momentum 

p-mfpiu] 

7 - 1 

=pl+plU
2-p2-p2U

2
2 = 

[U2nye^(i + yMl 

F = 0 
•^energy u 

(47) 

) (48) 

(49) 

In the preceding equations, k = [3 + (7 - 2)Ml, ]Ml, and [ ] i 
denotes a jump across the shock wave. Note that the result of 
equation (49) confirms the consistency of putting the energy 
error equal to zero. 

Now assume that the solution algorithm conserves mass. 
Thus the error in equation (47) is zero and then the solution 
has shock jumps given by 

2k8 i 1 / 2 ' 
u2 = ( > (P-kuO2 

7 - 1 ] ) (50) 

From equations (39)-(42) 

5 = - ^ - ) [ ( e 1 < 1 > [ « ] i + 6 1 < 2 > [ " 2 ] i ) 

- r v I D f . O - a et
wlu2]t} 

and since, by definition, 

Momentum = - ( 6 1 ( " M i + 6 1 ( 2 , [ « 2 ] ^ ) 

(51) 

(52) 

equation (48) may be written as 

<Ei (1 )M-+ei (2 )[w2]-) 

= P~U2J0i[u\t 
k[u2 

+ P c . 0 2 . y [ « 2 ] ± -

2 7 

: i 0 , [«] i 

"I 
+ 1J 

+ e,P>[«2]i -a, ( 1 )e, ( 1 ) [u2]t\ (53) 

Since from conservation of mass the first term in square 
brackets in equation (50) is zero, equation (53) becomes 

[«, V - P - t f ? . 
/32 

] [ u 2 ] t = 0 (54) 

Hence for a consistent formulation either the flow is con­
tinuous, 

" i = « 2 (55) 
or the flow has a shock wave with the jump relation 

«i = -«2 (56) 

or, in terms of the shock strength o=U\-u2 

a=2ux (57) 

To the same order of accuracy the conventional "isentropic" 
jump relation is 

2 ^ 

T 
<j=2u, - (58) 

and hence for /32 ^ 0 the consistent theory gives a stronger 
shock than the inconsistent conventional theory. Since the 
conventional shock is already too strong it is probable that a 
consistent theory is too inaccurate for practical calculations. 

From equations (50) and (56) the term 5 is given by 

5 = - 2 / 3 2 w , ( 7 - l ) (59) 

for a flow with a discontinuity. The error et is given by a 
combination of equations (59) and (51); thus 

. o r et^[u]t +e^[u2]t -ap^[u2]te^ =2p„l52ul (60) 

The preceding discussion can be summarized as follows. 

(a) The conventional potential theory is inconsistent 
because axial momentum is not conserved. 

(b) A consistent, irrotational, one-dimensional theory can 
be derived if the shock wave is normal to the free stream. 

(c) It is probable that the results of using this consistent 
theory are more inaccurate than results of the inconsistent 
conventional theory. 

In view of these conclusions, it is suggested that the con­
ventional theory can enhanced by the addition of variables 
such as modifying the potential equation either by analytic 
means [9] or nonconservative differencing [10]. Since both 
conventional and modified theories are inconsistent, it would 
seem that a modified theory is as valid as the conventional 
theory. 

For the irrotational assumption to hold the quantity 
181 < < 1 and hence from equation (59) 
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P2Ui < < 1 (61) 

Now to a first approximation 

/32-/tM, = 1 - M ? 

where Mx is the Mach number just upstream of the shock. 
Hence equation (61) can be written as 

Concluding Remarks 

Several aspects of the transonic potential theory have been 
examined and it is concluded that there are several in­
consistencies in the theory. It is also suggested that there are 
some commonly held misunderstandings in the interpretation 
of the results of potential theory calculations. 

1{M\-Ml) 
< < 1 (62) 

It can be concluded that apart from its treatment of the 
tangency boundary conditions, the full potential equation is 
formally no more accurate than the small disturbance 
equation since both require /32«i < < 1. 

In equations (11) and (12) it can be seen that if mass is 
conserved then momentum is conserved only if 

[ « 2 ] i = 0 

which, in the case of conventional potential theory, is not 
possible since [u2]i is solely determined by the mass con­
servation equation. In the consistent theory, although the 
same requirement of [u2] i is needed, there is an additional 
parameter in the mass conservation equation, the " 5 " term 
that allows this requirement to be satisfied. It should be noted 
that even for very weak shock waves, the consistent theory 
does not approach the conventional theory; this only occurs 
for continuous flow. 

Finally, it should be noted that since 5<0 for equation (59) 
the entropy due to the momentum change through the shock 
wave decreases, which contravenes the second law of ther­
modynamics. Thus the consistent potential theory is not 
physically plausible. 
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The Effect of a Normal Shook on 
the Aeroelastio Stability of a Panel1 

The effect of a standing shock wave on the static and dynamic aeroelastic stability 
of a flexible panel is investigated using a linear structural and aerodynamic 
theoretical model. It is found that the shock is generally stabilizing. The lowest 
critical dynamic pressures are associated with shock positions downstream from the 
panel, where the panel is uninfluenced by the shock. 

Panel Flutter, Introduction 

The aeroelastic response of a flexible panel is known to 
depend strongly on the flow Mach number. For most prac­
tical edge support conditions, the plate diverges (buckles) at 
subsonic speeds and flutters at supersonic speeds [1]. 
Moreover, the critical speed, at which instability first occurs, 
is generally smallest at transonic Mach numbers. According to 
linear theory, in fact, the critical speed drops to zero at Mach 
1 for a two-dimensional panel, since any static deformation 
induces an infinite aerodynamic reaction (by the Prandtl-
Glauert rule). 

In reality, of course, the panels aeroelastic response in the 
transonic regime is also influenced by aerodynamic and/or 
structural nonlinearities, boundary layers, and nonunifor-
mities in the flow field. This paper deals with one such effect: 
the influence on stability of a plane shock standing on or near 
the plate (see Fig. 1). This configuration can be viewed as an 
idealization of a skin panel on a transonic wing, the shock 
location and strength being determined (on a larger scale) by 
the wing geometry and Mach number. We assume that the 
surface curvature and mean flow nonuniformities (other than 
the shock discontinuity) are negligible on the scale of the 
panel. 

If the shock stands far upstream, the panel will clearly 
respond to a uniform subsonic stream (divergence). Con­
versely, if the shock lies downstream, the panel sees a uniform 
supersonic stream and, accordingly, must flutter [1]. The 
object of this investigation is to describe the transition from 
divergence to flutter as the shock "moves" downstream, and 
to deduce from this whether the shock degrades or enhances 
the stability of the plate. 
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M,>1 

0 
M2<1 

0 

Fig. 1 Schematic of panel geometry 

Equations of Motion of the Panel 

The elastic deformation of the panel is governed by simple 
beam theory, 

(1) 
where 

/(*,') 
D 
m 

Ap 
plate 

Df"" +m f=-Ap 

vertical displacement of the plate 
plate bending stiffness 
plate mass/unit area 
Pupper ~Piower = pressure difference across 

/ = dt 
df 

/ = — 
dx We consider the plate to be simply supported at both ends, 

x = 0, a, so that the displacement satisfies the homogeneous 
boundary conditions: 

/(0,/) =/(«,/) =/"(0,0 = / " (a,t) = 0 (2) 

This choice is made primarily because of the simplicity of the 
corresponding structural modes (sine functions). Other types 
of fixed end support (e.g., clamped-clamped) should yield 
qualitatively similar stability characteristics. 

The aerodynamic load, Ap, consists of two parts: the static 
load existing without deformation and the aeroelastic load 
induced by the deformation, 
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4P = APo+9i^[ / l . (3) 

where 

APoW = given static load (uniform on either side but 
discontinuous across the shock) 

q, = 1 /2 p, t/2 = upstream dynamic pressure 
A[ ] = aerodynamic operator, to be determined. 

If the operator A is linear then equations (l)-(3) have 
solutions of the form: 

f(x,t)=Mx) + Re{Mx)ei»'} (4) 

where the static deformation, / 0 , and the complex dynamic 
amplitude,/, , satisfy the independent equations: 

Df0" = -*p0-qlA0[f0\ (5) 

Dfr-mtff^-qiAJfA, (6) 

and 

Aa[fA^e->»<A\fxe>«<]. (7) 

Each component, i.e., f0 a n d / , , must satisfy the boundary 
conditions, equation (2). 

Equation (5) determines the static aeroelastic deformation 
under the shock load. Equation (6) determines the stability of 
the panel. Under the present assumptions of both structural 
and aerodynamic linearity, the two problems are not coupled. 
In practice, nonlinearities (of either type) can play an im­
portant role in the plate dynamics, in which case the two 
problems are coupled. This point will be discussed in a 
subsequent section. 

Equation (6), with the boundary conditions (2), is an 
eigenvalue problem determining the possible natural 
frequencies and plate mode shapes of the combined fluid-
structure system. In general (since the system is non-
conservative) these eigenfrequencies will be complex, 
representing either damped or divergent motion, depending 
on the parameters of the problem (plate length, stiffness and 
mass, fluid density, pressure, and velocity and shock 
location). We will be concerned here only with those 
parameter combinations that lead to neutrally stable 
oscillations (/,„{G>) =0), where flutter first occurs, or to the 
onset of static instability (w = 0) termed divergence. 

Flutter Boundaries 

The in vacuo normal modes and eigenfrequencies of the 
plate are defined by, 

D i,,?' -mcoQ„tn=0, — \"dx t„(x) i,„,(x) = 8,„„. (8) 
a Jo 

For the simply supported case these quantities are, 

\l*n(x) = sin(mrx/a), ui0„--
D 

ma4 (9) 

The deformation of the plate under the aerodynamic load can 
clearly be expressed in terms of these normal modes, 

/ l M = Yja" $n(x)> (10) 

where the coefficients satisfy (using (8), (10), and (6)), 

am a„(ul,-u2) = -<?, £ a,„ Qnm, « = 1 , 2 . . . (11) 
m = l 

and where 

Q^^jJrfK^CxMJtfJ, (12) 

are the "generalized forces." 
The system of equation (11) has nontrivial solutions only if 

its determinant vanishes, 

£ > M - Warn (co2,,, -co2)S„,„ +qlQnmII =0 (13) 

which is a complex transcendental equation for the eigen­
frequencies of the combined system. 

The generalized forces are nondimensional functions of the 
upstream Mach number, reduced frequency, and shock 
location, 

Qnm = Qnm \ M \ > Jf ,SQ/aj , (14) 

where s0 is the distance between the leading edge and shock. 
Consequently the roots of the characteristic equation (13) can 
be expressed, formally, as 

=Fn (M, , s0/a, , — ) • (15) 

The condition Im(oi) = Im(F„) = 0 defines a stability boundary 
for each mode, expressed as, 
<7i«3 

D 
= K* ( M , , s0/a, —), — = F ; ( M , , s 0 / a , —) 

\ P\0/ COQI \ P\d' (16) 
Normally only the smallest such q, a3 ID is of interest. 

Divergence Boundary 

The divergence or static stability boundary of the plate is 
determined by the condition Z)(0) = 0. The corresponding 
roots, from equations (13) and (14), are clearly of the form, 

.,3 
Q\a 

D = xjSW„ $„/*), (17) 

which, unlike the flutter boundaries, do not depend on the 
mass ratio. 

Aerodynamic Analysis 

We require the relation between the induced pressure and 
the deformation of an infinite plane wall for the initial flow 
sketched in Fig. 1. To simplify the analysis we shall suppose 
that the perturbed flow is isentropic and irrotational, 
although, in fact, the shock does generate entropy and vor-
ticity in the subsonic region downstream. This "potential 
approximation" is widely used for transonic flows, where the 
shocks are weak and nearly isentropic [2]. 

It will be assumed, moreover, that the flow is an in­
finitesimal perturbation of the piecework uniform initial (or 
"mean") flow shown in Fig. 1. Mean flow quantities will be 
designated by a subscript " 0 , " with the convention " 0 = 1 " 
upstream and "0 = 2 " downstream from the shock. The 
perturbation velocity potential 0 (the full potential being 
u0 X + 4>), then satisfies the linear wave equation, 

Dl <t> . , D0 d d 

-i5F-=c°*2*> r ^ ^ ' (18) 

where C0 is the undisturbed speed of sound, which must be 
solved subject to the outgoing wave condition at infinity and 
the linearized flow tangency condition on the surface, 

on j> = 0, (19) 

where/(x,0 is the displacement of the surface from y = 0. 
The density and pressure are related to the potential by the 

linearized Bernoulli equation and isentropic relation 

P-P0 = CUP-PO)=-PO 
DQ4> 

Dt ' 
(20) 

To complete the formulation we must specify how the 
solutions of equation (18) in the supersonic and subsonic 
regions are connected across the shock. The usual shock jump 
conditions, conservation of mass, momentum, and energy 
provide four relations between the flow variables and shock 
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geometry. Within the linear approximation the conservation 
of energy is automatically satisfied by the Bernoulli equation 
(20). Conservation of transverse momentum implies con­
tinuity of the velocity component tangent to the shock, which 
is satisfied in the potential approximation by taking the full 
potential to be continuous. To maintain this condition in the 
linearized theory, the perturbation potential must be 
discontinuous across the mean shock with a jump propor­
tional to the shock displacement. 

s-s0==A04>/AaU0 (21) 

where x = s(y,t) is the instantaneous shock location and A0 is 
the difference across the mean shock. 

The final two conservation laws, mass and normal 
momentum, take on the following forms after linearization 
and use of equations (20) and (21), 

( m a s s ) A 0 [ l ( l - A ^ - ( ^ + ^ ) , , ] = 0 

(22) 

Normal ,- I -, 
(momentum) A0 [(1 - Ml)<j>x - — (1 + M§)</>, J = 0, (23) 

where M0 = U0/C0 is the mean flow Mach number. 
Each of these equations is a compatibility condition relating 

the potentials on the subsonic and supersonic side of the mean 
shock. However, only one such condition can be imposed on 
the solution: either mass or momentum, but not both, can be 
conserved across the shock in the potential approximation. It 
is conventional to impose mass conservation (see, for 
example, Jameson [2]), although the other choice is equally 
consistent and both yield asymptotically equivalent results for 
weak shocks. Formally the difference between solutions 
obtained using the two conditions should be indicative of the 
error introduced by the potential approximation itself. 
However it will be shown that there is good reason for the 
conventional choice (mass conservation) in the present 
problem: the solution obtained using momentum con­
servation becomes unbounded in the steady limit. 

We shall obtain the solution for the case of simple har­
monic motion/— <j>~em' (now using f(x) and <f>{x,y) to denote 
the complex harmonic amplitudes). The analysis is similar to 
that of reference [3], with two main differences: (1) we 
consider the nonlifting problem here (as opposed to the lifting 
problem in reference [3]); and (2) we deal with the linearized 
full potential equation here (as opposed to the linearized 
transonic small disturbance equation in reference [3]). 

For brevity we introduce the following notation, 

/3 0 =VlAf3- l l , X0 = Ml 
U0 I-Ml ?r> *V 

/ d io)\ 
(24) 

Upstream Solution. In the region x<s0 the flow is 
supersonic and therefore uninfluenced by the shock. The 
potential field, therefore, is given by classical supersonic 
linear theory (equations (18) and (19) and the radiation 
condition), 

4>(x,y) --
U, 'x-P\y 

dxx Q(x1)e''M <*-*!> 

Uv^ix-xtf-fty2), (25) 

x<s0, y>0 

where J0 is the zeroth-order Bessel function. 

Downstream Solution. The flow in x>s0 is subsonic and 

therefore determined by the shock compatibility condition, as 
well as the radiation and surface tangency conditions. The 
shock relation (either (22) or (23)) can be written in the form, 

4>x-2io24> = q(y)/Pl on x = sj, y>0 (26) 

where, using the upstream solution (25), 

q(/)=-ft bU2/Uy[<j>x-2hl(jy]x (27) 

U-, -?"<s-»\y 
cfr e'M*o-*>./„ 

the coefficients <J0,<5 depend on the choice of mass or 
momentum conservation, 

(mass, equation (22)) 

2oa = ^p{\/Cl + \/UxU2), 5=1 

(momentum, equation (23)) 
co l+Ml 

2 C T ° = 77 1—77T> o=U{/U2 U0 I-Ml 
(28) 

As in reference [3], the potential that satisfies the surface 
and shock boundary conditions is constructed by distributing 
singularities along the axes of an image plane ( - oo 

<*! < o o , - oo<_y, <oo), 

iU2 " <t>(.x,y) = 
2/32 

dx{ w(Xi) 

eW-xilHgifas/ix-Xi)2 + Pi y2) 

+ ^ r \ dyy qOyi^Gdxso.y-yi), x>s0, y>0, (29) 
Zp2 J -°° 

where H$> is the zeroth-order Hankel function and 

G,(f,ij)»[ dl?"rt-
J oo 

«j) + /X2fl 

(30) 

This potential satisfies the wave equation (18) and the 
radiation condition for arbitrary source distributions w and q. 
Since the second term in (29) is symmetric in y, the surface 
tangency condition (19) is satisfied if we take 

w(x) = Q(x), x>s0. (31) 

Finally the shock boundary condition (27) is satisfied iden­
tically if we take the quantity [w'(xl)-2i<j2w(xl)]e'x2lso~xi> 
to be antisymmetric about xt =s0, which provides the 
required definition of w for *, <s 0 , 

w(x) = eW-so) Q(2s0 -x) + 2/(X2 - 2a2) e2''"2<*-*o> 

dxj e2«x2-2"2X*i ~*o> Q(2s0-xt), 

x<s0 (32) 

Surface Potentials. The potential on the surface y - 0 will 
be split into three parts, 

4>(x,0) = H(s0-x)4>(lHx) 

+ H(x-s0)[4,^(x)+^\x)]. (33) 

The first part is the disturbance upstream from the shock, 
from equation (25), 
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<t>w {x) = - ~ - \ dxx U(x-Xl) e'xi*i J0{v,xx). 
a, JO 

(34) 

The second part is the downstream disturbance generated 
by downstream motion, from the first term in equation (29), 

iU2 f -

result, an integral representation of the function X defined in 
(38). It is easily shown that this function satisfies the 
Helmholtz equation 

4><2> (x) = 

- a2 a2 

v\$\ + v\V\) ^ « ! , W = 0 (44) 

2B2 

dxx e ' ^ ' i H^ (v2\xx\) v K x - * ! ) (35) 

and boundary conditions 

(45) 

(where w is defined by (31) and (32)). 
The third part is the downstream disturbance generated by 

upstream motion, from the second term in equation (29). 
Using equation (27) to eliminate the source strength, q, we 
find that 

4>w (x) = i U2 B/k 8/B2 \ S° dxx U(xx) 
J — oo 

0 ( S Z £ L . £ ^ ) . m 

where the kernel G is defined by , 

G ( £ 1 , $ 2 ) = <? ' ' ( M l f l+ X2 / 32 f2 ) 

r d 

Thus an alternative definition of Xis (using equation (39)), 

*«i,fc) 
2 f ^c 

ITT J - i 
tff 

VTT72 (46) 

r » V^/s? + i^ / s io+ / 2) . 

When this representation is substituted into equations (37) 
and (36), we find that 

0(3) (X) = - A ( fifc c ' f X 2+"2 ' )^ -^ )L3(Q (47) 
7Tp-> J - i Vl + r2 

where 

L3(t)=(2S) 
t 

.3{ 
+ / ( 3 1 ( X , - 2 0 , ) 

s:. 

t-2io2/v2 

f OO 

* ^ ' -T-^«l ,€2-0 
Of 

(37) r*, lu IX 
icos^r^ + —-(X] - 2ai)sin —— 

J f « 1 , { 2 ) = j 0
t l A « P ) 

(48) 

(^ftV^+zVo^^.V^-z2). (38) 

In practice the evaluation of each of these expressions is 
considerably simplified if the Bessel functions are replaced by 
their corresponding integral representations, 

1 f /„(*)= -
•K J -

dt . - , 
i V i - / 2 

i/o<2) (*) = — 
iir 

Thus equa t ion (34) becomes , 

2 r -c 

iir J - i 
c// 

Vi + /2 

irfl, J - i VI -f2 

where 

{
00 

</*! Q(x-x1)e' ' (Xi+"i'*i. 

(39) 

(40) 

(41) 

Tx, 

L /8, r m , 
The formulas (40)-(48) involve only elementary functions 

and are, therefore, relatively easy to evaluate. In fact, for 
sufficiently simple displacements (i.e., Q(x)) the integrals Lj 
can be evaluated explicitly, leaving a single quadrature (for 
each potential) to be performed numerically. 

These forms are not, however, useful in the steady limit 
(oi = 0), because the corresponding integrals are then poorly 
converged. We shall, therefore, consider the steady solution 
separately. 

Steady Limit. We consider the behavior of the solution in 
the limit oi—O. Upstream from the shock we obtain from 
equation (25) the simple relation 

4>{x,y)= - ~Ax-Rxy) + Q{.w), x<s0. (49) 

Downstream from the shock we find from equation (29) and 
(30), using the asymptotic behavior of the Hankel function, 

4>(x,y) --
TTB, J -

dxx w(xx) In 

Similarly equa t ion (35) becomes (using equa t ions (31) a n d 
(32) for w), 

0(3) {x) = EL [ " ° ° < i f ^ J = L2U,X), 
irB2 J - J V l + f 2 

(42) 

(»2V(x-x1)2 + $ ( y - . y 1 ) 2 

i r °° 

7TP-, J - o > 
In 

where 

L2(t,x) = 2\ dXi fi(x,)e'K2<*-*i> sinh v2t(x-xx) 
Jsn 

(.v2^J(x-s0)
2r+B2(y-yl)

2, x>s0 (50) 

L /i 
/ ' (X 2 -2c r 2 ) - j> 2 r 

e(v2l + i\2)(x~s0) +e(i\2-v2t)(x-so) 

\2o2-\2)-v2t 

dxx fl(5o+A-i)e("2'-/x2)Jti 

(43) 

where, to lowest order in frequency, 

w(x) = w(2s0-x)=f'(x), x>s0 

q(y) = BxU2of'{s0-Bxy). (51) 

Thus the potential on the subsonic side has a bounded steady 
limit only if the net source strength vanishes: 

v w n oo r> oo 

Simplif icat ion of the th i rd potent ia l requires a pre l iminary J _oo
 dx\ wix\)+ J _<x> dyx q(\y\) = 2U2{6- l)f(s0) = 0. (52) 
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This condition is met (cf equation (28)) if conservation of 
mass is imposed, but not with conservation of momentum. 

It will be noted that the divergent term (lnv2) in equation 
(50) is a constant and therefore has no effect on the velocities 
or pressures (whether or not condition) (52) holds). However 
the shock displacement, as given by equation (11), is 
proportional to the potential and so has a bounded limit only 
if we impose conservation of mass. 

If we impose condition (52) the steady-state surface 
potential may be written in the final form, 

<Hx,0) = 

- t / , / / 3 , / ( x ) x<sQ 

TTft, J - ° ° 

+ (xl-s0)
2e(xl - Jo) I . x>s0 

(53) 

where 

««) = 

-1,S>0 

Generalized Forces. In computing any integrated load 
(such as a generalized force) the shock displacement must be 
taken into account. The additional load due to the shock 
displacement appears in the linear approximation as a con­
centrated force. To show this we consider the Bernoulli 
equation (20) in the form, 

P = Pl+H(x-s)(.P2-P1)-Po^- (54) 

with the mean pressure jump occurring at the instantaneous 
shock location s. Taylor expanding H about the mean shock 
position s0 and eliminating the shock displacement by 
equation (21) gives, 

H(x-s) = H(x-s0) + 
A0<£ 

8(x-s0) + . . . . 
A 0 t / 0 

Using this result and the Hugoniot relation A0P 0 / A 0 U 0 

- p0 UQ m equation (54) gives the required result, 

DQ<t> 

(55) 

P = PO-PQ—^PQUO A0 <t>8(x-s0). (56) 

We now consider the displacement amplitude/(x) = \j/„ (x) 
corresponding to the nth structural mode of vibration, and 
denote the induced surface potential by <j>(x,0) = l /2t/ ,$„(x). 
It follows from equations (3), (7), and (52) that 

AaW„]=-2{—+ — ]<£„(*)-2A0</>„ 8(x-s0), (57) 

and thus that the generalized forces as defined in equation 
(12) are given, after an integration by parts, by 

t =4jo"<&</>„,(*) o;(x) (58) 

where (cf equation (24)) fi„ (x) = t/<„' + io>/U0 \p„ and fi„* is its 
complex conjugate. We observe that the shock point load does 
not appear explicitly in the generalized forces when expressed 
in terms of the potential. 

The evaluation of the generalized forces is further sim­
plified if we make use of the potential splitting introduced in 
equation (33) and the integral representation, equations (40), 

(42), and (47). For nonzero frequencies, then the generalized 
forces can be evaluated from, 

(59) 

where 

7n3, J 

ScCnm 

1 

-4-1 

l 

-t2 

-~ OO 

dt 

+ GS.+ 

^nm \*l 

1 

n<3) 

nU) 
» \c,nm 

^nm ( (0 (60) 

y = 2,3, 

and 

*«»<'> = " M o ' 

efct, Q*(x) Gm(*i) eKh +,'<')(x~x') 

u-, ra r -' 
4 2 i ,=2-^- dx\ 

(61) 

'X 

)s0 

dx^*(x) 0,„(x,) e'^^-^i) sinh v2t{x-x{) (62) 

U-

U, 

i f t — i(\-> -2CT,)/'v-, 

Z^(t) = - ^ 8 

i{\2-2a2)/v2 

It 

•;(-o] 

Ux t — 2io2/v2 

K„ (t) = \ dxQ„ (Ar)e<"2'-»2)^-^o) 

In(t) = r ° dxQn(x)eix^so-^ 

KZV) I„,U) (63) 

(64) 

T(s0-x) : , 0 , , ^ . T(s0~x) 
cos 1- / — (Aj - 2(7,) sin — (65) 

The zero frequency case, required for divergence 
calculations, is best treated from equations (53) and (58), 
from which we find that, 

Q»'»=-T \'°dx+m(x)K(x) (66) 

4C/2 1 
"'" 77 a 

7ft/, /32 

GP = { a p a 

dx\ 

dxt i//„'(x) i,;,(X\) l«l(Jf —i0)2 - ( ^ i -*o)2l 

4 C/, 1 

(67) 

0<3> = 
7T C , P2 Js0 

_ 
A M2 

f P *0 

dx, *„'(*) ^ ( x , ) \n\(.x-sQ)2 + p2
2/$\{xx-s0)

2\ (68) 

As in the unsteady case, these can be reduced, for the simply 
supported plate, to single quadratures. 

If the shock is downstream from the plate, sQ > a, then 
Q(mn = Qi™ = 0 and Q„„, = g w is given by equations (60) and 
(61) with sQ=a, i.e., the "classical" supersonic result is 
recovered. If the shock is upstream from the plate, s0 <0 , then 
Qmn - Q(mn - 0 (since there is no disturbance in the supersonic 
zone) and Q„,„ = 0j2)„ is given by equations (60), (62), and (64) 
with s0 = 0 in the integration limits. The generalized force, in 
this case, does depend on the shock location (through the 
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Fig. 2 Variation of divergence dynamic pressure with shock location, 
Mi =1.1 
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Fig. 3 Flutter dynamic pressure versus mass ratio Sgla = 1.0, A41 =1.1 

exponential factor in equation (64)) because acoustic waves 
can reflect off the shock back onto the plate. The contribution 
of these reflected waves (given by the term proportional to 
Km (t) in equation (62) decays rapidly as s0 — - <», leaving the 
"classical" subsonic result. 

Results 

Calculations have been performed for an upstream Mach 
number Mx =1.1. For simplicity only the first two terms have 

200 -

100 

Fig. 4 Flutter dynamic pressure versus mass ratio S0/a = 0.95, 
IW-, =1.1 

been retained in the modal expansion, equation (10). When 
the shock is upstream or downstream from the plate it is 
known that the first instability occurs predominately in the 
first structural mode [1]. It is expected, then, that two modes 
should be adequate to describe, at least qualitatively, the 
variation of the stability boundary with shock location. 

Figure 2 shows the variation of divergence dynamic 
pressure with shock location according to the one and two-
mode truncations. It is apparent that the divergence occurs 
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Fig. 
M 1 

5 Flutter dynamic pressure versus mass ratio S0/a = 0.85, 
= 1.1 

almost entirely in the first mode for shock locations upstream 
of the panel quarter-chord, but that the second mode content 
becomes increasingly important as the shock moves down­
stream. The shock is slightly destabilizing for positions up­
stream from the panel but generally stabilizing when the 
shock sits on the panel. In the two-mode approximation the 
plate is statically stable for shock positions downstream from 
the 80 percent chord point. With only one mode, divergence 
can occur (but only at increasingly larger dynamic pressures) 
for any shock position forward of the trailing edge. 

In fact, though, the panel stability for these downstream 
shock locations is controlled by flutter, not divergence. Two 
mode flutter dynamic pressure variations with mass ratio and 
shock position are illustrated in Figs. 3-7. These boundaries 
generally consist of two distinct branches corresponding to 
the two possible flutter modes. When the shocks are at or very 
near the trailing edge (Figs. 3 and 4) both the first and second 
structural modes (individually) are unstable at low mass ratios 
(heavy plates), although the second mode becomes stable at 
higher mass ratios. In fact, though, the second mode is 
unimportant: the panel flutters in the first structural mode at 
all mass ratios. When the shock sits further upstream, 
however, (Figs. 5 and 6), the single-degree-of-freedom, first-
mode flutter is lost. In this case the panel experiences single-
degree-of-freedom, second-mode flutter at low mass ratios 
and coupled mode flutter at high mass ratios. The coupled 
mode instabilty (characterized by insensitivity to mass ratio), 
occurs at relatively high dynamic pressures. Shock positions 
yet further upstream (Fig. 7) the flutter boundaries remain 
much the same, buat the stability at high mass ratios becomes 
dominated by divergence. Only at very low mass ratios is 
flutter (in the second mode) of any importance. 

The foregoing results are summarized in Figs. 8 and 9, 
which show the stability boundary (dynamic pressure and 

200 

100 

Fig. 6 Flutter dynamic pressure versus mass ratio S0/a = 0.75, 
M, =1.1 

300 

200 

100 

Fig. 
M1 : 

7 Flutter dynamic pressure versus mass ratio Sg/a = 0.65, 
= 1.1 

frequency) as a function of shock position at fixed mass ratio. 
It is apparent from Fig. 8, that by far the lowest critical 
dynamic pressures occur when the shock is downstream from 
the trailing edge and so has no effect whatsoever on the panel. 
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Fig. 9 Flutter frequency versus shock location, p. = 0.02, M^ =1.1 

Conclusions 

The results obtained from the present simple model clearly 
demonstrate that the presence of a normal shock (and its 
associated mixed supersonic-subsonic flow regimes) does not 
have a deleterious effect on the aeroelastic stability of a flat 
panel. The shock does strongly influence the mode of in­
stability in a manner depending primarily on the shock 
location relative to the panel. However, the critical dynamic 
pressure in all cases was higher than it would have been in a 
uniform supersonic flow at the preshock Mach number. 

The numerical results are, of course, limited by the use of 
only two structural modes to represent the actual aeroelastic 
deformations. This truncation is probably not adequate in 
those cases (associated with moderately aft shock locations) in 
which second-mode or strongly coupled mode flutter oc­
curred. However, the analysis shows a dramatic increase in 
critical dynamic pressure in these cases, which is undoubtedly 
correct qualitatively, if not quantitatively. 

It should be noted, furthermore, that the present analysis 
neglects structural damping, which can have a significant 
effect (generally stabilizing at Mach numbers considered 
here). For example, the second-mode single-degree-of-
freedom flutter observed here in some cases at low mass ratio 
may be eliminated entirely by a small amount of structural 
damping [4], It would be surprising, though, if the addition of 
damping were to alter the general conclusions of the study 
regarding the influence of the shock on stability. 

A final word of caution is in order. It is well known that the 
stability of a panel in uniform flow is strongly influenced 
(generally in a beneficial way) by preloading, as occurs, for 
example, where there is a finite static pressure differential 
across the plate. (This effect is important, for rigid supports, 
whenever the static deformation is larger than or comparable 
to the panel thickness.) For the shocked flow considered here, 
the plate is necessarily preloaded since the (uniform) un-
dersurface pressure cannot simultaneously balance both the 
preshock and postshock upper-surface pressures. If the plate 
is pinned at either end to rigid supports, the nonuniform static 
load will generally induce large tensile stresses in the plate, 
which in turn will alter the plates apparent rigidity and, hence, 
its stability. This effect (which is clearly stabilizing) should, 
strictly speaking, be included in the analysis. Neglecting the 
effect, as we have done, is justifiable if we imagine the plate to 
be pinned to elastic supports with sufficient play to eliminate 
the induced tensile stresses. 
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Magnetoelastic Plane Waves in 
Infinite Rotating Media 
A study is made of the propagation of magnetoelastic plane waves in an electrically 
conducting, infinite elastic solid permeated by a primary uniform magnetic field 
when the entire medium rotates with a constant angular velocity. A more general 
dispersion relation is obtained to investigate the effects of rotation and the external 
magnetic field on the phase velocity of the waves. This analysis reveals that when 
the applied magnetic field has both longitudinal and transverse components, the 
coupled magnetoelastic waves are dispersive and damped in an infinitely conducting 
medium in contrast to the nonrotating medium where the coupled waves are 
dispersive, but undamped. In the case of finite conductivity, the waves are 
dispersive and undamped in the absence of the applied magnetic field. At low 
frequency w, the phase velocity of the waves varies as o>"2 for finite conductivity, 
and is independent of the external magnetic field and rotation; while in the 
nonrotating case with low frequency (when the applied magnetic field has either 
longitudinal or transverse components) the phase speed is less than that in the 
rotating medium and is found to depend on the applied magnetic field. Also in both 
rotating and nonrotating cases, the phase velocity becomes very small for finitely 
conducting material with a very high magnetic permeability. 

1 Introduction 

The study of the propagation of elastic waves in a 
nonrotating electrically conducting medium under the action 
of a magnetic field was made by several authors including 
Knopoff [1], Kaliski and Petykiewics [2], and Dunkin and 
Eringen [3]. In his recent books Parkus [4, 5] has given all of 
the major general information and recent developments of 
magnetoelasticity and magnetothermoelasticity in 
nonrotating elastic media. Schoenberg and Censor [6] have 
investigated the propagation of elastic plane waves in a 
uniformly rotating medium and obtained interesting results 
concerning energy flux, slowness surfaces, reflected waves, 
and the generalized Rayleigh waves. They have shown that the 
rotation causes the elastic waves to be dispersive and 
anisotropic. Their study also included some discussion on the 
free-surface phenomenon in a rotating half space. 

It seems from the preceding discussion that little attention 
has been given to the propagation of magnetoelastic plane 
waves in a rotating medium in the presence of the external 
magnetic field. In view of the fact that most large bodies like 
the earth, the moon, and other planets have an angular 
velocity, it is important to consider the propagation of 
magnetoelastic plane waves in an electrically conducting, 
rotating elastic medium under the action of the external 
magnetic field. It is very likely that rotation will have some 
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important effects on the propagation of the magnetoelastic 
waves. 

The main objective of the present study is to investigate 
magnetoelastic plane waves in an electrically conducting, 
infinite elastic solid permeated by a primary magnetic field 
when the entire medium rotates with a uniform angular 
velocity. Special attention is given to the interaction between 
the electromagnetic field and rotation and their effects on the 
principal features of the elastic waves. 

2 Formulation of the Problem and the Basic 
Equations 

We consider an infinite, isotropic, electrically conducting, 
elastic solid permeated by a primary magnetic field B0 = (Bt, 
B2, B3). The elastic solid is characterized by the density p, 
Lame's constants X, ti, and is uniformly rotating with an 
angular velocity fl = fiw, where w is the unit vector 
representing the direction of the axis of rotation. 

The displacement equation of motion in the rotating frame 
of reference is 
p[u + nx(flxu) + 2ttXii] = (A+/x)V(V"u) 

+ /xV2u+JxB, (2.1) 

where the dot denotes differentiation with respect to time t, u 
is the displacement vector, J is the current density, and B is 
the total magnetic field so that B = B0 + b, b = (bx, by, bz) 
is the perturbed magnetic field. 

The equation of motion (2.1) has two additional terms: 
centripetal acceleration, Q x (fl x r) due to time-varying 
motions only and the Coriolis acceleration, 20 x u where u is 
the dynamic displacement vector measured from a steady-
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state deformed position and the deformation is assumed to be 
small. These two terms do not appear in the equation of 
motion for the nonrotating media. In addition, the Lorentz 
force term J x B is included in the displacement equation of 
motion to incorporate the electromagnetic field effects. As we 
look for the time-varying dynamic solutions, the time-
independent part of the centripetal acceleration 0 x (Q x u) 
as well as all body forces will be neglected. The effect of time-
independent centripetal acceleration should in effect make the 
elastic medium anisotropic. We shall take into account the 
time-independent part of the electromagnetic body force. 
Finally, the study of magnetoelastic plane waves will be made 
within the scope of the linearized theory. We assume that u, b, 
the second-order terms on the right-hand side of (2.1) in­
volving u, b and their derivatives are small in order to justify 
linearization. 

In view of the fact that frequencies associated with the 
vibrations and mechanical waves are much smaller than the 
frequency of the electromagnetic waves with the same 
wavelength, the electromagnetic fields may be regarded as 
quasi-steady. The electromagnetic fields are governed by the 
Maxwell equations with the displacement current and charge 
density neglected [10]: 

dB 
curlH = J, cur lE= , divB = 0, (2.2a,b,c) 

dt 

where B = /*CH, fxe is the magnetic permeability and E is the 
electric field. 

The generalized Ohm's law is 

J = t r | E + ( — - +S}xu) x B , (2.3) 

where the time-independent part of fi x u is neglected, ais the 
electrical conductivity, and du/dt is the particle velocity of the 
medium. 

3 Plane Wave Solutions and Dispersion Relation 

We consider the propagation of plane waves in the con­
ducting rotating elastic medium in the ^-direction so that all 
field quantities u, J, b, are proportional to exp [i(kx—ut)] 
where k is the complex wave number and to is the real wave 
frequency so that u/Re(k) represents the phase velocity of 
the waves. Thus we can write all field quantities in the form 

u = (p,q,f) = (p0,q0,r0) exp{i(kx-ut)], (3.1) 

J = (Jx,Jy,Jz) = ( y 1 , / 2 , / 3 ) e x p [ / ( ^ - w 0 ] , (3.2) 

b = (px,by,bz) = (b],b2,b})exp[i(kx-G>t)], (3.3) 

E = (Ex,Ey,Ez) and 0 = (fl,,Q2,03), (3Aa,b) 

w h e r e p 0 . <7o. ro '< -A. J2 > ^ 3 ! a r>d fii, ^2 > ^3 a r e aJl constants. 
It follows from (2.2c) that div b = 0 which implies that bx 

= 0, since initially b = 0. Also, it follows from (2.2a) that /xe J 
= curl b so that 

F = ( o , -
ik ik 

(3.5) 

and 

J x B = J x B 0 •[• 
ik 

(bzB3+byB2), 
ik 

• byBx, • 
ik 

b,B •]• 
(3.6) 

The term J x B in (2.1) will be replaced with J x B0 given by 
(3.6). 

db 
The equation curl E = —— implies that 

> ( • 

dt 

CO w h 

-kb> ) • 

Making use of (3.1) and (3.7), and neglecting the product 
terms, the generalized Ohm's law with B0 in place of B gives 

Jx = o[Ex-iu(qB3-rB2) 

+ B3{pni-rQl)-B2(.qtoi-pQ2)]> 
CO 

Jy = tf[ -r bz-iu)(rBl -pB3)j., 

Jz = o\- y by-ioi(pB2-qBi) 

+ B2(Q2r-qQ3)-Bl(pQ3-rQl) . 

Elimination of J from (3.5) and (3.8)-(3.10) gives 

a[Ex - i u ( q B 3 - rB 2 ) + B3(pQ3 - r Q t ) 

-f l2teO,-/7Q2)]=0 

ffL T bt~'°>(rBi -pB3)+B,(qQ, -pQ2) 

ik . 

(3.8) 

(3.9) 

B2(Q2r-
„ J lk 

-qQ3)\ = 

(3.10) 

(3.11) 

(3.12) 

al~ 17 by~iw(pB2-qB1) + B2(rU2-qQ3) 
0) 

~k 

-B^{pQ3-rQ, 
J fie 

(3.13) 

The equation (3.11), in turn, determines Ex. 
We next substitute for p, q, r from (3.1) into the basic 

equation (2.1) with J x B given by (3.6) to obtain the 
following equations forp0 . <7o a n d fo 
p0lp{Qi2 - 02 - co2) + (X + 2/i)k2] + q0[p(2i w03 + Q, fi2)] 

+ /-0[p(n1n3-2icoQ2)]+ — (B3b3+B2b2) = 0, (3.14) 

/70[p(fi,fi2-2/ wQ3)]+q0[p(Q2
2 - f i 2 -w 2 ) + nk2\ 

ik 
+ r0 [p(Q2Q3+ 2/coQ!)] b2Bi=0, (3.15) 

Me 

p0[p(Q[Q3 +2i oiil2)] + q0lp(U2U3 -2icoQi)] 

ik 
+ r0[p(Q3

2-Q2-u2) + lxk2] Blb3=0. (3.16) 
he 

We also rewrite (3.12) and (3.13) in order to express them in 
terms of/?0, q0, and r0 as 

p0[p(iuB3-Bl Q2)] +qa[o(Bl0,+B3Q3)] 

+ r0[-o(iuBl+B3Q2)]+b3\— + ^]=0, (3.17) 
L fxe k J 

p0[-o(iu>B2+Bl fi3)]+67o[cr(/cofi1-fi2fi3)] 

+ /-n|£7(«, U-,+B, 0 , ) 1 - ^ I + — I =0 . T3.18) r0[a(B2Q2+BlQl)]-b2\ ~ + ^]=0. (3.1 
L fie k J 

(3.7) 

Equations (3.14)-(3.18) constitute a system of five equations 
with five unknowns p0, q0, r0, and the perturbed quantities b2 

and b3. 
Since b = (0, by, bz) and b-field is normal to the x-axis, we 

then choose the .v-axis and the z-axis such that b-field is along 
the 7-axis. Thus bt = b3 = 0 and b2 ^ 0. Also, invoking an 
additional assumption, 0! = 02 = 0 and Q3 = fi ^ 0, 
equations (3.14)-(3.18) take the form 

p01 - p (co2 + Q2) + (X + 2/i) k2] + 2/co pQ q0 

+ —B2b2=0, (3.19) 
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p0[-2ioi pQ]+ q0l~ p(®2 + u2) 

+ nk1] 

v=(neooi) ~' = — , and vH = (ofie) ' is the magnetic viscosity. 

B,Z?2=0, (3.20) 
Expanding the determinant, we obtain the equation of 

(3 21) degree three in k2 as 

a»> ( 1 + l W ) [ ( t ! _^£ ) ( t , _„ 2 , _* ) _^ ] 

(3.23) +k2(k2-a1
2-^)(RL-

iRLB2 Q 
) 

2oiQ (RL B2 i QRL\ 2k2RHoiQ 

r0(-poi2+lik
2) = 0, 

p0ioioB3 +qoaQBi -r0aioiBl =0, 

p0[-o(iwB1+Blni)]+q0[(j(iuBi-B2V)] 

In view of the inherent rotation of the earth, the additional 
assumption has important geophysical implications. It 
follows from (3.21) that r0 = 0 provided ixk2 - poi2 * 0 and 
then (3.22) implies that B3 = 0. Thus, if the applied magnetic 
field B0 = (Bt, B2, 0) and the perturbed magnetic field b = 
(0, b2, 0), then equations (3.21) and (3.22) are satisfied. 

This leads to three homogeneous equations (3.19), (3.20), ^ s e n t s a a l d i s p e r s i o n r e l a t i o n i a n d s h o w s 

and (3.23) with three quantities p0, <70.and b2. Eliminating ^ . f . ^ field h a s feoth l o i t u d i n a l a n d 

these quantities, we obtain a dispersion equation in the 
following form involving a determinant: 

2oi\l / RL\ 2kiRHoi\l / B2Q\ 
01 / B2C2

2 V 01 ' 
+ ^K^Br + ^f)--B^r[iBi 

Q£, iklRH / , , fl2 \ / S2B, \ 

- p ( c o 2 + Q2) + (X + 2M)A:2 

— 2ioipQ 

a(QBi + ioiB2 

2ioipU 

nk2-P(o>2 + n2) 

a(QB2-io>B1) ( 

ikB2 

V-e 

ikBx 

ik aoi \ 

V-e k ' 

= 0. (3.24) 

It follows from the dispersion equation that the significant 
effects of the rotation on the phase velocity, Re (oi/k) are 
reflected through the terms involving Q. 

In a nonrotating medium (fi = 0) without thermal effects, 
the dispersion equation (3.24) reduces to that of Wilson [7], 
Also, Paria's [8] results follow from the present analysis when 
Q = 0, Bx = 0 . Purushothama [9] investigated the 
propagation of magnetothermoelastic plane waves in the 
presence of uniform thermal and magnetic field. Although he 
extended the works of both Wilson and Paria, the results of 
the present study are consistent with his results in a 
nonrotating case with special choices of the angle of orien­
tation of the magnetic field and the thermal effects neglected. 
However, the dispersion relation (3.24) gives a fairly general 
result in the theory of magnetoelastic plane waves. 

Introducing a new quantity a, = oi/ch / = 1, 2; the 
dispersion equation (3.24) can be expressed in the following 
form 

transverse components, then the displacement fields p, q, and 
the perturbed magnetic field b2 are linked together. It also 
follows from (3.27) that the significant effects of rotation on 
the phase velocity of the waves are reflected through the terms 
involving fi. The coupled magnetoelastic waves characterized 
by the dispersion relation are damped and dispersive. 

4 Infinite Conductivity 

In this case, a— oo so that vH and v tend to zero. The 
corresponding dispersion relation can be obtained from (3.27) 
and has the form 

k<ll+RL+RH+-(— — )J 

-*[(v+£)(i+*.+ Bi 
iR,B, fiN 

2 fl2 

2/coQ 

2/wO 

k2 

k(iB2 + - M 

c , 2 

-°22~ 
Q2 

r 2 
c2 

B2Q 

ikRH 

B2 

ikRL 

B, 

k(-iBi+ — ) l+ivk2 

= 0, (3.25) 

where the nondimensional pressure numbers RH and RL are 
defined [10] by 

1 / B 2 B 2 \ 
(RH,RL) = — ( - T . - T ) . (3.26a,6) 

PIXe \ C , Z C 2
2 / 

X + 2/x 
is the dilational wave velocity, 

_02 

2cofi (iRLB2 , QRL 

2wQ/iB,RH QRH\~\ ( , ®2 

I ,• 0 z \ r iRH/.„ BiQ\-) 
+(»'2+^)i,-^(",'+-i-)i 

- ) 
01 / 

c2=J — is the shear wave velocity, 
P 

(^-"")M^£)(->'*£) 
(4.1) 

01 

4oi2Q2 

CX
2C2

2 
= 0. 
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Thus, if the applied primary magnetic field has both 
longitudinal and transverse components, then the 
longitudinal and transverse components of the displacement 
field are coupled, and modified by both rotation and elec­
tromagnetic field. Both the waves are dispersive and damped. 
In the case of nonrotating medium (Q = 0), result (4.1) reduces 
to that of Nowacki [5], and all conclusions of Nowacki can 
readily be obtained from our analysis. 

If the primary magnetic field is absent, that is, if Bf = B2 

= 0 so that RL = RH = 0, the dispersion relation (3.27) 
simplifies to 

k4-k2 

- ( • • • • £ ) ( •> • •£ ) -
4co2Q2 

= 0. (4.2) 

The roots of this equation are 

D--

2kh2
2 = ot

2 + o2
2+Q2 (-V + -M±vT>, (4.3a,b) 

\ C\ C-> / c2 

fi2 \12 

(••'•£)-(•>•+£) 
16co2Q2 

>0. (4.4) 

Also, since ff,2 + a2
2 + fi2(—j- + — f J > v B , 

the roots are real and so the waves are dispersive, but un­
damped. 

In the nonrotating medium, the equation (4.2) factorizes 
into two parts: 

( A r 2 - a , 2 ) ( F - a 2
2 ) = 0. (4.5) 

This corresponds to both the dilatational and the transverse 
elastic waves. However, for the rotating medium (0^0) , the 
roots of (4.2) correspond to the dilatational and transverse 
elastic waves modified by rotation. 

If, on the other hand, the primary magnetic field has a 
nonzero transverse component (RH ^ 0, RL = 0), then the 
dispersion relation (4.1) simplifies into 

Q2 

/ t 4 ( l+^ / / ) - ' t 2 [ (T 1
2 + ( l + ^ / / ) a 2

2 

fi2 

+ {\-RH) — 
c2 

2 \2 

+ 
(co2-02) 

c,2c2
2 = 0. (4.6) 

For the case of weak electromagnetic field (0 < RH < < 1), 
the quadratic in k2 has either two positive roots or two 
complex roots. This means that the magnetoelastic waves are 
dispersive, but may or may not be damped depending on the 
rotation and the applied magnetic field. 

Again, in the nonrotating case, the dispersion equation has 
the form 

(k2-o2
2)[(l+RH)k2-al

2]=0. (4.7) 

This corresponds to a transverse elastic wave propagating 
with the phase velocity c2 independent of the electromagnetic 
field, and a longitudinal magnetoelastic wave traveling with 
the phase speed cx VT+ RH. Since RH>0, this phase speed 
increases with increasing RH which implies an increase in 
solidity of the elastic material. 

If the applied magnetic field has a longitudinal component 
only, then RH = 0 and RL ^ 0. The dispersion equation (4.1) 
in this case reduces to 

k\l +RL) ~k2 L 2 + - ^ + (1 +RL)a,2 

L c2 

(co2-Q2)2 Q2 

+ (l-RL)-j + r 2r 2 
C\ <-2 

= 0. (4.8) 

For weak electromagnetic field, 0 < RL < < 1 and so con­
clusion similar to that of the foregoing case, 0 < RH < < 1, 
can be drawn. 

In the nonrotating situation, the equation (4.8) becomes 

(k2-ai
2)l(\+RL)k2-a2

2)=0. (4.9) 

This leads to the longitudinal elastic wave propagating with 
the phase velocity cx and to the transverse magnetoelastic 
wave traveling with the phase speed c2 Vl +RL • 

If the initially applied magnetic field has both longitudinal 
and transverse components (RH ^ 0 and RL ^ 0), then the 
longitudinal and the transverse waves are coupled. These 
waves are modified by the electromagnetic field and rotation. 
Since the roots kx

 2 and k2
2 of (4.1) are complex, the waves are 

dispersive and damped. The dispersion equation (4.1) for the 
nonrotating case has the form 

k\\+RH+RL)-k2{ai
2(\+RL) 

+ a2
2(\+RH)]+kl

2k2
2=0, (4.10) 

with the roots 

2kl2
2=(l+RL+RHy1[o,2(l+RL) 

+ o2
2(l+RH)]±m, (4Ala,b) 

where 

D=[al
2(l+RL)-a2

2(l+Rff)}
2 

+ 4ai
2o2

2(.RL+RH)>0. 

Since o\2(\+RL) + a2
2{l+RH) > V5, the roots kx and k2 

are real, and therefore, the longitudinal and the transverse 
waves are dispersive, but undamped. This shows a striking 
contrast between the nature of the waves in the rotating and 
the nonrotating media. 

5 Finite Conductivity 

The dispersion relation for the case of finite conductivity is 
given by (3.27) and corresponds to the coupled waves. In the 
absence of the magnetic field (RL = RH = 0), the equation 
(3.27) assumes the form 

12 \ / r>2 

a+^2)[(,2-ffl
2-iL)(,2-,2-^) 

4<o2Q2 

c i 2 c 2
2 ] -= 0. (5.1) 

The first factor of (5.1) represents quasi-static oscillations of 
the electromagnetic field, but it is not coupled with the 
displacement field. The second factor leads to coupled 
longitudinal and transverse waves with the phase velocities 
modified by the rotation of the medium. Since the roots of 
(5.1) corresponding to the second factor are real, the waves 
are dispersive and undamped. 

In the nonrotating case, equation (3.27) reduces to 

(\+ivk2){k2-ai
2)(k2-a2

2) 

+ k2RL{k2-ai
2) + k2RH(k2-a2

2) = 0. (5.2) 

This corresponds to three coupled waves that are dispersive 
and damped in nature. 

If the applied magnetic field has a transverse component 
{RH *• 0 and RL = 0 ) , then (5.2) takes the form 

(k2 -o2
2)[vk* -k2{vax

2 + i(l+RH)}+iol
2]=0. (5.3) 

The first factor corresponds to the elastic transverse wave, 
while the second factor leads to the coupled waves with an 
interaction between the longitudinal displacement field and 
the induced magnetic field. Thus the coupled waves are 
dispersive and damped. 

To discuss the waves with small frequency, we replace v 
with vH/w in the second factor of (5.3) to obtain 
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vHk4-k2\w2'~+iu(.l+RH)\+^T=0, (5.4) 

and set k2 = i au> + 0(co2) where a is an unknown constant, 
and k = 0 when co = 0. 

To determine a, we next substitute the value of k2 into (5.4) 
and ignore the terms of 0(co3). This leads to the value of a -
(\+RH)VH~\ 

I 

(\+RH)neou>^ H- -j (1 + 0, (5.5) 

and the phase velocity cpl as 

= l ( i + * „ > a j • (5-6) 

This implies that the phase speed varies as co'/! and /xe~'/2 so 
that cpX becomes very small in a material with high magnetic 
permeability. For a weak electromagnetic field, the phase 
speed becomes 

<«-(£)'{'-{*•)• 
On the other hand, if the applied magnetic field has only a 

longitudinal component (RL ^ 0, RH = 0) then the 
dispersion equation is 

(k2-oi
2)[vkA-k2[vo1

l+i(\+RL)]+io2
2]=0, (5.8) 

leading to pure longitudinal elastic wave, and the interaction 
of the transverse displacement field and the induced magnetic 
field produces coupled waves. The phase velocity of the 
coupled waves is 

for the case of a low frequency and weak electromagnetic 
field. 

Finally, in the rotating medium with finite electrical 
conductivity, the dispersion equation (3.27) can be written as 

ivHk6 +k*\(\+RL+RH)u-iVH(w2+Q.2)(-^1 + - \ ) 

+ iRLn(f)-iRHn(^)] 

+ - ^ (co4 + Q4-2to2Q2) 
Ci C2 

^-(co2 + Q2)(co + /Q--i 

2cofl RL ( /co B2 

iR 

/iuB2 \ 2ai RfjQ 
2 - ( / w f l , - B 2 Q ) 

B2c2 

r 2r 2 

\ (co2 + fi2)(/52co + B,Q)l 

(co4-2co2Q2+Q4) = 0. (5.10) 

This shows the interaction between the displacement and the 
induced magnetic fields, and corresponds to coupled 
magnetoelastic waves which are dispersive and damped. 

For the case of small frequency, we set k2 = ;7JCO + 0(CO2) 
where b is a constant to be determined by replacing k1 with 
ibu in (5.10). This leads to the values for b and k as 

& = — and k = 0+i)(~)2 , (5.110,6) 
v„ \ 2 / 

:y is 

(5.12) 

so that the phase velocity is 

2co \ 2 

•"He 

This means that the phase speed is independent of both 
rotation and the initial magnetic field, and becomes very 
small for high magnetic permeability. It is interesting to note 
cpr < cp1 where r = 1 , 2 . 

6 Conclusions 

A general dispersion equation for the magnetoelastic plane 
waves is derived to explain the important effects of rotation 
and external magnetic field on the waves. Special attention 
has been given to special cases of the dispersion equation in 
various problems of physical interest. The phase velocities of 
the waves are obtained in explicit form with physical 
significance. The nature of the waves is investigated in Sec­
tions 4-6. 

When the applied magnetic field has longitudinal and 
transverse components, the coupled waves are found to be 
dispersive and damped in an infinitely conductive medium. 
This is in contrast to the result in a nonrotating medium where 
the waves are coupled, dispersive, and undamped. For the 
case of finite conductivity, the waves are dispersive and 
undamped in the absence of a magnetic field. At low 
frequency co, the phase velocity of the waves varies as a>'/! for 
finite conductivity, and is independent of the external 
magnetic field and rotation; whereas in the nonrotating 
medium with low frequency (when the applied magnetic field 
has either longitudinal or transverse components) the phase 
speed of the waves is less than that in the rotating medium, 
and is seen to depend on the applied magnetic field. Also, in 
rotating and nonrotating cases, the wave velocity becomes 
very small for finitely conducting medium with a very high 
magnetic permeability. 

Finally, it has also been shown that results of the present 
analysis are in excellent agreement with those obtained by 
several authors [1, 7-9] in a nonrotating conducting or non­
conducting elastic medium. 
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Use of Coefficients of Influence to 
Solve Some Inverse Problems in 
Plane Elasticity 
The principle of superposition of the order of isochromatic fringes and the concept 
of the coefficient of influence of the order of those fringes are introduced. The 
method is proposed to solve some inverse problems in elasticity and is applied to the 
determination of the forces that act at the points of contact between disks loaded in 
their plane. For this purpose Michel! equations are used to determine the stresses at 
selected points of a disk and the coefficients of influence are computed numerically. 
The method can be generalized to other plane bodies loaded in the plane and if no 
theoretical solution is available the problem could be solved completely ex­
perimentally. The application presented in the paper is related to a study of discrete, 
or granular, media. 

Introduction 

In the mechanics of soils and rocks the analyzed media are 
frequently considered as discontinuous, or granular. It is 
possible to use then physical models made of spheres, or of 
disks loaded in the plane, to better understand the distribution 
of loads between grains. The models can be observed 
photoelastically. For the analysis of such a system a 
numerical method is proposed here which simplifies in many 
cases the determination of the forces applied at the points of 
contact between disks. 

R. Marsal [1, 2], J. Alberro [3] and M. Mendoza [4] have 
contributed several theoretical and experimental papers to the 
study of this subject. An attempt is made in these in­
vestigations at the determination of the distribution of stresses 
in each of the disks of a system of loaded disks. This 
knowledge would permit the determination of the loads 
applied to each disk at the points of contact with the other 
disks. An independent contribution to the three-dimensional 
simulation of the granular medium using spheres can be 
found in [5]. 

The isochromatics corresponding to a system of disks are 
shown in Fig. 1. It can be seen that the distribution of stresses 
at the contact between disks is complicated. It can also be seen 
that since the size and the order of the disks are more or less 
arbitrary, the position of the points of contact between disks 
also is arbitrary. It is also difficult to know beforehand the 
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number of points of contact in each disk. If it were possible to 
determine the intensity and the direction of each of the loads 
acting on each disk, the analysis of the system of the disks that 
simulates the medium would be feasible. 

It is possible to determine the loads applied to the disks 
from photoelastic isochromatics using Hertz' equations. This 
would require the measurement of the width of the surface of 
contact, or of the position of the maximum shear stress, or of 
the value of this stress, etc. This method, however, has 
limitations and one of them is requirement of a high 
resolution in the photographic recordings. Frequently, the 
method described here will give more precise results. It is 
planned to publish the results obtained using Hertz' approach 
in another paper. 

The method to be presented requires: (1) the knowledge of 
the maximum shear stress Tmax at points in the field of a 
typical disk when unit loads are applied at arbitrary points 
along its border. This relation between the stress and the load 
is what will be called a coefficient of influence, and in the 
specific case of the circular disk, it is known from theory from 
Michell's equations [6]. In the general case of bodies of ar­
bitrary geometry this relation could be obtained ex­
perimentally if no theoretical solution is available. (2) A 
photoelastic test of the system of disks and the determination 
°f rma* a t a sufficient number of points in the field of each 
disk to compute the intensity and the direction of the desired 
loads. 

For convenience the expression, isochromatic fringes, or 
more simply isochromatics, will be used to identify the loci of 
points that have the same value of Tmax, whether these loci 
have been determined photoelastically or mathematically. 
Isoclinics are those fringes that give the direction of the planes 
on which the principal stresses act. The word isobar will be 
used to identify the loci of points that have the same value of 
normal stress, a. 
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Fig. 1 Simulation of a loaded granular medium using a system of
contacting disks

1 The Principle of Superposition of Isochromatics and
the Coefficient of Influence

1.1 Superposition of Isochromatics. The basic law of
photoelasticity can be expressed as [7]:

This means that at every point the principal planes should
be the same for the stresses produced by all the loads that will
be superimposed. Then the principle of superposition of
isochromatics can be expressed as follows: If the applied loads
are smaller than the ones that may produce plastic strains and

(1-5)
n

nj= I;nu
)=1

Fig. 2 Disk loaded on its boundary by four concentrated forces. The
forces are split in six pairs following the direction of the chords,

provided that the planes on which the maximum shear stresses
act are the same for all the loads, or approximately the same,
the fringe order at a point of the model is given by the sum of
the fringe orders corresponding to each of the applied loads,
i.e., the fringe order in a generic point is

where nj = fringe order at point i; nu = fringe order at point
i, produced by the load p) only.

It will be seen later that although it is not common that
maximum shear stresses act on the same planes when they are
associated with different boundary conditions, in the par­
ticular case that will be studied, this does occur and it also

(1-1)

(1-2)

(1-3)

(1-4)

loads, the

f
Tmax = t n

Eax) - Eay)
Tmax = ETmax) = 2

ax·-ay . I (2TXy .)2
= 1 1...)1+ 1

2 aX) - ay)

When subjected to several simultaneous
maximum shear stress is

Txyl=Txy2='" =T.xyn=O

where t is the thickness of the model, n the isochromatic
order, and f the fringe value expressed in terms of stresses.
The fringe value is a constant depending on the material of the
model and independent of the length of the path of light in the
model. The units are psi-in.-fringe or lbs/in.-fringe or kg/cm
fringe, or in the S.l. system N/m-fringe.

In these equations there is a linear relationship between the
isochromatic orders and the maximum shear stresses. But, in
general, the maximum shear stresses at a point and the loads
applied to the boundaries are not related in a linear manner
because for a load p)

provided':
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occurs that the problem gets further simplified because one of 
the principal stresses is constant. 

1.2 Coefficient of Influence. The fringe order gtj at point i 
when the load Fj = 1 will be called the coefficient of influence 
of the isochromatics. Equation (1-8) can then be written: 

n>= HsijFj (1-6) 
j=i 

The coefficient is related to the photoelastic properties of the 
model and the position of point / with respect to the load. 
Using the concept of coefficient of influence of isochromatics 
the determination of the loads applied to the border in the 
plane problem is equivalent to the solution of the integral 
linear equation: 

«,- = \w{Q)g(i,Q)dx(Q) (1-7) 

where g(i,Q) is the fringe order at point / produced by a unit 
load applied at the position Q at the border, w(Q) is the load 
applied at the border, and «, is the fringe order at point /. 

The previous considerations will be applied to the case of 
the disk shown in Fig. 2. Each one of the forces applied at the 
border will be split in the directions of the chords that connect 
the points of application of the loads. The disk is therefore 
loaded by pairs of forces applied at the ends of the chords. In 
Fig. 2 the disk has four points of contact. The loads are split 
in six pairs of forces. Then the isochromatic order at point (in 
the disk is: 

(1-8) 

In general if the disk has r points of contact the applied 
forces are split in S pairs of forces 

S= ^ (1-9) 

The general equation therefore would be 

s 

m=LsuFj (M°) 
y'=i 

Equations represented by (1-10) are linear, n, is determined by 
the experiment, gy is computed theoretically as will be shown 
in what follows. The restrictions already mentioned indicate 
that it is necessary to select points / so that rmax act ap­
proximately on the same plane for all the loads considered. 

2 Coefficient of Influence of the Isochromatics in the 
Disk Loaded at the Ends of a Chord 

To determine the stresses taking place in a disk subjected to 
two opposite loads, in the direction of a chord (Fig. 3), it is 
possible to use Michell's [6] equation which can be obtained 
from those corresponding to the problem of the semi-infinite 
plate subjected to a concentrated load (Fig. 4). The stresses 
are given by: 

IF cos 0, 

•Kt 

IF cos 0, 

•Kt r2 

+A; = 0; 
•n«i 

where 

IF 

~nD~t 
sin(0,+02) 

(2-1) 

(2-2) 

It is important to observe that the direction of the chord is a 
principal direction of stress. In local polar coordinates when r 
is the distance from the point considered to the point of 
contact of the force on the disk and 8 is the angle between the 
radius going through the point and the direction of the force, 
Michell's equation can be expressed as: 

, = ff!=0; ar = a2 = 
IF cos 0 

•Kt 

i = r 1 2 =0; "\ -oi F cos 6 

•Kt r 
(2-3) 

Fig. 3 Polar coordinates of a point on the boundary of a disk 

This means: (1) that the isostatics are radial lines and 
circumferences, as shown in Fig. 4, and (2) that the normal 
stress, o-0, which has the direction of the tangent to the cir­
cumference and is u,, is zero everywhere. 

(ANGLE i MUST BE MEASURED FROM 

THE DIRECTION OF THE FORCE) 

•• <r = 0 

2 F col 6 

a. — <r, 

Z 

Fig. 4 Semi-infinite plate to a concentrated force on its boundary. The 
isotatics are circles concentric for any direction of the force. 
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ISOCHROMATICS AND ISOBARS 
ar (FOR LOAD FQ) 
TB=<Tt-0 

ISOCHROMATICS AND ISOBARS 
a (FOR LOAn F3Q) 
cr. = <r, = 0 

Fig. 5 Semi-infinite plate subjected to a concentrated force on its 
boundary, (a) Perpendicular to the boundary; (b) making 30 deg with a 
normal to the boundary. Isochromatics and isobars a, are the same in 
the two cases, when referred to the direction of the force as axis. 

ISOCHROMATICS AND ISOBARS or 
(MiniTION OF LOADS FQ AND F,Q) 

Fig. 6 Semi-infinite plate subjected to a concentrated resultant force 
on its boundary. The stress o2 acts on the same plane for the two 
components. They can be added algebraically. 

Isochromatics for the case of the load perpendicular to the 
tangent at the point of contact are shown in Fig. 5. All are 
circumferences tangent at the point of contact, with centers on 
the line of action of the load. Isochromatics corresponding to 
the case of the inclined load are also shown in Fig. 5. They are 
represented by the same equations (2-3) provided the direction 
of the force is taken as origin of the angles. Therefore (1) the 
isostatics in Fig. 4 are applicable to forces of any direction; (2) 
the isochromatics for forces of any direction are also isobars 
a2; and (3) it is possible to add arithmetically the stresses 
corresponding to forces of different directions applied to the 
same point of the border. This is shown graphically in Fig. 6. 

This idea can be applied to the case of the disk. It is con­
venient then to express equation (2-1) using x coordinates and 
Fig. 3. 

2F / cos0, . , 
ax=- — ( sm2»! + 

•Kt \ r. 

COS02 . -, „ \ 
0! + -sin2 02 +A 

r2 ' 
IF ( COS0, , „ COS02 -, „ \ , 

<7V = I -COS 2 0 , + -COS 2 0 2 +A 

) 

COS02 

2F ( cos20, sin 0! cos2 02 sin i 
( 

(2-4) 
7rf V /", r2 

From this equation it is possible to obtain the expression 
giving Tmax at any point: 

. F \ 2 /cos20, cos202 
7-2 
'max 

( F\ (cos 
+ r2 

' 2 

2cos0, cos02cos2(0, + 02)s 

r\ r2 

(2-5) 

Replacing rmax from equation (1-1) into equation (2-5), and 
if F = 1 then the coefficient of influence at the point /' is: 

rf r\ 

~)2 2COS0J COS02 COS 2(0j + 0 2 ) 

''i r2 

(2-6) 

Calling D the diameter of the disk, d the length of the chord, 
corresponding to the force j and: 

d D 
1= = ; m = — 

D r. 

and recalling that 

/-! cos0! +r2 cos02 =d; rx sin0j -rt sin02 =0 

(2-7) 

(2-8) 

the following equation is obtained to compute the coefficient 
of influence: 

^Dfk" 
(2-9) 

where 

2 / m - l 

m2l 
kiJ l+(ml)2 

for 0 1 = 0 2 = O (2-10) 

for 0,= 90 deg (2-11) 

= WCOS0 | A 1 + 
/ sin202 

\ sin20! 

for O<0,<9Odeg 

\ 2 / sin202 \ 
) + 2 ( s - i n 2 0 ; ) C O S 2 ( e i + ^ 

_, / sin 0, \ 

\lm — cos0, / 

(2-12) 

(2-13) 
^ lm — cos0! / 

It can be seen that g,y is a function of the constants D a n d / 
of the model and of the local coordinates (/, m, 6i). When 
parameters /, m, 0] are known the value of ku can be deter­
mined using tables like Table 1 prepared for m = 10. 
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Table 1 Coefficients of influence &,-,-, for points located at m = 10, and for different angles dx 

\ ' 
0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 

0.40 

13.333 
13.221 
12.889 
12.353 
11.637 
10.771 
9.786 
8.717 
7.595 
6.448 
5.300 
4.171 
3.077 
2.028 
1.032 
0.094 
0.782 
1.598 
2.353 

0.55 

12.222 
12.140 
11.897 
11.500 
10.962 
10.298 
9.527 
8.669 
7.743 
6.770 
5.767 
4.752 
3.738 
2.738 
1.763 
0.820 
0.084 
0.945 
1.760 

0.60 

12.000 
11.923 
11.696 
11.324 
10.818 
10.193 
. 9.462 

8.645 
7.760 
6.823 
5.853 
4.864 
3.871 
2.886 
1.919 
0.979 
0.072 
0.796 
1.622 

0.70 

11.667 
11.598 
11.393 
11.056 
10.597 
10.026 
9.356 
8.600 
7.775 
6.895 
5.975 
5.029 
4.070 
3.110 
2.159 
1.225 
0.317 
0.560 
1.400 

0.80 

11.429 
11.365 
11.175 
10.863 
10.435 
9.902 
9.273 
8.561 
7.779 
6.939 
6.057 
5.143 
4.211 
3.271 
2.333 
1.407 
0.500 
0.381 
1.231 

0.85 

11.333 
11.272 
11.087 
10.784 
10.369 
9.851 
9.238 
8.543 
7.778 
6.956 
6.088 
5.188 
4.266 
3.335 
2.404 
1.481 
0.576 
0.307 
1.160 

1.00 

11.111 
. 11.054 

10.883 
10.601 
10.214 
9.729 
9.154 
8.499 
7.774 
6.990 
6.158 
5.290 
4.396 
3.486 
2.570 
1.657 
0.755 
0.129 

-
/ = d/D; m = D/r, 

Fig. 7 Every chord is subjected to two opposite forces applied at its 
ends, in the direction of the chord. The isochromatic orders have to be 
determined at as many pairs of points as there are chords. 

3 Examples 

To determine the value of S components of loads applied to 
a disk all that is necessary according to equation (1-9) is to 
select 5 points in the field of isochromatics, at which the 
principal directions do not change or change little with the 
loads to be considered, and to determine for each one cf those 
points the coordinate and the fringe order. To make the 
computation easier it is convenient to select the points on the 
lines of application of the forces at a distance D/10 from the 
points of contact (m = 10). , 

The following rules make the interpretation easier: (1) on 
each chord only a pair of opposite forces act (Fig. 7) and their 
direction is the direction of the chord; (2) on each chord two 
points are selected to which the same number is assigned and 
this number is the same as the one of the component of the 
force which acts in the direction of the chord. When the fringe 
order is not sufficiently high and it is possible to observe the 
model in the polariscope it is possible to increase the precision 
using a method of compensation. The coefficient of influence 
at a point is the result of the addition of the influence of a 
particular force on the two points that have the same number. 

The fringe value of the material used can be determined 
from a disk diametrically loaded. At the center of a disk 

/ = -
4F 

•wD nc 

(3-1) 

Homalite 1 0 0 , " / where nc is the isochromatic order. Using 
= 7.82 kg/cm-fringe. 

If the examples that follow the applied loads are known by 
statics which permits a verification of the computation and an 

1 =8.75 cm d . 0 
1
 " ~ D " > m - ~ 

D = 9.8 cm 

Fig. 8 Disk loaded at three points on the boundary at the same 
distance from each other 

estimate of the precision. Different details of the procedure 
will be used in each of the examples to be shown. 

3.1 Disk With Three Symmetric Points of Contact. 

3.1.1 Making an Equilateral Triangle (and Using 
Birefringence Compensation). The length of the three chords 
are the same (Fig. 8). Following equation (1-10), the regular 
equations are 

" l =guF\ +§12^2+^13^3 

"2=^21^1+^22^2 +#23^3 

ni=g3,Fl+gnF2+gi3F2 (3-2) 

and from equation (2-9): k^ = gu irDf. 

Equation (3-2) can be written as a matrix: 

(*) [F] =7rDf{n] (3-3) 

The forces are then: 
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Table 2 Computation of the loads applied to a disk with three symmetric points of contact (neglecting the far­
away load)

Experiment
(Tardy's

Compensation) Computation Relative Error

No. of Load
Order P(kg) nl n2 n3 F I F2 F 3 P ca (P- Pea) / P(percent)

2 28.85 1.85 2.08 1.14 15.16 18.18 5.84 28.87 + 0.00
3 43.35 2.96 2.75 2.07 24.86 22.10 13.17 40.69 - 6.14
4 57.85 3.76 4.15 2.37 30.86 35.98 12.61 57.88 + 0.00
5 72.35 4.63 5.05 3.13 37.73 43.25 8.04 70.13 - 3.07
6 86.84 6.00 6.05 3.99 49.90 50.56 23.52 87.00 + 0.00

A

SELECTED POINTS

( ): ISOCHROMATIC ORDERS AT
THE SELECTED POINTS

8 L.---+
3

...,.(...,.1.3--5:":')-------.,3:-------3-(,....1.-2~5),..-...J........l C

Fig. 10 Sketch to determine the forces applied to a disk with three
points of contact (isosceles triangle distribution)

(JI = 60 deg k 13 = 1 X 4.283

(3-4) and for points 2 and 3:{F] = 7I"Dj{k] -I [n]

Fig. 9 Isochromatics in a disk subjected to one vertical load and two
loads inclined at 30 deg

k 21 = 4.283 k 23 = 4.283 k 22 = 22.61

k 31 =4.283 k 32 =4.283 k 33 =22.61

Therefore, the matrix for coefficient of influence is:

Replacing (k] -J in (3-4):

l
0.04707 -0.007496

- 0.007496 0.04707

-0.007496 -0.007496

When the influence of the forces located far away from the
point considered is neglected, for instance the influence of
force F 3 on the points A I and A 2 and of the force F I on the
points B 2 and B 3 , etc., then the principal planes at the points
under consideration are the same for each of the loads con­
sidered.

For the disk with three symmetric points of contact ac­
cording to equation (2-7) II = 12 = 13 = 0.866D/D = 0.866.
Coefficients kij are obtained from Table I. Every coefficient
depends on three parameters m, I, (J. Parameter m has been
fixed and is equal to 10. It is only necessary then to consider I
and (J

Point 1: Component I: II = 0.866

(JI =0 k ll =2xl1.305

Component 2: 12 = 0.866

(JI = 60 deg k 12 = 1 x 4.283

Component 3: 13 = 0.866

l
22.61

[k) = 4.283

4.283

The inverse of {k] is:

{k] -I

4.283

22.61

4.283

4.283 J
4.283

22.61

-0.007496 j
-0.007496

0.04707
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Fig.11 Isochromatics in a disk subjected to live loads

nj =4.05 +2.65 =6.70
n2 =4.00+2.75 =6.75
n3 = 1.35 + 1.25 =2.60

and replacing these data in equation (3-4)

[ OM707
- 0.007496 -0.007496

J

(F) =7rDf -0.007496 0.04707 -0.007496

-0.007496 -0.007496 -0.04707

F1
(3-5)

[

22.44 6.977

6.977 2.244

2.949 2.949

2.634 J{FI 1 {6.701
2.634 F 2 =7rDf 6.75

2.332 F 3 2.60

Since the matrix (k] depends only on the coordinates of the
point of contact equation (3-5) can be used for any disk with
three symmetric points of contact.

The results are shown in Table 2 where P is the vertical load
applied at point A (Fig. 8) and Pea is the load computed from
{n I which was obtained for several load levels using Tardy's
compensation.

For a disk with D = 9.8 cm and f = 7.82 the solution for
[F] and Pea is the following

Giving to the parameters the values: D = 6.0 cm.! = 7.82

1 {0.2220 1
=7rDf 0.2252

0.05521

{
FI 1{32'721
F2 = 33.20 kg

F3 8.14

The results are:

(3-6)-1.80 J{n l

J
-1.80 n2

11.33 n3

-1.80

- 11.33

-1.80

11.33

-1.80

-1.80

and

Pea = (F I +F2 ) cos 30 deg

3.1.2. Making Isosceles Triangle (and Interpolating
Isochromatics). In this case the values of n have been ob­
tained by interpolation between the fringes of a photograph
(Fig. 9) and are shown in (Fig. 10). The parameters are D =

6.0 cm, II = 12 = 0.924, and 13 = 0.707. Using Table 1 it is
possible to obtain the elements of the matrix {k J :

at point 1: k ll =2x 11.22; k 12 =6.977; k!3 =2.634
at point 2: k 2! =k j2 =6.977; k 22 =k ll =22.44; k 23 =2.634
at point 3: k 31 = 2.949; k 32 = 2.949; k 33 = 23.32

Using the photographs and interpolating between
isochromatics it is found that

The computed vertical load at the point of contact A is

Pea = (F I + F2 ) cos 22.5 deg = 60.90 kg

The applied load was P = 63.24 kg, then P - Pea / P = - 3.79
percent. Then the normal and tangential forces at each point
of contact are:

Point of contact Normal load Tangential load
(kg) (kg)

A 60.90 0.18
B 35.98 6.77
C 36.43 6.95

3.2 Disk With Five Points of Contllct (One Axis of
Symmetry). The distribution of the isochromatics is ap-
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proximately symmetric and the forces to be determined are 
only those identified in Fig. 11. The applied loads in this case 
are not known and therefore no verification is possible. 

The geometric parameters are: 

2£>/2sub36deg 
/, 

D 

2£>/2sin72deg _ 

= 0.588; 

=0.951 

/3 =0.951; l4 =0.951; l5 =0.588; /6 =0.588 

(a) Some of the ky will be computed using equation (2-6) 
and (2-9) because the values given in the table are good only 
for 02 smaller than 90 deg. For k]5 = ksl = k56 = k65 the 
parameters are: / = 0.6; m = 1.6; 0, = 8.74 deg and d2 = 
1.08 deg. The results are: ki5 = k5l = k56 = k65 = 5.894. 
The other coefficients of influence can be obtained from 
Table 1. 

Particular Cases of Application of Michell's Equations 

Coefficients of influence at 
particular points k{ 

Formula for the loads n, 
order of isochromatic 

* , i = * B = 1.92 

A:,. =4.0 

P 
*Df 

i = A,B,C 

"i 

4D 

~d 

l4ld r-
kc = Vl + cos 46» 

2V2cos6*fl . — 
kR = _ V1 + cos 4 6B Vl + 12<72"/D"2 

2(7 a 
tan6C= — , tan dB = —-

d d 

P = 
TtDf 

~»i 

i=A,B,C 

AD 2V2cos^B .-
kA=kB= — + - p = - V l + c o s 4 0a 

d Vl + 12a2/£>2 

4\f2d .-
kc = V1 + cos 4 d,. 

D 

tan 6C = 

tan 6B = 

2a 

~d 

a 

wDf 

i = A,B,C 
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k = 

1 2 3 4 5 6 

26.10 8.362 8.362 2.205 5.894 0 

8.468 22.37 0 8.362 8.468 1.419 

8.468 0 11.195 8.362 1.419 0 

1.419 8.362 8.362 22.37 1.419 8.468 

5.894 8.362 2.205 10.567 24.00 5.894 

0 2.205 0 8.362 5.894 12.05 

(b) The matrix (n} can be obtained from the isochromatics 
and the sketch shown in Fig. 11. 

"(7.0 + 0.8+1.0 + 6.0) 

(5.7 + 0.9 + 3.15 + 1.10) 

(8.5 + 9.5) 

(9.0 + 3.0 + 4.65 + 9.0) 

(7.75 + 5.7 + 6.0 + 2.65) 

U2.25 + 2.0) 

' 7.4 

5.425 

9.00 

8.64 

11.05 

2.125 

(c) Using the equation giving the forces [X|(.F1 = irDf{n] 
the six components are: 

-0.129196 

0.150270 

0.845580 

0.016028 

0.365688 

-0.039747 

= W 

(d) Therefore the normal and tangential forces are: 

Point of contact Normal loads Tangential loads 

A 
B 
B1 

C 
C 

4 Particular Cases 

The equations of Michell can be expressed in simple form 
for certain special cases of distribution of loads. It is not 

0.134 ixDf 
0.957 %Df 
0.957 irDf 
0.348 %Df 
0.348 irDf 

~ 0 
-0.143 ttDf 

0.143 irDf 
0.370 irDf 

-0.370 irDf 

necessary then to follow the procedure explained in the 
foregoing. Loads can be determined directly from the fringe 
order at a selected point of the disk. Some of these cases and 
the corresponding equations have been tabulated. 

The general equation (2-6), where /•) = r2 and 6X = 62 

becomes: 

k = \/2m2cos2e Vl + cos 4 0 

and the applied load is given by: 

P= —-— n 

(4-1) 

(4-2) 

5 Conclusion 

A method has been presented that permits the deter­
mination of any system of forces applied to the boundary of a 
disk, when the isochromatics are known at some selected 
points of the field. The method is approximate in the sense 
that it neglects the influence of forces applied to points 
located far away from the points under consideration. 
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A Free Boundary Value Problem in 
p.vniaggio Plate Theory 

Istituto di Scienza delle Costruzioni 
dell' Universita di Pisa, In this paper the equilibrium configuration of a thin rectangular plate, supported on 

56100 Pisa, Italy an elastic foundation that reacts in compression only, is studied. It is assumed that 
the foundation is described by the Winkler model in the contact region. The plate is 
supposed to be weightless and subjected to a concentrated load in its midpoint. The 
shape of the free boundary, where the plate loses contact with the foundation, is 
determined. 

1 Introduction 

In 1884 Hertz [1] gave a closed solution to the problem of a 
infinite thin elastic plate resting on an elastic foundation, 
subjected to a concentrated load. Hertz himself realized that 
his assumption that the surface of the plate experienced a 
reaction proportional to the displacement was in contrast with 
the effective behavior of the foundation, which reacts only 
with compressive pressures where the plate penetrates into the 
foundation. Hertz's solution is more appropriate to describe 
the deformation of an infinite plate floating inside of (or on 
the surface of) a fluid, in which case(s) the fluid exerts on the 
plate an increment in hydrostatic pressure proportional to the 
displacement of the plate (Foppl [2, § 20]). 

Weitsman [3] considered a version of Hertz's problem and 
was able to describe the realistic behavior of an infinite plate 
on an elastic foundation. If the plate is loaded by a con­
centrated force P, it is plausible to expect that it makes 
contact with the foundation only along a bounded circular 
region surrounding the point of application of P. Outside this 
region the plate remains above the elastic foundation and does 
not interact with it. The radius of the contact circle is not 
known in advance, but must be determined by suitable 
conditions of continuity of the solution across the cir­
cumference at which the plate leaves the elastic foundation. 

Once the radius of the contact circle is determined, the 
entire solution is also determined, both inside and outside of 
the contact circle. An unexpected property of the solution is 
that the radius of the contact circle does not depend on the 
magnitude of P, but only on the flexural rigidity of the plate 
and the elastic modulus of the foundation (Weitsman [3, §3]). 

In this paper I consider the case of a rectangular weightless 
plate supported on an elastic foundation that reacts in 
compression only. The plate is subjected to a point load P at 
its midpoint. Under the assumption that the sides of the 
rectangle are not too different, and both are sufficiently large 
with respect to the fourth root of the ratio between the 
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flexural rigidity of the plate and the stiffness of the foun­
dation, the contact region is very small compared to the size 
of the plate and the shape of the boundary of the contact 
region can be determined by first-order perturbation of 
Weitsman's solution. Also in this situation the shape and the 
extent of the free boundary is independent of P. 

2 Basic Equations 

Let us consider a plane rectangular plate supported on an 
elastic foundation and loaded transversally by a point load P 
at its center (Fig. 1). Let us denote the transversal 
displacement of the plate by w, the lengths of the sides ia>b) 
by la and 2b, and the flexural rigidity of the plate by D. The 
foundation is represented by the Winkler model; that is, it 
offers a reaction kw, where £ is a constant called modulus of 
the foundation. This reaction, however, is only compressive 
and occurs only where w is positive. Let us denote the 
unknown curve by L, separating the contact and the non-
contact regions of the plate. 

Let us introduce a system of plane polar coordinates (r,d) in 
such a way that the origin coincides with the point of ap­
plication of P (Fig. 2). The deflection w is thus a function of 
the type w=w(r,d), and this function must be periodic of 
period -re in 6, since the deflection is symmetric with respect the 
axes of the rectangle. 

Let us assume that, in terms of (r,8), L has the equation 
r = f(6), where r(6) is a continuously differentiable function, 
periodic with period 7r. 

"w 
Fig. 1 
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Fig. 2 

The function w(r,d) is the solution to the following pair of 
differential equations 

d2 Id 1 a2 \ /d2w 1 dw 1 d2w^ 

dr2 • + 
r dr + i r w s ' w I dw 

d2 1 d 1 
dr r or r* 

r dr 

E, 

dw 

+ • 
de2 + kw 

1 
+ - + -

1 d2w^ 

= 0 in 

a2 w d2 w 
r2 W/ \ 'dr2 ' r dr ' r2 dd2 , 

= 0 in £ , , (2.1) 

where E and Ex are, respectively, the contact and the non-
contact set. 

The boundary conditions associated with equations (2.1) 
are the following. At the origin, that is, for r = 0, w(0) and its 
derivative dw/dr(0) must remain bounded. Moreover, if TC is 
a circle of radius rt around the origin, we must have 

lim ( K„cfe+P=lim 
re-0 J ft re-0 J ,

( e « + a ^ )ds + P = 0, (2.2) 

where Q„ is the normal shear force, M„, is the twisting 
moment, and d/ds denotes the partial tangential derivative. 

The exterior boundary C of the rectangle is free. Therefore 
V„ and the normal bending moment M„ must vanish along it: 

V„=Qn + —M„,=0, M„=0 
ds 

on C. (2.3) 

In addition, certain conditions of continuity must be 
satisfied across the free boundary L. These conditions require 
that w, evaluated as limit from inside and outside L along the 
normal derivative to L, vanish: 

w ( Z , - ) = w ( L + ) = 0 , (2.4) 

and that normal derivatives, and the exterior characteristics 
M„, Vn be continuous: 

3V+) , (2.5) dw 

dn dn 

M„(L~)=M„(L+), (2.6) 

V„(L-) = V„(L+). (2.7) 

It is important to remark that the free boundary L, the 
locus separating E and Ex, is unknown. 

3 An Asymptotic Solution of the Problem 

In order to construct an explicit solution for the problem 
formulated in the foregoing, it is useful to introduce the 
notation (see Timoshenko and Woinowski-Krieger [4,§57]) 

h-t- < " • ' > 
and define the nondimensional quantities 

w r 
1 = U ' = P- (3.2) 

Let us introduce the ratios a = a/l, P = b/I and make the 
following assumptions: 

(1) The number X= {a — /3) / (a + /3) is small compared to 
unity and its square can be disregarded; 

(2) The number R0 = (a + P)/2 is much greater than 1 so 
that powers on the ratio l/R0 of order higher than 1 can be 
neglected. 

Assumption (1) means that the plate must not be too dif­
ferent from a square plate. Assumption (2), as it will be seen 
later, implies that the contact set E is small compared to R. It 
is not strictly necessary, but simplifies subsequent 
calculations. 

In the following, the boundary C of the rectangle will be 
approximated by the curve of equation 

R(d)=R0(l + \cos2d) 0<6<2ir, (3.3) 

while it is assumed that L has the equation 

P ( 0 ) = p o + Xpicos20 (3.4) 

where p0 and p\ are two unknown constants, which must be 
determined by the conditions of the problem. Equation (3.4) 
contains the implicit assumption that L is a simple closed 
continuously differentiable curve; the solution will confirm 
that this conjecture is correct. 

In terms of v and (p,6) equations (2.1) become 

/ d2 1 3 1 a2 1 a2 \ /d2v 1 dv 

p dp p2 dd2 / \dp2 p dp 

1 d2v\ 
+ ^ ^ - ) + y = 0 O<p<p(0 ) , p2 dd / 

'il i a 
+ - — + • 

P op 

d2 \ / a2 
v 1 dv 

+ - -r- + 
a2 

? ) -

(3.5) 

(3.6) 

p- dd2, 

1 d2W 

P* 

1 

P2 de2 J\dP
2 ' p dp 

p(d)<P<R(d). 

It is easy to find particular solutions to equations (3.5) and 
(3.6). For instance, the function 

v(p,6)=Ci berp + C2beip + C3 kerp + C4 keip 

+ X (D j ber2 P+D2 bei2 P+D3 ker2 p 

+DAkei2p)cos26, (3.7) 

where C l , . . . . , C4 a n d D l t , D4 are constants, and 
berp, . . . , keip, ber2p, . . . , kei2 p are the Kelvin functions 
of grade zero and two, is a solution to (3.5). Similarly, the 
function 

N o m e n c l a t u r e 

l//4 = 

a.b 
D 
k 
w 

K 

~D 

lengths of the sides of the plate 
flexural rigidity of the plate 
modulus of the foundation 
displacement in the direction 
normal 

ratio between the moduli 

of the 

v=w/l = dimensionless normal displacement 

r/l = p = dimensionless length 
a = a/l = dimensionless length 
/3 = b/l = dimensionless length 

••[a — /3)/(a + (3) = eccentricity of the plate 
R0 = (a4-/3)/2 = mean length of the dimensionless 

sides 
R = R(d) = equation of the boundary in polar 

coordinates 
p = p(6) = equation of the contact line in polar 

coordinates 
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v(p,6) =a + bp2 +clnp + dp2lnp + \(alp
1 + btp-2 

+ c,p4+of, )cos20, (3.8) 

, d, ax dx are constants, is a solution where a, . 
for (3.6). 

The arbitrary constants in (3.7) and (3.8) must be deter­
mined by using the boundary conditions and the continuity 
conditions across L. These conditions will be satisfied by 
neglecting the terms of order higher than one in X. 

From the Taylor expansion of the Kelvin function in the 
neighborhood of p = 0 ' , it is seen that kerp, ker2p, kei2p, and 
their first derivatives are unbounded as p ^ O . Therefore, the 
conditions that v and dv/dp remain bounded at the origin 
imply that 

Ci=D3=Dt=0. (3.9) 

Consider now a circle of radius pe a round the origin. Using 
again the Taylor expansions of the Kelvin functions, one has 
from (2.2) 

Neglecting terms of order higher than 1 in X yields 

M„^Mp+2MpeNlh 

8M„, 1 

(3.17) 

(3.18) 

lim f V„ds + P=\\m m ( Qr ds + P 

D f2* 8 (82v 1 dv 

dp V dp2 p dp 

1 d2v 
)Pde + P = 0, (3.10) 

where 

v{p,e)=-C4(-p
2lnp+^+ . . . ) 

correct to terms of higher order in p. 
Condit ion (3.10) thus yields 

D 
C427T + P = 0 , 

and, consequently, 

C 4 = -
pr 

2 x D ' 
(3.H) 

The boundedness conditions at p = 0 impose restrictions on 
the constants in (3.7). Other restrictions on the constants in 
(3.8) can be found from the boundary conditions on C. If the 
original boundary is replaced by the curve (3.3), the com­
ponents of the unit normal vector in the p and 8 directions are 

1 
(N„,Nt) = 

1 + 
4\2R 

cos220 

( l , — O c o s 2 f l ) , (3. 12) 

and, this expression, disregarding the terms of order higher 
than 1 in X, can be simplified to 

( iV p i jV 9 )= ( l , 2 \ cos20 ) . (3.13) 

On introducing the stress-resultants Mp, Me,Mpe, QP> Qe m 

the p,0-system it is possible to write 

M„ = MPN2
P +MeNl+ 2MpeNpNg, (3.14) 

Mnl = - (Mp-Me)NpNe+Mpe(N
2
p-N

2), (3.15) 

8M„, 
V„=QpNp + QeNe + 

8s 

= QPNp + QdN6 

dM„, 

dp 
•N,+ 

dM„, Nn 

86 p 

^Qp--(MP-Mg) ~~ +- —-%-. 
p at) p aO 

But, on using the constitutive relations 

** nld2v Z 1 dv 1 o2v XT 

M- = -D\.V+'(-fTf
 + 7W)]-

y " dpi dp2 +
 P dp +~pi W l ' 

where D is the flexural rigidity and v Poisson's ra t io , and 
neglecting again the terms of higher order in X, M„, and V„ 
become 

. ~ „ , 1 dv 1 82v \d2v (\ 

P dp p2 dd2 
p = Rt.O) 

(3.19) 

K„ = Al(^ d (82V 

. dp V dp2 

1 

P 

1 dv 

P dp 

(d2v 

i a / i d2v 

1 82v\ 

dp V p2 WJ 

1 dv \ 4XRn 1 dv \ 4XK0 

P dp ) p 
cos20 

+ ( ! - » ' ) • ( 
1 

pdp\p dd2 Jp=/i(9) 
(3.20) 

The introduction of (3.8) into (3.19) and (3.20) permits us 
to write the boundary conditions on C i n the following form: 

\lb- AT +d(2lnp + 3) + \(2al + 6 ~ + 12ct p
2) cosld 

L P1 p 4 / 

v / c \ v ( 2b, , \ 
+ - 2 6 p + - +d(2plnp + p) + - X 2« ,p r + 4 c , p 3 ) 

p \ p / p \ p J / 

4»X, 

P = « ( 8 ) 
= 0, 

86 p 
(3.16) 

Ar- ( a , p 2 + - \ + c , p 4 + r f , ) c o s 2 0 
p 2 V pl t 1 

4 - + x f - 1 6 - 4 + 3 2 c , p N ) c o s 2 6 / - 4 x f - 4 - | - + 2 C 1 p 
. p \ p> / ^ P 

- 2 - 4 ) c o s 2 e - -(\-v)(-2~ + 2 t f W — cos20 
p J / p \ p2 / p 

X / b, , d , \~ | 
- 4 ( 1 - y ) — ( a ^ S ^ + S C i P 2 - ^ = ° -

p V ' p 4 I K p 2 / J p = «(9) 

In these equations R(6) is given by (3.3). This expression 
for R (6) is substituted into the equations in the foregoing and 
the expansions in X up to the first order are considered. By 
comparing the coefficients for equal powers of X, a system of 
linear equations in b, c, d and au bu C\, dx is derived, from 
which: 

1 Cf Jahnke-Emde-Losch [5, IX, B3]. 

\ — V C 
b= , , d=0, 

l + v2R2
0 

(3.21), 
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I f c b, 3 + v2 d, 1 
a> = T ^ ( 3 - y ) ^ I + 3 ( 1 - " ) ^ + 2 - j JT2 - (3-21>2 

3 + v L Rfc Rl l-v RQJ 

\-v V c 6, d, 1 

The remaining constants are determined by the continuity 
conditions on the free boundary L. If the equations of L in the 
p,^-coordinates is (3.4) and X is much smaller than 1, the 
components of the exterior unit normal vector to L are 

1 
(np,ne) = 

, 4 X 2 • -1 H T p\s\me 

(\,IK—sin2B\ 

= (\,2K—s\xa6). 
\ On / 

= (1 ,2X—sin20) 
Po 

Then, up to the terms linear in X, one obtains 

dv 

o~n 

dv n0 dv 1 

V„ = -D 

_ dv 

dp "" ' p dd J P = P ( 9 ) dp ' 

\d2v (\ dv 1 d 2 u \ l 
M»—D[w+%Jp + 7w)\ 

d /32v l dv 1 d2v 

P = P(») 

1 3 z lA 

dp V dp2 + ~P d~P
 + p1" !&) P ( : 

1 / d2v 
( ! - » ) ( : 

i flu \ p, i r a / i a 2 o \ i 

\ 3 p 2 

P=P<« ) 

Once successively replacing (3.7) and (3.8) into these ex­
pressions, it is easily verified that the conditions of continuity 
across L are maintained when 

v(L~)= v(L+)=0, 

dv 

o~P 

(L-) 

d3V 

dv 

TP 

d2V 

dp2 

d2V 

dp3 dp 

(L+), 

3 (L + ) , 

or, in explicit form, 

PI2 

[Ctberp + C2beip keip + K(Dlber2p 
2irD 

+D2bei2p)cos26]p=pie) = 0 , 

[a + bp2+clnp + K(alp
2 + - y +cxp

A 

c ( b, 
= [2b-~r +K (2a i + 6 ^ - + 1 2 c , p 2 ) c o s 2 0 L -

p z \ p* < > ( « ) ' 

pp. 
C\ber'"+C2bei'" p- —-kei'" p + K(Dxberl p 

2irL) 

+ D2bei?p)Cos2d]p=l,w=\2^ + x ( - 2 4 ^ i 
<- p \ pJ 

+ 2 4 c , p ) l 

where p(0) is given by (3.4), and 6, a , , a n d c , by (3.21). 
The expansion of the terms of the equations in the 

foregoing up to the first order in X and the comparison of the 
coefficients of equal order in X, yields the following system 

PI2 

Ctberpo + C2beiPo - -—keip0=0, (3.22), 
ZTCL) 

a + bp2
0+clnp0=0, (3.22)2 

PI2 c 
Clber'p0+C2bei'p0--T—-kei'p0=2bp0+ —, (3.22)3 

2ir/J p 0 

PI2 c 
C{ber"p0 + C2bei"pQ- ~—~kei"p0=2b f , (3.22)4 

ZirJJ po 

PI2 c 
C, ber'" Po + C2bei'" Po - —-kei'" Po = 2 — , (3.22)5 

Po 

P / 2 \ 
P\{C\ber'po+C2bei'p0~ YJ)kei1 pv) + D\ber2Po 

2-KD 

PI2 

2^D' 

+ D2bei2p0=0 (3.22>6 

26p 0 p , + — P, + a , p 0 + 4 H-c^g + rf, = 0 , (3.22), 
Po Po 

Pl(Clber"p0+C2bei"p0 - Y~nkei"Po) +Diber2Po 

+D2beiip0 (3.22)8 

c b\ 
= 2bpx - ~jpt +2alPo -2— +4clP

3
0, 

Po Po 

/ PI2 \ 
P i [Ci ber'" p 0 + C2 bei'" p0 - j — kei'" p 0 ) 

+D1ber2"po+D2bei2"pQ 

c b 
= 2 — Pl+2al+6~+12clp

2
Q, 

Po Po 

(3.22), 

P, (clber"po+C2bei"'po - ^ke'WPo) 

[Ciber'p + C2bei'p-

+ dl)cos28]p=/>m=0, 

H 2 

2-KD 
kei' p + K(Dxber{p 

+D2bei2
,p)cos2d]^p(g)=[2bp+'+K(2alp-2-} 

+ 4CiP
3)cos26]p=pm, [Clber"p + C2bei"p 

PI2 

2-KD 
kei"p + K(Dlber2p+D2bei2p)cos26]/1=p *> = />(»> 

+ D,beri'pQ+D2beii'pQ (3.22)10 

= - 6 - ^ - p l - 2 4 - j + 2 4 C 1 p 0 . 
Po P 

These equations can be further simplified by substitution of 
(3.22)3 into (3.22)6 , (3.22)4 into (3.22)8 , (3.22)5 into (3.22)9 , 
and the use of relations between the Kelvin functions (see 
Jahnke-Emde-Losch [5,IX,B3]). The system thus becomes 

a + bpl+clnp0=0, (3.23), 

PI2 

Ctberpo + C2beip0 = ——keipQ, 
2-KD 

(3.23)2 
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PI1 c 
Ciber'po + Cibei'po = -—-kei'p0+2bp0 + —, (3.23)3 

2irD p 0 

PI2 

CybeipQ - C2berp0 = - -—--kerp0-4b, (3.23)4 

2irD 

PI2 

Clbei'p0-C2ber'pQ = --~—~-kef'pa, (3.23)5 
2itD 

pp. 
C, berp0 + C2beip0 = ——keip0, 

ZirU 

PI2 c 
C^er'po + C2bei'p0 = -—kei'p0 + —, 

2-KD p0 

Cibeip0-C2berp0 = 
pp 

2-KD 
keip0, 

c „ b 

Po Po 
2bp0p, + —pl+alpl+ — + c , p 0

4 + r f , = 0 , (3.23)6 

C, bei' p0-C2 ber' p0 = 
PI2 

2-KD 
ker'Po; 

(4.1)4 

P\ 
D1ber2p0+D2bei2p0= -2bplp0-c — , (3.23)7 

Po 

Dlber2
,p0+D2beiip0=2aip0-2^+4clp0\ (3.23)8 

Po 

Dlbei2p0-D2ber2p0= ( a 1 p„ + — r + 4c,pjj) 
Po v Po ' 

+ 4Pl(2bp0+-), (3.23)9 

^ Po' 

8 / 2 \ 
Z>, beiiPo -D2ber[p0 = 8a, p„ r 11 - - ? j * 

Po v Po' 

+ 1 6 r f ( l - - | ) c i . (3.23)10 

and 

Z), &?r2 p0+D2bei2p0--c 
Po 

Dlberip0+D2beiip0=2—- —2pQ-2-\ 
3 + vRl p 0

3 

D1bei2p0-D2ber2p0~ - 4 - ^ - 4 — L + 4 c Pi 

Dibeiip0-D2beriPo^ - 8 — — - r p 0 

3 + P Kfi 

3 + vJ?g p 0
4 p 0 

3 - c c „ 6 , / 2 ' 

Po ^ Po' 

(4.1)5 

Po v Po ' 

2 

p l 
By solving equations (3.21) and (3.23) it is possible to 

determine the constants defining the expressions (3.7), (3.8) 
together with the radii p 0 , Pi • 

4 T h e A p p r o x i m a t e So lut ion of (3.21) and (3 .23) 

A rather simple solution to (3.23) can be obtained by 
making use of the assumption (2) in Section 3. If l/R0 is 
much smaller than 1, its powers of order greater than 1 can be 
disregarded. Consequences of this assumption - confirmed by 
the explicit solution - are that Kp0< <R0 a n d p , < < p 0 . 

Under these conditions, equations (3.21) can be replaced by 

Substituting the asymptotic expansions of the Kelvin 
function into (4.1)4 (cf. Jahnke-Ende-Losch [5, IX, B3]) and 
eliminating c, C , , C2 one obtains the transcendental equation 

t g ( g + P = -cotg(V2p0), 
• V2 8-

the first positive root of which is 

5V27T 
Po= - ^ - = 2 . 7 8 . (4.2) 

Once p 0 is known, it is easy to find the other unknowns: 

(4.3), 
pp 

C, = ^ ^ - e ' ^ 0 i r ( V 2 + cosv'2p0), 
2-KD 

1 - v c 
e" /2"0irsinV2p0 

3 — v c \ — v c 

3 + v Rl 
. <V 

3 + v R 

equations (3.23)! and (3.23)6 can be simplified into 

Pi 
a + c l n p 0 = 0 , c \-dx = 0 , 

Po 

and the remaining equations can be replaced by 

(4.1) 

(4.1)2 

(4.1)3 

pp 

2~TTD~ 

pp V2irp0e~"<v2 

2-KD (Po M 

pp *j2irpQe~i'o/2 

2-KD 

sin 
/ P o _ 5 \ 

VV2 8 / 

lnp0. 

(4.3)2 

(4.3)3 

(4.3)4 

Using again the asymptotic expansion of the Kelvin func­
tions of order two in (4.1)5 and solving with respect to p , , bu 

Dx, and D2 one obtains 

Pi 
3 - y Po 

3 + v Rl 

2 4 V 2 - 4 p 0 - ( l 6 p 0 - | ) ( l - A ) 

2 0 V 2 Y 1 - — ) + 3 V 2 -

b. = lzl±ni 

2 \ _ 4 
- J + 3 V 2 - -
Pa' Pa 

23V2p 0 +4 

3 + v Rl Pi 

20V2(l-4r)+3V2 
\ Pn' 

4 

Po 

(4.4), 

(4.4)2 

Fig. 3 bei2p0 [IT ir> +*-<-]> (4-4)3 

L 3 + v Ri p% pn J 
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Pi 
(4.4)4 

bei2p0 p0 

It is clear that this result confirms the correctness of the 
initial conjecture p, < <p0. Since p, is positive the contact set 
E has the major axis parallel to the larger side of the rectangle 
(Fig. 3). In the figure, the original boundary of the rectangle is 
replaced by the curvilinear contour, which, in the present 
approximate analysis, is assumed as the boundary of the 
plate. 

It may be worthwhile to remark that p0 and p{ do not 
depend on the magnitude of P. In addition, the deflection at 
the origin (given by setting p = 0 in (3.7)) depends only on the 
terms of first order since 

and 

ber2(0) = bei2(0) = 0, 

= 0. £>3=Z>4 = 

Both of these properties seem somewhat unexpected. 
Remark. As a tends to infinity and (3 cemains fixed, the 

plate tends to assume the shape of an infinite strip pressed 
against an elastic foundation by a force P concentrated at the 
origin. The results of the present analysis no longer apply, 
since A tends to one as a tends to infinity, and, consequently, 
the procedure of asymptotic expansion of solutions in X fails. 

Nevertheless it is interesting to note that R0 tends to infinity as 
a tends to infinity, and therefore p , , given by (4.4)j, tends to 
zero. It follows that the major axis of the contact region is 
Po=2.78. 

The calculation (performed by Weitsman [3]) of the half-
amplitude of the contact interval of an infinite beam on an 
elastic foundation that reacts in compression only is 
p'o = 7r/V2 = 2.22. On considering the unilateral contact 
between a layer and a half space Keer, Dundurs, and Tsai [6] 
showed that Weitsman's results can be recovered as limit of 
the three-dimensional case when the layer is rather stiff in 
comparison to the foundation. 
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The Viscous Collapse of Thick-
Walled Tubes 
The collapse of glass tubes, as used in the manufacture of optical fiber preforms, 
constitutes a problem involving Stokes flow, driven by surface tension and applied 
pressure. Undesirable, noncircular modes of deformation may grow or decay, 
depending on initial tube dimensions, radial viscosity variations, and the pressure 
differential across the tube wall. A two-dimensional model of the collapse process 
has been developed. Numerical results show trends that agree with experimental 
observations and are useful in the control of actual, three-dimensional collapse. 

1 Introduction 

The manufacture of high-precision optical components, 
such as lenses and prisms, has been traditionally accomplished 
in the glass industry by grinding and polishing solid pieces of 
material. This state of the art is changing somewhat with the 
advent of optical fiber technology, where dimensional control 
in the liquid state is often the preferred, if not the only 
feasible approach. Thus an interest in slow, essentially 
Newtonian, flows with carefully controlled free surfaces has 
been generated. One example of this trend is the manufacture 
and processing of so-called preform tubes. In this paper we 
address the process by which such tubes are collapsed to solid 
rods the preforms from which optical fibers can be drawn. 

The preform collapse process involves slow viscous flow of 
the glass, driven by surface tension and differential pressures 
on the inner and outer tube surfaces, rather than contact 
forces from dies and tools, as used in other forming processes. 
By and large, physical contact with preform tubes must be 
avoided to minimize contamination.' 

During collapse, departures from the nominally circular 
shape may occur and are of primary interest in process 
control. The time evolution of these perturbations is a gradual 
departure from axisymmetry, rather than a distinct bifur­
cation as encountered with typical buckling phenomena. 
Nevertheless, we shall loosely refer to such deformations as 
"instabilities" if they grow in magnitude. 

The standard collapse process for preform tubes is com­
monly executed on a glass lathe. While the tube rotates to 

Both, the Newtonian characteristics and the absence of surface loads 
distinguish the hot forming of glasses and ceramics from that of metals and 
plastics. The latter material processes have been modeled extensively as flow 
problems involving elastic-plastic and non-Newtonian media. Unfortunately, 
none of this literature is of much help in dealing with the viscous collapse of 
preform tubes. 
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Fig. 1 Schematic of collapse zone 

preserve axisymmetry, a torch traverses along its length, 
producing a local hot zone where the glass softens sufficiently 
to permit viscous flow of the tube walls. Several passes of the 
torch are usually needed to collapse the tube to a solid rod. As 
the heated portion of tubing necks down, it is partially 
supported by adjacent sections of tubing at lower tem­
peratures. The collapse process is therefore truly a three-
dimensional one. One may argue, however, that for long hot 
zones the three-dimensional end effects lose significance and a 
two-dimensional representation of collapse, neglecting 
variations with the axial coordinate, z, can be quite ac­
ceptable. Further refinements of this qualitatively correct 
model of tube collapse cannot be justified at the present, since 
glass viscosities are subject to uncertainties resulting from 
inaccurate measurements of local temperatures and glass 
compositions in typical preform tubes. 

Section 2 defines the physical problem in detail and presents 
the approach to modeling viscous collapse, adopted in this 
paper. Results for uniform viscosity, i.e., homogeneous 
tubes, are summarized in Section 3. Numerical solutions of 
the differential equations for the more relevant, and more 
difficult, case of nonuniform viscosity are discussed in 

Journal of Applied Mechanics JUNE 1983, Vol. 50/303 

Copyright © 1983 by ASME
Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Section 4. Section 5 presents results for tubes of nonuniform 
viscosity. Some comparisons with experimental observations 
and conclusions are also given. 

2 Problem Statement and Analytic Formulation 

Figure 1 illustrates the geometry of a typical collapse zone 
in preform tubes. The neckdown region is centered at z = 0 
and tapers off toward z= ±L, in both directions along the 
tube axis. Our two-dimensional model addresses defor­
mations at z = 0 as if this section were part of an infinite 
cylinder, shrinking uniformly, without end effects. In short, a 
plane-strain assumption is made for the deformations of such 
a cross section throughout its collapse history. 

The cross-sectional geometry is described by polar coor­
dinates r, 6, with inner and outer radii a and b. The relevant 
material property is viscosity ix(r), which may be nonuniform 
throughout the cross section. Fluid density does not enter into 
our model because of the very low accelerations involved. 
Surface loadings are given by inner and outer pressures Pa (S) 
and Pb(8), as well as surface tension a. The purpose of this 
model is to simulate the time history of tube deformations 
which are produced by initial noncircularities of the tube, 
various surface loadings, and viscosity variations in the tube 
wall, due to variations in glass temperature and composition.2 

The viscous flow problem for the tube walls is formulated 
in terms of primitive variables, i.e., the velocity components 
and pressure. These were chosen in preference to a stream 
function/vorticity formulation for the sake of physical in­
sight. The Stokes equations in polar coordinates r, 6 read [2] 
as follows: 

Radial equilibrium 

/ „ 2r ur\ u um rpr 
rurr+h+ — ^ )Ur+ - + —9 - - ^ = 0 (2-1) 

\ /x / r r n 

( ' • T ) « 

Azimuthal equilibrium 

r3 ar V. 
( r 3 K r ) r + - ^ 

V-

Continuity 

where 

t-ru„ (2-2) 

+ ur + Ve = 0 (2-3) 

u = radial velocity 
v = azimuthal velocity 
V = v/r 
p = hydrostatic pressure 
/x = viscosity 

and subscripts r, 6 denote partial derivatives. The two stress 
boundary conditions at the inner and outer free surfaces 
r—Ra (6) and r=Rb (6) can be written as 

The axially symmetric version of this problem has been treated previously 
by J. A. Lewis [1]. 

4« r i? ,+ C R 2 F r + W , ) [ l - ( ^ ) 2 ] = 0 (2-4) 

and 

-p + 2ii(ur-ReVr-Reue/R
2)= -P±K<s (2-5) 

where/? = Ra and Rb as appropriate, corresponding to -
and + signs of the last term in (2-5) 

K = Ka{6) or Kb(d) the free surface curvatures 
a = surface tension 

p = Pa{6) or Pb(9) the applied pressures. 

It remains to express the free-surface deformation rates in 
terms of velocity components u, v. 

One finds 

R, = M-[v]^ (2-6) 

where R—Ra or Rb and u, v are evaluated along Ra,b(d), 
representing the current deformed boundary configuration, 
and the subscripts t, 6 indicate differentiation.3 

The space-time solution of (2-l)-(2-6) is u(r,6,t), V(r,6,t), 
p(r,8,t), and Rab(0,t). Analytic procedures seem out of the 
question for ii ^ const. To begin with, it is expedient to 
separate the spatial and time integrations. The latter is 
executed as a sequence of finite steps At, once a method has 
been determined for calculating the velocity field for any 
instantaneous boundary geometry and surface loading of the 
cross section. Thus, if solution of (2-l)-(2-5) for the nth time 
step, using R"~b' for the tube geometry from the preceding 
time step, yields u", v", this leads to R%t by means of (2-6) 
and then permits updating the tube deformation according to 

Rlb=R"a,-b
l+AtR"a,b/. (2-7) 

The main effort of this study had to concern itself with the 
spatial solution of (2-l)-(2-5), especially for cases where the 
viscosity varies drastically through the tube wall. For 
fi^const. the viscous flow problem defined by (2-l)-(2-5) has 
an exact dual in the two-dimensional theory of elasticity, 
where complex variable techniques can be used to develop 
elegant, analytic solutions in polar coordinates [3]. However, 
this formalism breaks down if fi becomes variable and 
numerical techniques have to be used. 

Direct numerical solution of the partial differential 
equations in r and 6 by finite differences or by finite element 
methods was considered. However, geometric distortions of 
the cross section can only be extracted from such com­
putations by further processing of the results, viz. a Fourier 
analysis of boundary displacements. Alternatively, the most 
direct and computationally efficient approach to tube 
deformations consists of formulating (2-l)-(2-5) in terms of 
Fourier components to begin with. 

Equations (2-l)-(2-6) can be nondimensionalized with the following factors 
(see Nomenclature and Section 4 for quantities relating to composite tubes): 
lengths: 1/c, where c = initial interface radius; stress or pressure: c/a; velocity: 
Hft/u; time: a/(c^b). Consequently, (2-1,3) will be multiplied by cnb/aand (2-
2,6) by iib/a. We assume that this has been done, without change of notation. 

N o m e n c l a t u r e 

a = inner radius 
b = outer radius 
c = interface radius 

/x6 = viscosity of outer layer (silica tube) 
fia = viscosity of inner layer (low viscosity deposit) 
JR = general symbol for free surface radii 
K = general symbol for free surface curvatures 
P = general symbol for applied pressures 

r,6 = polar coordinates 

u,v 
V 
P 
a 

( ) ' 
W 

subscript 0 
subscript 2 

= 
= 
= 
= 
= 
= 
= 
= 

radial and azimuthal velocities 
v/r 
hydrostatic pressure 
surface tension 
9( )/dr 
V 
0(1) quantities 
0(e) quantities 
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We assume that the solution can be described by a regular 
expansion of the form 

F=fo + E e" L ( /™ c o s md+g„msmm6) (2-8) 
n — 1 m = 1 

where f0 represents the unperturbed axisymmetric tube 
collapse and / „ m , g„,„ represent departures from circularity. 
From a practical point of view, we are primarily interested in 
small departures from circularity (e<0.15) and can therefore 
restrict the expansion (2-8) to O(e). It can be argued 
physically that the collapse will be most sensitive to defor­
mations of the form cos 26, sin 20 and we therefore truncate 
the Fourier expansion at m = 2. These terms represent flat­
tening of the tube and ellipticity of the resulting preform core. 

The ansatz used for individual variables is: 

(2-9) 

u(r,6) 

v(r,6) 

V(r,6) 

P(r,d) 

P(d) 

R(6) 

K{6) 

= u0(r) +u2(r) cos 26 

= v2(r) sin 26 

= V2(r) sin 26 

= Pa(r)+p2(r) cos 20 

= P0+P2 cos 26 

= R0+R2 cos 26 

= K0+K2 cos 26, 

the latter three expressions holding at both surfaces, i.e., 
R—Rab, P-^Pab a n d K ~ K a b . Quantities with subscript zero 
are 0(1) and with subscript 2 are 0(e). 

Using the notation d( )/dr=()', equation (2-1) yields to 0(1) 

2r a' 
' - - ' " (2-10) rug + ( 3 + — )«,; 

1 r 
! + - « „ - - /?o=0 

r ix 

and to 0(e) 

ru^+(3+2^-)ui--u2-'^=0. (2-11) 
V ix / r \x 

Similarly, equation (2-2) yields to 0(e) 
, - 3 , 

r'"~ > F » + l±- V>-2(l +r-^)u2 +2rui + ^ =0 (2-12) 
fX \ fX / \X 

Finally, from (2-3) to 0(1) 

{ru0)'=0 

and to 0(e) 

" 2 
+ ui+2V2=0. 

(2-13) 

(2-14) 

In an analogous' fashion, the b.c's (2-4) and (2-5), may be 
separated into 0(1) and 0(e) terms. To 0(e) equation (2-4) 
yields 

-8R2u(t+RlVi-2u2=0 (2-15a,b) 

while (2-5) yields to 0(1) 

-p0+2/x UQ= -P0±K0a (2-l6a,b) 

and to 0(e) 

-p2+2fxui+(2ix'ui+2ixug-pi)R2= -P2±K2a, (2-\la,b) 

where the last term on the left results from the 0(e) ex­
trapolation of 0(1) quantities to the deformed boundary, viz. 

[u,v,p,ix]R = [u,v,p,n]Ro 

+ [u',v',p',lx']RnR2 cos 26. (2-18a,6) 

Note that the Fourier expansion permits separation of 
variables, where the factors cos 26, sin 26 cancel out of all 
equations, leaving a set of ordinary differential equations in r 
to be solved numerically at each time step. The results of this 
integration are used to update the inner and outer mean radii 

a, b, and their 0(e) perturbations a2, b2 by a predictor-
corrector algorithm. 

The 0(1) problem (2-10), (2-13), and (2-16) simplifies as 
follows. From (2-13) 

U 
«o = - (2-19) 

where U is an integration constant and, from (2-10), the 
integration of the following differential equation 

-2U ix' 
Po = (2-20) 

involves another constant. These two constants follow from 
the b .c ' s 

— 2jxU a 
p0 + ^ r = P 0 ± - (2-2la,b) 

which are obtained from (2-16) with K0 = l/R0. Barred 
quantities designate the values of variables at 
r = R0 =a,b = current values of inner and outer mean radii. 

Using (2-14), (2-19), (2-21), and K2 = 2R2/Rl cos 26 to 
simplify (2-11), (2-12), (2-15), and (2-17), the 0(e) system 
becomes u 

« 2 = - — - 2 K 2 (2-22) 

Pi= - l ( ^ + M ' ) y - 4 ( £ + M ' ) V2 -2ixW2 (2-23) 

where 

with the b .c ' s 

4 2p2 
+ ~iV2--TL 

r r/x 

Vi = W, 

8R2U 

P2 + 
2jxu2 

RlW2-2ii2 = 

AUR2Jx „ 3<ri?2 

(2-24) 

(2-25) 

(2-26a,b) 

(2-21 a,b) 
R0 J \ 0 / \ 0 

The fact that barred quantities are evaluated at the limits of 
integration a, b does not mean that the solution of (2-20), (2-
22)-(2-25) is confined to these radii. The solution is actually 
carried to the deformed boundaries by including ex­
trapolations such as (2-18) in the b . c ' s . 

The computational algorithm is now completed by writing 
explicitly for each time step 

fl»+i=tf" + [w«]r=(7A? (2-28) 

b"+1=b" + [u"0]r=bAt 

a"2
 +' = a"2 [ l + [ui'UaAt] + M\r=ate 

b"2
 + l =b'i[\ +M"] f = 6A/] +[u"2]r=bAt 

where superscripts designate indices in the time sequence. 
Finally, one notes that a preform tube whose viscosity 

varies through the wall thickness due to compositional and 
thermal gradients, can be modeled either by letting ix be a 
continuous function of r or by defining discrete layers with 
different but constant viscosities. Either way, some account 
must be given of distortions in the viscosity profile across the 
wall thickness, due to internal mass transport during the 
deformation process. The viscosity profile in typical preform 
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Fig. 2 Critical pressure versus outer diameter, 2b 

tubes is roughly a step change between the high viscosity silica 
tube and the lower viscosity deposit. The layer interfaces in 
the discrete-layer model are treated as internal boundaries, 
requiring continuity of stresses and velocities. Diplacements 
of these interfaces are indicative of distortions in the viscosity 
profile. 

3 Results for Uniform Viscosity 

We begin by discussing the viscous flow of homogeneous 
silica tubes, based on our two-dimensional numerical 
simulations. This initial study elucidates some basic features 
of viscous tube collapse and serves for later comparison with 
more complicated models involving nonuniform viscosity. 
Recall that the tube dimensions can be expressed as 

and 

a = a0 +a2cos 26 

b = b0+b2cos 28 

where a and b are the inner and outer surfaces, respectively. 
One defines a critical pressure as the value of AP= (Pb — 

Pa) at which the ellipticity neither grows nor decays. The 
ellipticity grows if the pressure difference is larger than this 
value and decays if it is smaller. The critical AP rises as a silica 
tube collapses because stability increases as the walls become 
thicker. 

The critical pressure difference was experimentally 
determined during the collapse of silica tubes. The ellipticity 
was first measured along the entire length of a tube using an 
optical line scan camera with 2000 diodes. The camera 
measures the tube diameter as a function of time. The 
ellipticity causes the diameter to vary through two periods per 
revolution of the tube. The diameter variation data from the 
line scan camera is fitted by a computer to a function of the 
form 

b (t) = b0 + b2 cos(2orf + <j>) 

where w is the rotational frequency of the tube and 4> is a 
phase shift angle. This procedure allows the determination of 
b0 and b2 as a function of position. The torch was then 
traversed the length of the tube, resulting in a shrinkage of 
about 5 percent. The internal pressure was varied linearly 
during this collapse pass. The ellipticity was measured a 
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Fig. 3 Deformation history of homogeneous tube 

second time and compared with the previous measurement. It 
was found there were two distinct regions; in one section of 
the tube the ellipticity grew and in the other it decayed. At the 
point separating these two regions the ellipticity remained 
constant, corresponding to the critical pressure. 

Figure 2 compares the theoretical and the experimentally 
measured critical pressures as a 19x25 mm tube collapses. 
The excellent quantitative agreement verifies the accuracy of 
the theoretical model. 

Also of interest is the time behavior of the perturbation 
quantities a2 and b2 which specify the magnitude of the tube 
flattening. Typical initial perturbations in the starting tube4 

are assumed to be a2 =b2 =0.001 cm and we use a value for 
the surface tension of u= 300 dynes/cm. 

The history of tube deformation during collapse is shown in 
Fig. 3 for a pressure difference AP= 100 dynes/cm2 (0.04 in. 
of water) between outer and inner surface and initial radii 
a0 =1.0 cm and b0 = 1.3 cm.5 It can be seen that a2 and b2 
develop nonmonotonically in time, increasing initially, but as 
the tube radius decreases, the disturbance eventually decays in 
magnitude. The pressure difference AP acts to destabilize the 
tube deformation, whereas surface tension forces a/R have a 
stabilizing effect. As the tube shrinks in size, the stabilizing 
force increases in magnitude and eventually causes the 
disturbances to decay. 

The geometry of the preform rod, which is the result of 
complete collapse, is of physical interest. The final defor­
mation of the homogeneous tube is presented in terms of 
eb=b2/b0, i.e., a fractional distortion of the outer surface. 
Figure 4 shows the dependence of eb on the pressure dif­
ference AP for the case of a = 1.0 cm and 5=1.3 cm.6 It can 
be seen that eb is very sensitive to AP, varying from 
eb =0.0014 at AP=100 dynes/cm2 (-0.04 in. of water) to 
eb =0.013 at AP=250 dynes/cm2 (0.1 in. of water). The 
dependence of eb on the initial tube wall thickness d=b — a is 
shown in Fig. 5 for a= 1.0 cm and AP= 100 dynes/cm2. As 
one might expect, thinner-walled tubes are more susceptible to 
flattening than thicker-walled tubes. The foregoing results 
also illustrate that the fundamental flattening mode develops 
gradually in time, i.e., as a divergence from the axisymmetric 
condition rather than a sudden departure from circularity. 

Note that the response of disturbances in the linear model, expressed by (2-
l)-(2-5), will scale directly with the magnitude of initial perturbations. 

While the numerical results of Sections 3-5 are discussed in dimensional 
terms, for the benefit of those involved with lightguide technology, numerical 
values on the plots are also supplied in nondimensional form to facilitate their 
application to entirely different physical situations. 

In this context, barred quantities represent initial values of the tube radii. 
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4 Numerical Solutions for Nonuniform Viscosity 

The remaining discussion of this paper will concern the 
more relevant case of a high-viscosity tube, the silica "sub­
strate," containing a low-viscosity internal layer, a doped 
glass deposit that constitutes the waveguide core. Let the 
interface radius between the low and high-viscosity layers be 
designated c. The formulation of Section 2 must now be 
generalized in terms of two boundary value problems, one for 
each layer, with continuity conditions imposed on the stresses 
and velocity components at the interface. Whereas a 
straightforward shooting procedure and linear combination 
of independent solutions (with individual, normalized b.c.'s) 
sufficed in dealing with the single-layer case, the two-layer 
model requires careful planning of the numerical procedure. 
This is true especially for cases involving large viscosity ratios 
between the substrate and the deposit, where "boundary 
layer" effects occur near the interface in the 0(e) solution. If 
the numerical results fail to capture this feature of the spatial 
velocity profile, the time evolution of deformations will also 
be adversely affected. 

The necessary continuity conditions at the layer interface 
give rise to the following equations at r = c. Letting quantities 
in the inner layer (a<r<c) be denoted by subscript - and in 

LOW-VISCOSITY 
INTERNAL DEPOSIT 

Fig. 7 Deformed composite cross section 

the outer layer (c < r < b) by subscript +, the continuity of 
velocity components yields at r=c: 

uQ = uQ+ hence £/_=£/+; u2 = u2+; V2_ = V2+ . (4-1) 
From (2-23), one observes that 

[ g H - - [ § • " » ] . • <«> 
to be used in the following. Continuity of the radial stress 
yields 

2U 
Po + ~Po_ = -j (/*- -/* + ) (4-3) 

and 

P2+-P2_^+-»4fu-v2+
c-n+%], (4-4) 

where c2 =0(e) radial deformation at r=c. Note that, in view 
of (4-2), it is immaterial from which of the two layers the last 
two terms in the square brackets are computed. Continuity of 
the shear stress yields 

•4c 2 

-u 
v2 p2 v2 • 

c Api, 2 . 
(4-5) 
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Fig. 8 Velocity plots across wall thickness 
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Fig. 9 Schematic of flow in tube wall 

Equations (4-3)-(4-5) represent jump conditions inp0,p2, and 
V2, to be satisfied at the interface. 

The 0(1) solutions for the two layers are found from (2-
19)-(2-21) and (4-3) in simple analytic form. 

The most straightforward numerical approach to the 0(e) 
problem consists of integrating across the wall thickness, 
taking care of conditions at c along the way. Since four b.c.'s 
are imposed by (2-26), (2-27), one may generate four in­
dependent solutions by integrating, say, from a to b; each of 
these solutions being normalized to [u2]r=a = 1, \p2]r=a = 1> 
[V2]r=a = 1, lW2]r=a = 1. in turn with the remaining i.c.'s 
zero. Each integration proceeds continuously across r=c. A 
"particular" solution is then generated with homogeneous 
i.c.'s at r = a and accommodating the jump conditions (4-
4)-(4-5) in pi and V2 at r = c. A linear combination of these 
five solutions satisfies the b.c.'s. Numerical mtegration for 
this approach was effected with an extrapolative integration 
algorithm, using spline functions (4). This procedure yielded 
reasonable results for modest viscosity ratios (0(102)) between 
inner and outer layer, which we describe in the following. 
Let a "standard" tube geometry be specified by 

interior radius 
interface radius 
exterior radius 

a = 0.95 cm 
c = 1.00 cm 
b - 1.30 cm 
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Fig. 10 Stability versus AP 
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Fig. 11 Stability versus interface radius 

viscosity of "soft" 
interior deposit 
viscosity of "hard" 
outer shell 
applied pressure difference 

/x„ = 2 x 103 poise 

/x6 = 105 poise 
AP = 100 dynes/cm2 

This set of parameters will henceforth be used as a reference 
case. 

The time history of a composite tube for the preceding 
conditions is compared with the corresponding homogeneous 
tube in Fig. 6. As mentioned before, the substrate by itself 
behaves nonmonotonically, with a2H

 a n d b2H reaching a 
maximum and thereafter decaying gradually as surface 
tension overcomes the initial growth of perturbations. By 
comparison, the composite tube behaves quite differently. It 
collapses in less than half the time required for the 
homogeneous tube and all three perturbations a2c, c2c, b2c rise 
above their counterparts for the homogeneous tube a2H, b2H 

early in the collapse history. The disturbance a2c reaches a 
maximum and then rapidly decays to zero. The other two 
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Fig. 12 Stability versus wall thickness 

STABILITY VS. DEPOSIT THICKNESS 

COLLAPSE TIME' 
(Sec,NON-DIM) 

,0.300) 

0.02 0.04 0.06 0.08 0.10 

DEPOSIT THICKNESS (cm OR NON-DIM) 

Fig. 13 Stability versus deposit thickness 

perturbations b2c and c2c grow monotonically, to become an 
order of magnitude larger than the final deformation in a 
homogeneous preform. Note that c2c actually exceeds b2c by a 
slight amount. This behavior of the three perturbations 
suggest that the interior surface rapidly recovers its circular 
shape, due to the fluidity of the low-viscosity deposit, while 
the core-cladding interface and the outer surface continue to 
flatten, as far as linear perturbation theory goes. In the 
regions of maximum flattening the interior deposit increases 
in thickness (due to circumferential flow into these parts of 
the tube), i.e., it "fills the bulges" in the flattened substrate, 
while the latter slightly reduces its wall thickness in these areas 
(Fig. 7). The fluid dynamic implications of this behavior can 
be seen from Figs. 8 and 9, where velocity profiles have been 
plotted for u2 and v2 across the wall thickness and interpreted 
schematically. 

The rapid return to circularity of the inner tube surface, as 
illustrated by the behavior of a2 in Fig. 6, should become 

more pronounced as the viscosity of the inner layer is 
decreased. At the same time, the velocity derivatives and 
strain rates in the low-viscosity layer, near the interface, 
should intensify and lead to a more abrupt boundary layer 
behavior in that region. For large viscosity ratios, the 
"shooting" procedure described in the foregoing will con­
tinue to generate solutions that formally satisfy all boundary 
and interface conditions but yield meaningless results in the 
interior of the layers. Replacement of the integration package 
with one designed for "stiff" differential equations does not 
remove this difficulty. 

Fundamentally different approaches to the numerical 
analysis had to be explored, and three different procedures 
were tried: (1) Gram-Schmidt orthonormalization (for 
example, see [5]), (2) interface matching, and (3) a finite-
difference boundary value problem solver that avoids 
shooting methods altogether. Results from the second and 
third algorithms agreed reasonably well up to viscosity ratios 
of104 . 

5 Results for Composite Tubes 

We now summarize typical results for two-layer tubes in 
terms of physical parameters of practical interest. 

Out-of-roundness of the two-layer interface is of particular 
importance and can be expressed as ec=c2/c0 for the 
collapsed preform. The dependence of the final geometric 
distortions ec and eb or AP, the mean tube diameter, the 
total wall thidkness, and the thickness of the low viscosity 
deposit was studied. Figure 10 shows the effect of varying AP 
on ec and eb. The computed collapse time required for each 
case is shown in parentheses in Fig. 10 beside each data point. 
The collapse time / is proportional to the viscosity. It is not 
possible to estimate the actual time required for collapse 
because of insufficient information on the temperature and 
pressure profiles in the hot zone and on the dependence of 
viscosity on dopant level and temperature. Therefore, these 
collapse times are only intended to provide a qualitative 
comparison. It can be seen that the final tube deformations 
are very sensitive, increasing by two orders of magnitude as 
AP is increased from -100 to 200 dynes/cm2. However, the 
time required for collapse decreases only by 15 percent 
because, at these pressures, surface tension is the dominant 
force in driving collapse. Thus, in theory, one should 
minimize the overpressure during collapse in order to op­
timize preform quality. In practice, one finds that significant 
benefits can be realized by using a small, constant, excess 
back pressure throughout the entire process. 

Figures 11 and 12 predict the sensitivities of percentage 
distortions ec and eb to changes in the initial interface radius, 
c(a and b being scaled appropriately), and total wall 
thickness, d=b — a. For c varying between 1.0 and 1.1, out-
of-roundness ec increases by a factor of 2 and the collapse 
time increases by 20 percent. For 0.25—^—0.45 with a 
constant ratio of deposit to substrate thickness, out-of-
roundness decreases by an order of magnitude, with negligible 
penalty in the collapse time. With regard to collapse, this 
clearly suggests a preference for heavy-walled substrates and 
proportionately heavier deposits. The process should not be 
scaled up by going to larger tube diameters but either by 
depositing more glass with subsequent rod-in-tube over-
cladding or by using thicker walled tubes with proportionately 
heavier deposits. Thicker-walled tubes may necessitate the use 
of different (hotter) torches in order to adequately heat them. 

We now turn to the case of variable deposit thickness inside 
a_ substrate of constant initial wall thickness, i.e. c=1.00, 
5=1.30, and 0.90<a<0.99. Figure 13 displays resulting 
ellipticities for this case and one notes that ec and eb tend 
monotonically toward the appropriate values for the 
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homogeneous tube as a—1.00 (viz. eb =0.0012 on Fig. 3 for 
Pb = 100 dynes/cm2). Collapse times are also found to in­
crease dramatically with increasing a (decreasing thickness of 
deposit), tending to the much longer collapse times charac­
teristic of homogeneous tubes. This result is consistent with 
the experimental observation that more time is required to 
collapse the preform tube in the entry region where there is 
less deposit. These results are extremely interesting. They 
imply that, if one can deposit a low viscosity but rather thick 
cladding at a substantial rate (1-2 gm/min) then the longer 
deposit time for the thicker cladding can be largely offset by a 
shorter collapse time, while minimizing terminal values of ec, 
and eb with suitable control of AP. 

6 Conclusions 

A theoretical model of the collapse process has been 
developed and verified by experimental measurements. The 

dominant driving force for collapse is surface tension. The 
stability depends strongly on the pressure difference, the 
deposit viscosity relative to silica, and the deposit thickness. 
The decreased stability and shorter collapse times of 
multimode preforms is due to the fluid deposit. The insights 
gained from the two-dimensional model in this study have 
'permitted control and optimization of the actual (three-
dimensional) collapse process. 
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Buckling and Postbuckling of a 
Long-Hanging Elastic Column Due 
to a Bottom Load 
v4 long heavy elastic column is supported at the top end. The bottom end is sub­
jected to a compressive force. The critical buckling loads, related to zeroes of Airy 
functions, are quite different from the Euler buckling loads. Postbuckling shapes 
are integrated numerically. 

1 Introduction 

The stability of a weightless column under compressive 
loads was studied by Euler [1]. If the column is pinned at both 
ends, the buckling loads are n2ir2EI/L2 where n is an integer, 
EI is the rigidity, and L is the length of the column. The 
problem of a heavy vertical column, bottom end fixed and top 
end free, was studied by GreenhiU [2] who found the critical 
density or height of a uniformly weighted column. The 
combined effect of column density and end load was con­
sidered by Grishcoff [3] and extended recently by Wang and 
Drachman [4] to cases where a finite column is hanging from 
a foundation. 

In this paper we shall study the long-hanging column. The 
column is secured at the top which supports all of its weight. 
We are interested at the response of the column when a 
compressive load is added to the bottom (free) end. 

We assume the column length L is much greater than the 
"bending length" (EI/p)xn, where p is the weight per length. 
In fact, we assume 

Z, / (£7 /p ) 1 / 3 -oo (1) 

There are three characteristics of this /ong-hanging column: 

1. Conditions at the top end (forces and moments applied 
at the top end) does not effect the bottom region. 

2. There exists a long stretch of midregion which is 
almost vertical. 

3. The bottom region can move freely as a whole 
laterally, i.e., it does not admit horizontal forces. 

Figure 1(a) shows the three regions, which may be considered 
independent of each other when the column is long enough. 
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To simplify the present work, we shall consider a pinned top 
end such that the column differs from the vertical only in the 
bottom region, where buckling may occur. In this particular 
case the top region would be absent. 

The present work may be applied to deep sea drilling from a 
platform and also to heavy curtains or drapes. In these cases 
the assumption equation (1) is well satisfied. 

2 Formulation 

Figure 1(b) shows the origin of a cartesian coordinate 
system (x' ,y') is situated at the bottom end. A local balance 
of moment (Fig. 1(c)) gives 

(F' —ps')sin 6 = 
dm 

Hsr ••-EI-
d2e 

~ds72 (2) 

Here F' is the force applied at the bottom end, s' is the arc 
length from that end, 6 is the local angle of inclination, and m 
is the local moment. Using the following normalizations 

t o p £P region r* 

mid 
region 

bo t tom T 
region |_ i-! 

m-fdm/ (V 

F-fs' 

(a) (b) (c) 

Fig. 1 (a) The three independent regions of a long-hanging column; (b) 
the coordinate system situated at the bottom end; and (c) local moment 
balance of an arbitrary small segment 
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F=F'(EI) - 1 / 3 . - 2 / 3 c _ , s=s'(p/EI)ln, x=x'(p/EI)w\ 

y=y'(P/EI)in 

Equation (2) becomes 

d2e 
+ (F-s)sm8 = 0 ds2 

(3) 

(4) 

The boundary conditions are that the bottom end is free to 
rotate. 

dd 

~ds~ 
(0) = 0 (5) 

and that the column becomes vertical at large distances 

0 ( o o ) - 0 (6) 

The actual configuration of the column can be found by 

dx dv 
= cos 8, — = sin 6, x(0) = y(0) = 0 (7) 

ds ds 

3 Stability 

The buckling loads are found by linearizing equation (4) 

d26 

ds2 + (F-s)d = 0 

Let 5—F=r. The problem becomes 

d26 
-rd = 0 dr2 

dd 
— (-F)=0, 0(oo)=O 
dr 

(8) 

(9) 

(10) 

The general solution to equation (9) is composed of the Airy 
functions 

8 = C,Ai{r)+C1Bi(r) (11) 
The boundary conditions dictate C2 = 0 and for a nontrivial 
solution 

dA, 

~dr 
'-(-F)=Q (12) 

The roots of equation (12) are F = 1.018793, 3.248198, 
4.820099, 6.163307, 7.372177, etc. [5]. Thus the smallest 
(critical) buckling load below which the column is stable, is 

F ' = 1.018793 (£7) 1 / V / 3 (13) 

The other roots correspond to higher modes of buckling. 
These buckling loads are entirely different from the Euler 
loads n2 ir2EI/L2. The linear buckling of a long heavy column 
was first considered by Willers [6] who, using infinite series, 
obtained the value of F = 1.0188 for the lowest mode. 

4 Numerical Integration of Postbuckling Shapes 

For finite deflections, equations (3)-(6) do not admit 
analytic solutions. Numerical integration is required to obtain 
the postbuckling characteristics. Such a two-point boundary 
value problem may be obtained in principle, for given F, by 
guessing 0(0), integrate to large values of s, and see if 6 decays 
to zero. This scheme, however, is highly inaccurate due to the 
oscillatory nature of 8 for s < F. We find the following 
modified method is much better. 

Rewrite equation (4) as 

d26 
-rr=rsmd (14) 
dr 

pick any 8\r=0' guess dd/dr\r=0 and integrate equation (14) 
as an initial value problem to large r (r = 5 was found to be 
sufficient), and see if 8 decays to zero. This one parameter 
shooting is much more accurate since equation (14) is 
nonoscillatory for r > 0. Then using the correct values 6 and 
dd/dr at r = 0, we integrate equation (14) backward until 
dd/dr first becomes zero, say at r = r*. Then 

F=-r*>0, 6\s=0 = d\r=r* (15) 

Using equations (4), (5), (7), and (15) the postbuckling 
configurations for the primary mode can be found. For the 
higher buckling modes one can integrate to the second or 

1.5 

0.5 

Fig. 2 Bifurcation of the force-vertical displacement curve. The curves 
A ,B,C represent the primary, secondary, and tertiary modes. 
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1 1.5 2 
vertical displacement 

Fig. 3 The displacements of the bottom end showing the first three 
modes 

Fig. 5 Postbuckling configurations for the primary mode. 
© F = 1.029, (2) F = 1.061, @ F = 1.122. 

1 1.5 
vertical displacement 

Fig. 4 The maximum normalized moment represented by IdWdsl max 
for the first three modes 

higher zeros of dO/dr. The integration was done by the fourth-
order Runge-Kutta algorithm. The error was adjusted by 
varying the step size. 

Results and Discussion 

Figure 2 shows the force-vertical displacement curve for the 
long-hanging column. The vertical displacement is obtained 
by the difference between £ and x at large s. We see that the 
curves bifurcate from the trivial solution at 1.018793, 
3.248198, 4.820099, etc. These branches are the stability 
boundaries for the primary, secondary, and tertiary modes, 
respectively. 

Figure 3 shows the lateral displacement of the bottom end 
versus the vertical displacement. The displacements are 
normalized with respect to the bending length (EI/p)ui. 

The maximum local moment is an important design 
criterium. Since the moment is proportional to dd/ds, 
equation (14) shows the maximum moment occurs at either s 
= For 8 = 0. Since d is never zero for the primary mode, the 
maximum moment is at $ = F. For the higher modes the 

Fig. 6 Postbuckling configurations for the secondary mode. 
© F = 3.268, (2) F = 3.330, (3) F = 3.445. 
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maximum moment is at the first 0 = 0. Figure 4 shows the 
maximum moment for the primary mode is considerably 
lower than those of the higher modes due to the difference in 
the location of maximum I dd/ds I. 

The postbuckling configurations for the primary mode are 
shown in Fig. 5. The decrease in 6 is monotonic. Figure 6 
shows the secondary mode where 6 changes sign once, while 
Fig. 7 depicts the tertiary mode. Elastic columns that buckle 
in higher modes have higher potential energy and therefore 
thay are less stable than those in the primary mode. However, 
similar to the higher modes of the Euler column, they do 
occur in laterally restrained cases. 

One may mention that it is possible to do a similar analysis 
for a clamped bottom end. The normalized buckling loads are 
2.338107, 4.087949, 5.520560, etc. Unlike the Euler column, 
the higher buckling loads in both pinned and clamped cases 
are not simple multiples of the lowest buckling load. 

Our present results also differ substantially from the short-
hanging column [4] which is essentially dominated by the 
stiffness. For the short column the buckling is highly sensitive 
to conditions at the top end while in the present case the two 
end regions are independent. Our numerical results show 
disturbances at the bottom end are limited to a region of less 
than 10 bending lengths from the bottom. 
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Instability Analysis of Pressure-
Loaded Thin Arches of Arbitrary 
Shape 
The governing differential equations and the virtual work expressions for the large 
displacement analysis of thin arches of arbitrary shape, subjected to pressure loads, 
are derived. The virtual work expressions are employed as the basis for formulation 
of finite element stiffness equations. Classical solutions are obtained, from the 
differential equations, for the buckling of circular rings under uniform "follower" 
(hydrostatic) and "dead" (constant direction) pressure loadings. Finite element 
solutions are calculated for elliptical rings for a wide range of axis ratios. 

Introduction 
Although basic theoretical principles for the inclusion of 

pressure-load effects in finite element, elastic instability 
analysis have been established for some time now [1], there is 
considerable interest in and need for relationships for specific 
cases of interest and for the study of the basic properties of 
these relationships. Thus, Hibbitt [2], Loganathan, et al. [3], 
and Mang [4] have examined the algebraic form and per­
missible approximations for finite element stiffness 
relationships that arise when the effects of follower forces are 
taken into account. Batoz [5, 6] has studied the formulation 
of such relationships for the particular case of circular arch 
finite elements. 

Because the finite element method owes its significance to 
its potentiality for the treatment of structures of rather ar­
bitrary geometry, it is desirable to have available the 
theoretical basis for formulation of arch elements of any 
shape. Thus, the purpose of this paper is to derive 
geometrically nonlinear formulations for arches of arbitrary 
shape acted on by pressure loads. Both the governing dif­
ferential equations and the associated virtual work ex­
pressions are presented. Generalized stress vectors are defined 
which are consistent with the definitions of the strains. The 
interaction of membrane and bending deformations is taken 
into account. 

The governing differential equations derived herein are 
more general than those that have appeared previously. 
Frisch-Fay [7] gives basic nonlinear equations for arches of 
arbitrary shape, but neglects the interaction of bending and 
membrane deformations. Wang [8] presents a linear static 
analysis for a class of ring segments. The equilibrium 
equations, however, are established for the undeformed 
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configuration. The theory can only be used for cycloidal, 
circular, catenary, and parabolic rings. If the radius of ring 
segments cannot be expressed by R = a sec"</>, it is inap­
plicable. 

In this paper, following the derivation of the equations for 
general shapes, various aspects of circular arches are studied. 
Using the hypothesis of small middle-surface strain and 
moderately small rotation, the governing differential 
equations for circular rings are obtained from the more 
general equations. These equations are solved for the 
eigenvalues for the cases of "follower" (hydrostatic) and 
"dead" (constant direction) pressures, yielding solutions in 
accordance with previously derived results. Certain aspects of 
Batoz's formulations for circular arches are also verified. 
Finally, the finite element method is used to calculate the 
critical loads for the elliptical rings of different geometric 
parameters under two kinds of pressures. In case of 
"follower" load, symmetrized load stiffness matrices are 
employed. 

Strain-Displacement Relations 
The middle surface of an undeformed thin arch of arbitrary 

shape can be expressed by the parametric equations (see Fig. 
1) 

, 
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x'' = V''(0, 1=1,2 (1) 

The displacement of a point on the middle surface, referred 
to the undeformed shape, is 

0 n 
at 

(2) 

where t;0 is the tangent component of displacement, w is the 
normal component, and n' is the unit normal to the un­
deformed middle surface. Lowercase letters are used here to 
denote the displacements measured from the undeformed 
state. Subsequently, we will use capital letters to denote 
displacements referred to the deformed state. 

For the deformed middle surface, the expressions for the 
metric A and the coefficient of the second fundamental form 
Fcan be written as follows 

A=a[(\+e)2 + 4>2} (3) 

and 

F=^[(l+e)[/(l+e) + -(^)]-^0(^-^0)] 
(4) 

where 

dtf (5) 

(6) 

is the metric of the undeformed middle surface, and 

, d V 2dH> 
f=n] —-y- + n2 —-r-

dt2 dt2 

is the coefficient of the second fundamental form. 
Also, in equations (3) and (4), e represents the membrane 
deformation and 0 is the rotation of a normal to the middle 
surface of the arch. These are, in terms of the displacements 

e = 
dv° 
It 

1 

V ^ -M 

f 
— w 
a 

dw\ 
+ dt) 

(7) 

(8) 

The strain of the middle surface of the arch is defined as 

L-'m — 
1 (ds)2-(ds)2 

2 (cfe)2 = e+ -eL + -< (9) 

where ds and ds are the length of the element of the un­
deformed and deformed middle surface, respectively. 

The strain at a point with coordinate z is 

1 (dsz)
2 

2 
-(dsz)< 1 

(dsz) 
[{A-a 

(10) 

where dsz and dsz are the length of the element of a fiber that 
is parallel to and at a distance z from the middle surface. 

Virtual Work Equations 

In the following, the virtual work equations are derived 
from which the nonlinear finite element analysis of arches of 
arbitrary shape under hydrostatic and constant direction 
pressure can be established on the basis of a consistent theory. 

First, the equilibrium equations of the deformed arch (see 
for example, reference [9]) are 

d (NQ\ Q 

*\1A)—R+'">=0 

N0 1 dQ 

-R+VA^+P = ° 

1 dM 
~\fA~di 

+ Q = 0 

(H) 

where N0 is the axial force, Q is the shear force, q0 is the 
frictional drag, p is the pressure, and R is the radius of cur­
vature. From (,4.8), R = A/F. According to the principle of 
virtual work, we can construct the following integral 

j f r * 
ll dt \JA) R + ^V°+{i+ul+P)bW 

( 1 dM 
+ \7AHi + Q)fifl]ds = 0 (12) 

5V0 and 5Ware the tangent and normal virtual displacements, 
respectively, referred to the deformed configuration, 58 is the 
virtual rotation, and ds = Va dt. L is the length of the middle 
surface of the arch with boundaries l{ and l2. 

Integration by parts of equation (12) yields 

1 

lyfA 
(N0 5F0 + Q 6W+MM)]lf + \L (<7o &vo +P 5) ds 

i 
-"l^i'tiH* ,13) 

After deformation of the arch, a point on the undeformed 
middle surface wtih coordinates x' moves to a new position 

x'=x'+u' (14) 

where u' is given by equation (2). Let n' be the unit normal to 
the deformed middle surface. The virtual displacements can 
be expressed as follows 

dt dt 
8v°+n' bw (15) 

and ii° = vo 

where 

v - rA „™ „ - T a . 

Differentiating (15) and using (A2), (A3), (A6), (,47), (7), and 
(8), we obtain 

'dV° 
\ -li'^J-A8 "]£ + ['«-(?)]* 

dx> 

~dt 
8e + n' yfa 84> (16) 

Multiplying both sides of (16) by dx' /dt and /?', respec­
tively, and taking account of expressions (9), (A9), and (,45), 
the following equations are obtained 

/dV°\ F i 
8W= — 8A 

A 1A 
(17) 

1 (dW\ a 
8\ -7- ) = - -. [<t>8e-(l+e) 8<f>] (18) -8V0+ ,- „. , 

R ° yfA V dt J A 
In (13) the coefficient of Q is the virtual shear deformation 

for the arch. This effect is small and setting it equal to zero we 
have 
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R ° €A \ dt ) 
(19) 

The external virtual work is 

By using (18), (19), and (A.6)-(A.9), it can be shown that 

1 

7A' (IHt- 1 . . d ( 1 
\A8O\ (20) 

In (13) the coefficient of M is 1/V/i 8(d8/dt), which is the 
variation of the bending curvature. In expression (20) the last 
term in the square brackets therefore represents the influence 
of the shear strain on the bending curvature, and can be 
neglected according to the Love-Kirchoff hypothesis. Thus, 
equation (20) can be written as 

By using (17), (19), and (21), the internal virtual work in 
expression (13) can be reduced to 

" ' = L [ S M + 7 ( 8 F - s M ) ] * 

- L (N8E+M8K)ds (22) 

where E and K are defined as the generalized normal and 
bending strains, respectively. In consideration of (9) and (10) 

k=F-f 

•a)=aEm (23a) 

(236) 

and N and M are the corresponding generalized normal stress 
vector and bending moment: 

/ dv° / \ "I 
+ ( 1 + - * - T W ) H * ' (28) 

for the hydrostatic pressure, and 

8IC=\ pbwds, (29) 

for the constant direction pressure. 
The principle of virtual work then can be expressed as 

fi(/,-/e)=0 (30) 

where 81 e is the external virtual work, for the hydrostatic 
pressure 8Ie = 8Ih and, for the constant direction pressure 8Ie 

a 81 c. 
In accordance with the small middle-surface strain and 

moderately small rotation hypothesis, i.e., 

e < < l , c £ 2 < < l and Z-^<<\ 
ds 

the virtual work expressions (26) and (28) become 

[ EQ r dv I da 
OJi=d\ — r Vfl j= —— V— JW 

h 2a2 L dt 24a dt 

1 / / dw\2i2 

JL 2a3 I dt V dt 2a dt J dt2 J 

N-- •i(^-f) (24a) 

+ 

and 

M=-
M 

~A 

The stress-strain relations can be written in the form 

N=(EQ/A2)E 

M=(EI/A2)K 

(24b) where 

(25a) 

(25b) 

&I*=\A-h(iv+7t)bv+bw]ds (32) 

Formulation of Governing Differential Equations 

The internal virtual work of (26) can be written in the 
alternative form 

«'-S[(")*'s+(fOH* ™ «'-L[*«KT)-S"']+*«[S(X*J*) 

where E fl is membrane rigidity and £7 is bending rigidity 
Thus, in view of (25a,b) equation (22) can be written as 

Substituting equations (3), (4), (7), and (8) into (23a) and 
(236), we obtain + 

E=a 
[dv° f 1 fdv° f 

I dt a ' ' 2\ dt 
f \ 2 1 / „ n dw\2l 

-iW) +2a(fV°+dt) \ 
(21a) 

a ( / dv° f \ 2 / dv° f \[ d ,a 

J V dt / L dt2 dt\ a / a 

a dt 1 V ( i " 

dt\\IA \ dt / / J LR \ dt / 

For the hydrostatic pressure, the external virtual work is 

81,, = [ pbWds (34) 

d2w~ 

~dT2 
ds (35) 

(276) 

Substitution of (27a) and (276) into equation (26) gives the 
virtual work in terms of the displacements v°, w, and the 
metric a, and the coefficient of the second fundamental form 

and, for the constant direction pressure 

8IC=\ p\yfa<t>bV0+sJ^(l+e)8W 

The external virtual work for the frictional drag q0 is 

5Id = ^Lq04A8V°ds (36) 

Integrating (33) by parts and then combining with (34) and 
(36) we obtain the following form of the equilibrium 
equations 
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dt vA dt dt 
(37a) —JT + 

Elimination of N from these two equations gives a single 
general nonlinear equation for arches of arbitrary form under 
hydrostatic pressure and frictional drag, with force 
parameters as unknowns: 

d3M d2M 
+ c2-dt3 dt2 

dM dp „ 
-c, - 7 - +c0M+D2 -f- +£1 ,^+1)0^0=0 <# eft 

(38) 

where 

3 1 dA 

2 A~di 
Cl 

1 e?F 

F It ,cx 

1 c/M 
/I dt2 

1 ofM 
c0 = 

1 dA 
2A~di 

1 c M r l d2A 

1 dA 1 rfF\ F 

A ~di+ Fit ) + ~R 

1 /dA 

1A 1F~ A IYA ~dlr~ 1A~2 Vdt 
1 dF r d2A 

)'] 

IF A dt L dt2 

1 / cW \ 2 

Ji V"rfT/ 
1 1 dF I 

1 + R It + R 
F dR 

2 It 
1 (M n 

—} ,D2= -1,D, 
2R2 dt ' 

1 dF I dA F 

Fit ~~ A~d7'D°~^A~' 
Substituting (25ft) into (38) gives the general nonlinear 
equation with displacement parameters as unknowns, for 
hydrostatic pressure and frictional drag 

IF(^R) + c-

+ cn 

dt2 

EI 

/ EI -\ 

dp 

+ c, dt 

t EI -\ 

K+D 
dt 

+ D]P+Doq0=0 (39) 

Similar expressions can also be obtained for constant 
direction pressure. 

Circular Arch 

To confirm the foregoing, we derive the equations of thin 
circular arches as a special case. The parametric equations of 
the middle surface of circular arches are 

x] =pcost,x2 =psint 

The metric and the coefficient of the second fundamental 
form are therefore a = p2 , / = — p. Consider a circular ring 
under hydrostatic pressure and constant direction pressure. 
For the case of uniformly distributed pressure without 
frictional drag, q0 = 0, dp/dt = 0, and p = — pa, in ac­
cordance with the small middle-surface strain and moderately 
small rotation hypotheses. From equation (39) the following 
differential equation for the hydrostatic pressure case can be 
derived. 

d5w 2 d3w 1 dw p, 
+ - r —r + - r — + 

PcrP / 

EI V 

d3w 

~d7 
1 dw\ 
1 - ) = 0 (40) ds5 p2 ds3 ' p4 ds EI \ ds3 p2 ds I 

Similarly for constant direction pressure the equation is 

d6w 2 d*w 1 d2w 

ds6 p2 ds' + p4 ds2 

+ 
PcrP / 

EI V 

d4w 2 d2w 

+ 
(41) 

where ds = pdt. 
The buckling mode is assumed as w = w0 sin ns/p, where n 

is the number of waves. 
When n = 2, we obtain the well-known critical pressure 

(for example see [10]), for the hydrostatic pressure 

Per = 3 — 
P 

and for the constant direction pressure 

.EI 

Finite Element Formulations 

The buckling of rings of different dimensions and shapes 
under both hydrostatic and constant direction pressures can 
be investigated by the finite element method. For this we use 
expressions for the virtual work written in terms of 
displacements, i.e., equations (29), (31), and (32). 

To transform the preceding expressions into algebraic 
form, we first choose approximations for the displacements 
and virtual displacements as follows: 

v= lNtj [A) 

w=lN2\ (A) 

dv= [JV,J (SA) 

Sw= IN2J ISA] 

where \_Njj is row vector of expressions that approximate 
the shape of the displaced state (i.e., "shape functions") and 
j A) is a column vector of displacements (including rotations, 
as appropriate) of specified points on the element, and (5A) is 
the column vector of joint virtual displacements. After dif­
ferentiation of v, w, 5v, and 5w and insertion of the foregoing 
into the left-hand side of the virtual work expression (30), for 
an element, we obtain, 

5(7, -Ie) = L5AJ [[Ke] +pa([Ke
G] ~ [Kl])\ I A) (42) 

where [Ke] is the elastic stiffness matrix which includes the 
membrane stiffness matrix [Ke

m] and the bending stiffness 
matrix [K%], 

Wn,] = \L ( K J lN])TEQ(ldm] [N])a~2ds 

Wb] = \L ( ldb\ [N])TEI(ldb] [N])a~2ds 

and 

where 

K d LK-' 
dt 

da 

2~4a ~dt )!-/J 
and 

w - L ( £ ! + i ( df_ 
dt 

[Ke
a] is the "geometric stiffness matrix" 

1 

7 
where 

d 

L ^1 
2a dt ))I£J 

mi = \L -^ ( K J mT ( K J iN])ds 

^ = fa dt 
J 

The load stiffness matrix is 
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Equal Angles 
Subtend Each Interval 

Table 1 
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4.0 -

3.0 

2.0 

0.0 

"Follower" Pressure 

i i i i I i i i i I i i i i I i i i i- I i i i i I i i i i I 

0.4 0.5 0.6 0.7 0.8 0.9 1.0 

b2/b, 
Fig. 2 

[*I] = J£ ( WiJ W ) r ( Vda\ [N])ds 

where 

L<//,J = L i o j , K2J 
*- a \fa dt "J 

It should be noted that [Ke
L], in general, is an unsymmetric 

matrix. 
Summation of the element virtual work of all elements gives 

the global virtual work. In accordance with the principle of 
virtual work, equation (30), from equation (42), we have for 
the structural system 

[lK\+Pa([Kc]-lKL]y\iA}=0 (43) 

The critical pressures are obtained by solving the algebraic 
eigenvalue equation stemming from the foregoing. 

Finite Element Solution for Elliptical Rings 

The buckling of elliptical rings of different dimensions 
under both "follower" and "dead" pressures is now in­
vestigated by use of the finite element method. For elliptical 
arches the middle-surface equations are 

xx = b{ cos t, x2 = bz sin / 

According to (4) and (5), we have 

a = b\ sin2C + ^ cos2/ 

and 

, _ ~b\ b2 

(6?sin2/ + ^ c o s 2 0 1 / 2 

The hypotheses of small middle-surface strain and 
moderate rotation are used in the formulation. Both 
displacement functions, v and w, are approximated by cubic 
polynomials. The finite element mesh of a quarter of the ring 
(see inset, Fig. 2) consists of 12 elements with a total of 52 
degrees of freedom. For the "follower" pressure the load 
stiffness matrix is symmetrized. 

Load 

"dead" 

"follower" 

•bl=b2 = l00 

4.0000 

3.0232 

6, = 110 
b2= 90 

3.7724 

2.8140 

bt = 120 
6 2 = 80 
3.3128 

2.7352 

6, = 140 
b2= 60 

2.1617 

2.0333 

*2b i - long diameter of the ellipse 
2b 2 - short diameter of the ellipse 

\Kls)}=-{[KL] + [KL]T) 

where [KL] is the unsymmetric load stiffness matrix. The 
thickness of the arch is taken to be / = 1.0, the width b = 
12.0, and elastic modulus E = 106. The results of the com­
putation are summarized in Table 1 and Fig. 2. 

The results show that the 1.33 ratio between "dead" and 
"follower" instability pressures for circular rings approaches 
1.0 as the axis ratio decreases. Comparison of the finite 
element and classical solutions for the circular ring discloses a 
high degree of accuracy for the former. However, there 
appears to be no available comparison solutions for elliptical 
rings for the phenomena studied. 

Concluding Remarks 

The purpose of this paper has been to present the basic 
relationships, in the form of both differential equations and 
the virtual work expression for pressure-loaded thin arches of 
arbitrary shape. Using the virtual work expression and 
displacement approximations often employed in the finite 
element representation of circular arches, finite element 
stiffness equations are constructed for an elliptic arch 
element. These are employed in analyses of pressure-loaded 
elliptic arches for the full range of axis ratios. 
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A P P E N D I X 

Basic Geometric Relations 

For the undeformed middle surface, the relations between 
the geometric characteristics are 
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n> 

dn' . 

~~dt 

d2^ 

dt2 

r 

1 

a 

=fn< 

a 
= 7 

d^ 
~di 

Hi 

dn' 

Hi 
d2x> 

dt2 

R 

F 
_ _ __ 

=Fni 

A 

dx 

~di 

(41) 

(A3) 

~ r (4«) 
(A A) 

where R is the radius of curvature of the deformed middle 
where e,-. is the permutation symbol and r is the radius of surface. 
curvature of the undeformed middle surface. According to expressions (2), (7), (8), and (14) the tangent 

Similarly, for the deformed middle surface we have t 0 t h e m i d d l e s u r f a c e o f deformed arches can be written as 

1 dxj
 rAcx dx1 dtf 

7A6u~di {A5) — = ^(\+e)+n'4a4> (49) 
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Theoretical and Experimental 
Investigation of the Nonlinear 
Torsion and Extension of Initially 
Twisted Bars 
A set of nonlinear equations that describe the nonlinear deformation of initially 
twisted bars under the influence of torsional moment and tension force, which act 
simultaneously, are derived. Special attention is devoted to the case of thin sym­
metrical cross sections and the equations appropriate to this case are shown. The 
linear terms of the equations, in the case of thin rectangular cross sections, are 
compared to solutions of the same problem, obtained by other researchers, who 
investigated the torsion and extension of helicoidal shells. It is shown that even for 
thin cross sections having large values of initial twist, the deviations between the 
two linear solutions are very small. To check the applicability of the theory to 
nonlinear regions, the theoretical results are compared to experimental results 
obtained during the course of the present research. The experiments include the 
torsion and extension of thin steel strips having rectangular cross sections. The 
agreement between both is very good, which proves the validity of the theory. 

1 Introduction 

The influence of initial twist on the torsional rigidity of thin 
prismatical bars was pointed out by Chu [1] who investigated 
the problem theoretically and experimentally. Recently it was 
pointed out [2] that the mathematical treatment of the 
problem, presented by Chu suffered from certain kinds of 
inaccuracies. These inaccuracies resulted mainly from the fact 
that a nonorthogonal system of coordinates was used without 
using the appropriate theory for such a system. These inac­
curacies have continued to appear in the vast literature dealing 
with the structural behavior of initially twisted blades of 
marine and aircraft propellers, helicopter rotors, different 
kinds of turbines, and other cases. It was also pointed out [2] 
that the influence of initial twist on the behavior of bars may 
be explained by the influence of the initial twist on the con­
tributions of warping. Following this indication, a new theory 
that decribes the influence of initial twist on the torsional 
rigidity of the bars was developed [3, 4]. It was shown that in 
certain cases the results, according to the new theory, were 
identical to those of Chu [1] and matched experimental results 
very well. In other cases they succeeded in overcoming the 
weak points on the previous theory. Following the results of 
[2] the torsion of initially twisted bars due to extension was 
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also explained by the influence of initial twist on the warping 
of the bar [5]. 

In the present paper the investigation presented in the 
foregoing is extended as follows: while in the previous cases, 
application of torsional moment alone or tension alone were 
considered here, the behavior of the bar under the 
simultaneous action of the two is considered. Moreover, the 
derivation is consistent and the region of the applicability of 
the theory is defined. To prove the validity of the theory the 
linear terms are compared to the linear solution to the 
problem of extension and torsion of thin strips with rec­
tangular cross sections obtained by other investigators using 
shell theory. In addition, theoretical results are also compared 
to experimental results that were obtained during the present 
research, so the ability of the theory to describe the nonlinear 
behavior is also assessed. 

2 Theoretical Derivation 

An initially twisted bar is shown in Fig. 1. The length of the 
bar is / and all the cross sections are identical. The initial twist 
is presented by a rotation /3 of the cross section about the x 
axis. The initial twist k, is given by: 

dx 
(1) 

The present derivation will be restricted to the case of con­
stant initial twist. It is also limited to twisted bars with cross 
sections having two-fold symmetry. Otherwise the torsion and 
axial extension are coupled with bending, which is not in­
cluded in the present analysis. 
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A torque M, and an axial force T are applied at the end of 
the bar. As a result, the bar deforms and the displacement 
vector of each point of the bar, W, is given by 

W=u eY (2) 
where ex, ey, and ez are unit vectors in the directions of x, y, 
and z, respectively. It is assumed, as was done previously [3, 
4], that the deformation is a superposition of a Saint-Venant 
torsion together with some axial motion ux of each cross 
section, unknown at this stage. The displacement components 
will then be: 

u = M,+(ty (3a) 

v = y(cos<p - 1) - z sin <p (3b) 

w = y simp + z(cosip- I) (3C) 

where \j/ is the Saint-Venant warping function, <p is the angle 
of rotation of the cross section, and 6 is the change in <p per 
unit length, given by: 

dx 
(4) 

Fig. 1 General description of the loaded initially twisted bar 

In Fig. 1 two different systems of coordinates are 
presented. The first system is the x, y, z system which is a 
fixed-in-space system. The axes y and z are orthogonal to x 
and to each other, which yields an orthogonal system of 
coordinates. The second system is the x, rj, f system where ij 
and f are the principal axes of the cross section of the bar, 
perpendicular to each other, and rotate with the cross section 
along x. The angle between the axes ij and y equals (3. 

Equations (3a-c) differ from equations (Wa-c) of [3] or 
equations (3a-c) of [4] by the fact that finite values of <p are 
allowed. Equations (3a-c) converge to the other equations 
assuming <p to be small enough so that cos <p equals unity and 
sin ip equals <p. To simplify the derivation it will be assumed 
that the bar is free to warp at the ends. This assumption 
results in uniform torsion along the bar, which 
mathematically means that 6 is constant and not a function of 
x. If necessary, the equations for the case where warping at 
the ends is restrained may be obtained in the same way that is 
presented here, but the derivation is a little more tedious. 

By differentiation of equations (3a-c) the nonlinear strain 
components are obtained as: 

<» = £4[ (x- ) a + (£ ) 2 + ( i r ) 2 l = 
dx 2 L\ dx / \ dx / V dx / J 

= e,+< ~dx 
[(e,+0^~) +02(y2+22)] (5«) 

N o m e n c l a t u r e 

A = cross-sectional area of 
the bar K = 

a = the length of a rec­
tangular cross section 

b = the thickness of a k = 
rectangular cross sec­
tion 

D = cross-sectional constant / = 
defined by equation M, = 
(10fl) 

E = Young's modulus of N,Q = 
elasticity 

ex,ey,ez = unit vectors in the 
directions x, y, and z, 
respectively 

F = cross-sectional constant S = 
defined by equation 
(10*) 

G = shear modulus of T = 
elasticity 

Ip = polar moment of inertia t],t2yh>U = 
of the cross section 

Js = the Saint-Venant linear u,v,w = 
torsional stiffness of a 
bar without an initial 
twist 

cross-sectional constant 
defined by equation 
(10e) 
the initial twist of the 
bar defined by equation 
(1) 
length of the bar 
the torsional moment 
that is applied to the bar 
constants of a thin 
symmetr ica l cross 
section defined by 
equa t ions (16^ ,* ) , 
respectively 
cross-sectional constant 
defined by equation 
(107) 
the tension force that is 
applied to the bar 
correction factors in 
equations (18a, b) 
disp lacement com­
p o n e n t s , in t h e 
directions x,y, and z, 
respectively 

V = 

W 

x,y,z 

0 = 

^xx> ^xy> *%v 

<P = 

+ = 

the axial motion of the 
cross section 
the total potential of the 
deformed bar 
the displacement vector 
of each point of the bar 
orthogonal fixed-in-s­
pace system of coor­
dinates 
the angle of initial twist 
of each cross section of 
the bar 
the strain components 
ordering measure 
defined by equation (6) 
the principal axes of 
each cross section of the 
bar 
elastic twist 
Poisson's ratio 
angle of elastic tor­
sional rotation 
the warping function 
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1 / du dv \ 1 / du du dv dv 
dx dy dx dy 

dw dw 

dx dy ) 

1 r di di / av M -e\ ~^~ -z+ ~ e,+e—- ) 
2 L dy dy V ' dx >\ 

\ / du dw \ \ / du du 

J \lh + l)x ) + Y \~dx~ ~dz~ 
dv dv 

dx dz 

(5b) 

dw dw 

dx dz ) " 

•[£•'•£(«•••£)] 
where 

(5c) 

(6) 

As a result of our assumptions e, is constant along the bar. 
The derivation will now be restricted to the case of small 
strains and finite rotations. This means that the terms (dux/dx 
+ 8 d^/dx), 1/2 6 (d^/dy - z), and 1/2 6 (d^/dz + y) are of 
order e, which is the order of strain. Since the derivation is 
restricted to the elastic region it means that for metals e equals 
0.005, at the most. Mathematically the finite rotations mean 
that the terms dy, dz, 6 d\j//dz and 6 d\p/dy are of lower order 
than the strains. The derivation will be restricted to cases 
where these terms are of order v7. For metals this means that 
these terms are, at the most, of order 0.07. Since V7is still 
small, it will be neglected compared to unity. Therefore the 
underlined terms in equations (5a,c) will be neglected. 

If at the edge x = 0, rotation and axial motion are restricted 
such that: 

<f) = ul=0 for x = 0 (7) 

Then the potential of all the internal and external forces that 
act on the bar is given according to bar theory, and based on 
our assumptions, by: 

V = 
JO JA J L ye„ 2 +2G(e i ; + e, 

2) dx dy dz 

Tu^=l)-Miu=l): 

= \'0{\A[h-2+2G^2+^2)]dxdy 

-Tei-M,el dz (8) 

Substitution of equations (5a-c) into equation (8) implies: 

K = [ i-~- (Ae]
2+2Se]8 + Kd2+Ipe]d

2+D63 + 

4) + YJs^-Til-M,e]t 1 „ .A G 
4 " " / Y 

+ 4- F 04 ) + ~ JJ2 - 7e, -M,d[ dx (9) 

where 

"-LKSW'** (10fl) 

K = 

\A \{y2+zl)1 dydz 

j \)(y
2+z2)dydz 

(10b) 

(10c) 

dy dz (lOd) 

(lOe) 

(10/) 

Js is the well-known Saint-Venant torsional stiffness of the 
same uniform bar without initial twist; Ip is the cross-
sectional moment of inertia, while F is the fourth-order area 
moment of the cross section. All the other terms D, K, and S 
involve integration of terms containing d^ldx over the cross 
section. In the present case of uniform cross section the only 
contribution to (d\j//dx) is due to the initial twist. 

Since the bar is in equilibrium, Vshould obtain a stationary 
value. This means that the first variation of Kwith respect to 
ex and d should vanish, which implies that: 

1 
EAe, + ES6+ —EI„82 = T (Hfl) 

ESe, + (GJs+EK)6 + EI„el6+ — E£>02 + — EF63 =M, 

(116) 
The underlined terms in equations (1 \a,b) are the nonlinear 

contributions. Substitution of the expression for e,, as ob­
tained from equation (1 la) into equation (Wb), yields: 

\GJ, K-
S2 

(-¥)•• 7 ("¥) )d2 

A ) 

M.--T (12) 

The first term in the curly brackets on the left side of equation 
(12) presents the usual Saint-Venant torsional rigidity of the 
bar without initial twist. The terms in the square brackets 
present the change in the torsional rigidity due to the initial 
twist and nonlinear terms associated with the elastic twist. The 
last term in the braces presents the increase in the torsional 
rigidity due to axial force in the bar [6, 7], This term is known 
to be important in the case of open, thin cross sections. The 
first term on the right side of equation (12) is the applied 
torsional moment while the second term represents the 
contribution of the axial force to the torsional moment due to 
the presence of initial twist. The underlined terms in equation 
(12) are again the nonlinear contributions. 

3 The Case of Thin Symmetrical Cross Sections 

It was shown [3, 4] that in the case of thin symmetrical cross 
sections, as shown in Fig. 2: 

d\p d\p dri 

dx d-q dx df dx 

d^ (dip dxp\_ 

ar 
-?) 
(13) 

Substitution of equation (13) into equations (lQa-f) implies: 
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a 

If equations (15a-e) and equations {\la-d) are substituted 
into equations ( l la-6) and the nonlinear terms are neglected, 
the linear equations for the case of thin rectangular cross 
sections are obtained. These linear equations enable one to 
obtain an assessment of the accuracy of the present theory. 
This is done by comparing these linear equations to the linear 
solution of the same problem which was obtained by Knowles 
and Reissner [9] who investigated the torsion and extension of 
helicoidal shells. The linear solution may be described as: 

Ea&(l+f,)e, + — Ekaib(l+t2)d=T 

-Eka3b(l+t2)et + \ --Gab^l+tj) 

+ ^Ek2a5b(l+t4)]d = M, 

(18a) 

12 

(186) 

Fig. 2 Cross section of a thin-walled prismatical bar with initial twist 

D 'iX'-SO 
•2 \ 2 

ditdi (14a) 

F= L k ( i + f ) 2 < ^ (i4d) 

Ip = \A \v2(l+-^r)dvd^ (14c) 

S = k\A j , , 2 ( l - - ^ - ) r f i , r f r (14e) 

The underlined terms in equations (14a-e) are negligible in the 
case of thin cross sections which results in: 

(15a) 
(156) 

(15c) 

(15d) 

(15e) 

D 

F 

h 
K 

= 

= 

= 

= 

kN 

N 

Q 
k2N 

where 

S = kQ 

N = \ Wd-qdf (16a) 

rj2 drjd^ (166) 

In the case of thin rectangular cross sections where the length 
of the cross section is a and the thickness 6, one obtains: 

a56 
N = — (17a) 

80 

a3 6 
Q= -n 
A = a 6 

j = —ab3 

3 

(176) 

(17c) 

(lid) 

Equation (17c0 may be found in any elementary book on the 
theory of elasticity (for example [8] page 273, equation (155)). 

According to the results of the theory presented in this paper 
t]t t2, tj, and tA are zero while according to equations (7.5), 
(7.6), and (8.4) of [9] they obtain the following values: 

h. = 

h = 

d = 

3+4? 
24 

9 + 8? 

40 

(ka)2 + -
29 + 88y + 56?2 

1920 
(ka)4+0[(ka)6] (19a) 

, 161+304c+152y2 

(ka) + 4 ^ {kay+0[(ka)6] 

h(ka)2 

45+20? 

168 

63 

640 
(kaY + 0[(A:a)6] 

, 531+504o + 232e2 

(ka)2 + 
10368 

(ka)" 

(196) 

(19c) 

+ 0[(Ara)6] 

(19d) 

From equations (18a-6) and (19a-c0 it is clear that in the cases 
where (ka) is smaller then 0.5 the difference between the 
results of the two theories will not exceed 8 percent. For value 
of {ka) smaller than 0.25 the difference is less than 2 percent. 

Additional theoretical confirmation of the present 
nonlinear theory, beyond the support offered by the linear 
theory of helicoidal shell [9], may be found in an unpublished 
work of E. Reissner. In that work, a solution on the finite 
axial torsion and extension of a slightly pretwisted strip is 
obtained by using Marguerr's shallow shell formulation. The 
nonlinear results of that work agree with equations ( l la-6) 
when the case of thin rectangular cross sections is considered. 

Substitution of equations (15a-e) and equations (\la-d) 
into equation (12) yields the nonlinear equation: 

(- 60 G V 6 
[(ka)2 + - l (fcO(to) 

1 +Ym2+i5£b]V9a)-
3M, 

"G63" 

E (i) (ka) 
Eab 

(20) 

The terms in the square brackets on the left side of equation 
(20) present the relative increase in the torsional rigidity due to 
initial twist and nonlinear contributions. The first term on the 
right side presents the linear value of (da) due to the applied 
torsional moment for the same untwisted beam, while the 
second term presents the linear contribution to (da) of ex­
ternally applied tension. In the next section the validity of 
equation (20) is checked by comparison to experimental 
results. 
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Fig. 3 The behavior of initially twisted steel strip under the action of 
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Fig. 4 The behavior of initially twisted steel strip under the action of 
end tension force 

long enough to allow the neglect of any influence of the 
boundary conditions. The initial twist was ka = 0.224. The 
purpose of this experiment was to investigate the behavior of 
the strip under increasing end torsional moment. The strip 
was held fixed at one end and the other free end was loaded by 
a tension force of 28.6 N. Then increasing values of torsional 
moments, M,, were applied at the same free end while at each 
moment the elastic twist was measured. In Fig. 3 the elastic 
twist (da) as a function of the nondimensionalized torsional 
moment 3M,/G63 , relative to the caseM, = 0 T = 28.6 N, is 
given. The solid dots present the experimental results while 
the solid line is the theoretical results obtained by using 
equation (20). It is shown that up to values of (da) = 0.12 the 
agreement between theoretical and experimental results is 
excellent. As the applied torque is increased the deviation 
between theory and experiment is increased, while theory 
predicts a slightly lower elastic torsion. This deviation is 
expected since the values of (dz) and (dy) slightly exceeds the 
previously mentioned limit of 0.07. Even then one can con­
clude that the agreement between theoretical and ex­
perimental results is still very good. The dotted line in Fig. 3 
represents the linear theory. It is clearly seen that at values of 
(da) as low as (da) = 0.05, nonlinear effects should be in­
cluded to accurately enough predict the behavior of the strip. 

The dimensions of the second specimen were: a = 4.45mm, 
b = 0.2mm, and length of 710mm. The initial twist was ka = 
0.203. The purpose of this experiment was to investigate the 
elastic untwist of the strip due to the action of tensile force. 
During initial tests it was found that the compressive stresses 
that are developed in the edges of the strip, while untwisting, 
tend to cause edge buckling of the thin strip. As a result of this 
buckling the torsional rigidity of the strip is reduced and the 
present mathematical model is no longer appropriate. To 
avoid this problem, a concentrated torsional moment of 
57.5N«mm was initially applied to the free edge of the strip 
which caused a substantial elastic twist. Increasing values of 
the tension force were then applied at the same edge which 
caused elastic untwist. This caused a reduction of the tensile 
stresses due to the initial torsional moment, but since they did 
not prove to be negative, buckling of the edges was 
eliminated. 

Figure 4 presents the elastic untwist of the bar relative to the 
state of M, = 57.5NNmm and T = 3.92N. In Fig. 4 the ex­
perimental results are compared with the theoretical 
predictions according to equation (20). Throughout all the 
regions the agreement between the two is very good. Part of 
the deviation may be explained by experimental errors which 
are also noticed if one examines the smoothness of the ex­
perimental curve. 

The almost linear behavior of (da) as a function of (T/EA) 
may lead to the wrong conclusion that the phenomenon is 
mainly linear. The reason for the linear appearance is the fact 
that while the term 3/2 (ka) (da) in equation (20) presents a 
reduction of the torsional rigidity, the terms 1/2 (da)2 + 15 
T/Eab present an increase of this rigidity. These two opposite 
influences, although noticeable by themselves (the increase in 
the torsional rigidity due to the term (\5T/Eab) exceeds 47 
percent) tend to cancel each other and results in a "linear-
looking" behavior. 

4 Experimental Results 

The experiments included measurements of the elastic 
torsion of initially twisted, thin rectangular steel strips under 
the action of external tension force and torsional moment. 
The material properties were E = 1.92 • 105 N/mm2 and G = 
7.45 • 104N/mm2 . 

The dimensions of the first specimen's cross section were: a 
= 10mm and b = 0.5mm. The length of the strip was 600mm, 

5 Conclusions 

A nonlinear theory that describes the nonlinear behavior of 
initially twisted bars under the simultaneous action of axial 
tension and torsional moment has been derived. The theory 
includes the influence of the initial twist on the torsional 
rigidity and torsional moment through its influence on the 
warping of the bar. Nonlinear effects include the influence of 
elastic twist and tension on the torsional rigidity. Special 
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attention has been devoted to the case of thin symmetrical 
cross sections. The validity of the derivation for the case of 
thin cross sections was proved in two ways. At first the linear 
set of equations for the case of thin rectangular cross sections 
was compared to the equations of other researchers who 
solved the same problem from another point of view, by 
considering it as torsion and extension of helicoidal shells. It 
was shown that up to values of (ka) = 0.5 the difference 
between the beam theory and the shell theory did not exceed 8 
percent. This difference is proportional to (ka)2 and decreases 
very rapidly with a decrease of (ka). The second way to check 
the accuracy of the derivation included a comparison of 
theoretical predictions to experimental results. The ex­
periments included the extension and torsion of thin rec­
tangular strips. In all cases the agreement between the two was 
very good, a fact that proves the validity. The experiments 
and theoretical calculations covered large regions of nonlinear 
behavior. It was shown that to obtain valuable theoretical 
results it is important to take all the nonlinear effects into 
consideration. 
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Penetration of Targets Described 
by a Mohr-Couiomb Failure 
Criterion With a Tension Cutoff1 

A model is developed to estimate the force on a conical-nosedpenetrator for normal 
entry into geological targets that have linear hydrostats and fail according to a 
Mohr-Coulomb criterion with a tension cutoff. The model is applicable to targets 
with shear strength which either increases with pressure (dry rocks) or is constant 
(sea ice, concrete, saturated rocks). For high enough penetrator velocity the target 
response is elastic-plastic, but at lower velocities stresses exceed the target tensile 
strength and the response includes an additional cracked region. Parametric results 
are obtained via a similarity transformation and solution to a nonlinear wave 
propagation problem. Predicted and measured penetrator decelerations are 
compared for afield test into a dry rock target and reasonable agreement is shown. 

Introduction 

Projectile penetration has been studied extensively for both 
metal and geological targets [1]. Investigations have focused 
on depth of penetration, deceleration history, loads, and 
structural response. Various approaches have been taken 
including the development of empirical relations such as those 
of [2] to predict penetration depth, the use of cylindrical or 
spherical cavity expansion approximations of target response 
for metals [3] and rocks [4], and the detailed modeling and 
numerical solution of rock target responses with two-
dimensional wave codes [5]. 

The present study is concerned with predicting the resistive 
force on a rigid conical-nosed penetrator during normal entry 
into a geological target and uses a cylindrical cavity expansion 
approximation. As in [4], a linear hydrostat represents the 
target pressure-volume strain behavior in contrast with the 
locking hydrostat model which has been employed in other 
cavity expansion analyses, such as [6]. The target shear 
strength is modeled by a Mohr-Coulomb failure criterion with 
a tension cutoff [7] and includes unconfined compressive 
strength which was neglected in [4]. This model is used to 
represent pressure-dependent triaxial failure data of antelope 
tuff [8], a dry porous rock from the Sandia Tonopah Test 
Range, Nevada, and can also represent materials with con­
stant shear strength such as sea ice, concrete, and saturated 
rock. 
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At high enough penetration speeds the target response is 
elastic-plastic, but at lower speeds when the circumferential 
stress 0-0 exceeds the target tensile strength, an additional 
cracked region with ae = 0 is included in the response. The 
extent of the cracked region may be significant when the 
target tensile strength is much less than its compressive 
strength, which is typical of geological materials [7]. 

The target response is calculated by solving a nonlinear, 
radial wave propagation problem via a similarity trans­
formation and numerical integration. Graphical results in­
clude stress wave profiles in the target, stress on the nose 
versus penetrator velocity, and the effect of uncertainty in 
tensile strength on the stress on the penetrator nose. For 
quasi-static penetration, a closed-form expression is 
developed for the stress on the conical nose. Predicted and 
measured penetrator deceleration histories are compared for a 
field test into a layer of antelope tuff and reasonable 
agreement is shown. Velocity-dependent interface friction is 
considered as an explanation of a significant increase in the 
measured deceleration just prior to the penetrator stopping. 

Governing Equations 

A rigid projectile with a conical nose penetrates a uniform 
target medium with normal incidence in the z direction; see 
Fig. 1. The axisymmetric target response is reduced to a one-
dimensional response by making the cylindrical cavity ex­
pansion approximation. This approximation allows only 
radial target motion, which is reasonable for penetrators with 
sharply pointed, slender noses, and enforces plane strain, ez 

= 0, a condition that may be approached at depths greater 
than a few penetrator aft-body diameters. Penetration of a 
given elemental layer of thickness dz produces wave motion in 
the radial direction only and the layer responds independently 
of other layers. Lagrangian and Eulerian radial coordinates, 
denoted R and r, respectively, are employed in the analysis 
and are related by 
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r = R + u (1) 
where u is the displacement in the radial direction. Target 
response regions are separated by two radially propagating 
wave fronts located at Eulerian coordinates cxt and c2t at a 
particular time t after the nose has begun to penetrate a given 
layer. 

The equations of momentum and mass conservation in 
terms of the Lagrangian coordinate R are, respectively, 

-e -2a -

Fig. 1 Geometry of the problem and target response regions 
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Fig. 2 Pressure-volume strain data for antelope tuff and linear 
hydrostat 

„ d2u „ do. 
^-(or-og){ 1 d u \ 

p0R = p(R + u)[l+ — 
du\ 

(2) 

(3) 

where p0 , p are the initial and current densities and ar, ae are 
the radial and circumferential components of Cauchy stress 
taken positive in compression. 

Material compressibility is modeled by a linear pressure-
volume change relation (hydrostat) 

P = Ki)\ P= - (ar + ae + az); ri=l-pQ/p (4a, b, c) 

where AT is a constant, P is the pressure, and 17 is the 
volumetric strain. A pressure-dependent yield or failure 
condition is assumed in the form 

ar-ae=itP+T0; T0=(1-/I/3)Q (5) 

where /* and T0 are constants and Q is the unconfined com­
pressive strength. An additional requirement is that the tensile 
strength Y of the material may not be exceeded, 

<J,*-Y (6) 

Together, equations (5) and (6) have been called a Mohr-
Coulomb failure criterion with a tension cutoff [7]. It is 
assumed that (5) and (6) hold for large strains. In fact, ee, 
according to the elementary strain definition is infinite along 
the conical nose, R = 0. At stress states below failure, the 
response is elastic and is governed by the isotropic Hooke's 
laws expressed in terms of Poisson's ratio v and the bulk 
modulus K, taken to be the same as in (4a). Equation (4a) with 
K = 2.0 GPa and (5) with az = ae (discussed later), \i = 1 and 
T0 = 10 MPa are compared with triaxial test data of antelope 
tuff [8] in Figs. 2 and 3. Antelope tuff is a partially welded 
ash-flow tuff with 30 percent porosity. The data are from 
field cores taken over a depth of 7.5 m at the Sandia Tonopah 
Test Range, Nevada. The data of Fig. 2 suggest some 
nonlinearity in the hydrostat; however, the linear fit is within 
10 percent of the mean data over the range shown. This range 
is sufficient for typical geologic penetration calculations 
(including those of this paper), as verified a posteriori. In 
addition, the total force on the penetrator is an integration of 
the stresses on the nose which is not as sensitive to small errors 
in the target model as other results might be, such as stress 
waves in the target. In Fig. 3 each data point represents the 
failure of a sample at a particular confining pressure which 
corresponds to ae in a penetration application. Since the 

©.PARTICLE LOADING PATH FOR 
RIGID-CRACKED-PLASTIC MODEL 

100 200 300 

CIRCUMFERENTIAL STRESS, Cg (MPa) 

Fig. 3 Triaxial strength data for antelope tuff and the Mohr-Coulomb 
failure criterion with a tension cutoff 
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difference in axial and lateral stress, ar — ag, increased 
moderately with increasing axial strain to sample failure, 
equation (5) fitted to the data will overestimate the material 
resistance to deformation. The tensile strength of antelope 
tuff was not measured but the ratio Q/Y = 11 is estimated 
from data in [7] for a similar rock, Nevada Test Site tuff, 
described as welded volcanic ash with a porosity of 20 per­
cent. 

To simplify the solution procedure we assume 

ffz = os (7) 

except where the response is elastic, which eliminates use of 
the Prandtl-Reuss equations [9]. The calculated ar at the 
conical nose is not sensitive to the assumption (7) as shown 
later by a comparison with results from az = (ar + ae)/2 
which has frequently been assumed in plasticity calculations 
[9]. 

The equations of conservation of momentum and mass 
across a cylindrical wavefront propagating in the radial 
direction with speed c are 

+ p v (v~ c) =ar
+ +p + v+ (v + - c) (8) 

p-(v~- c)=p+(v+- c) (9) 

in which v = du/dt is the particle velocity and + and — refer 
to particles on the radially outer and inner sides of the wave 
front, respectively. 

The boundary condition is that the cavity radius in a given 
layer dz conforms to the conical nose 

u(0, t) = ( Vt&n4>)t (10) 

where V is the vertical velocity of the penetrator, assumed 
constant during passage through a layer, and / = 0 is the time 
at which the conical nose first contacts the layer. 

Elastic-Plastic Response 

For high enough radial expansion velocity, tensile stresses 
in the target do not exceed the tensile strength of the rock and 
an elastic-plastic solution is valid. In Fig. 1 the response 
region between interfaces 1 and 2 is elastic with wave front 
speed c2 while the inner region is plastic with interface speed 
c,. 

Elastic Response. Equation (2) is linearized and written in 
terms of u using Hooke's law (with K, v) and er = du/dR, eg 

= u/R, and ez = 0. The resulting equation is reduced to a 
first-order ordinary differential equation in dq/d£ by the 
transformations 

R u 
£ = — • u = — ; « = £<? (11) 

where £ is a similarity variable and ct is the unknown velocity 
of the elastic-plastic interface. Integrating, satisfying u = 0 at 
the elastic wave front (£ = 1/7, 7 = c{/c2, c\ = [3(/(l— 
v)/(l + v)]K/p0), and satisfying the condition of incipient 
plasticity (5) at the elastic-plastic interface (£ = 1) gives the 
results 

u = (l + v)D[f(x)-xg(x)}/(3y); 

v = 2(1+ v)Df (x)/(3y) (12a, b) 

or=D[(l-2v)f(x)/x+g(x)]; ae=2Dg(x)-or (12c, d) 

f(x)=(l-x2)u2/x; g(x)=In[f(x) + Ux]; x = y^ 

D = 3yr0/[6(l-2v)yf(y)-2,x(l + v)yg(y)} 

where 

1 < £ < I /7 , f0 = T0/K, v = v/ct, ar = ar/K, ae = ag/K. 

Elastic-Plastic Interface Speed. Equations (4), (5), and (7) 
are combined in the form 

<jr = (l+2fi/3)K(l-p0/p) + 2To/3 (13) 

which applies on either side of the interface at £ = 1. Then (9), 
and (13) are used to express (8) across £ = £1 = 1 in terms of 
yf , c{, Vi , oh with the result 

(oA-2f0/3)(\-vi
+) 

l+2p./3-a2(l-v1
+)2 (14) 

where a = cx/cP andc P = (K/p0)
l/2. In (14), v{

 + and arl
 + 

are known through (12b, c), but a2 and vl ~ are unknown. cP 

is often called the "plastic" wave speed and is the elastic-
plastic interface speed for one-dimensional strain elastic-
perfectly plastic problems. For spherical waves this interface 
speed is not always cP and is unknown a priori; e.g., see 
Hopkins [10]. 

Plastic Response. Using (3)-(5) and (13) to substitute into 
(2) along with the transformations (11) gives the equation of 
motion in the plastic region 

[^-{^\,)^u)2}dH 

d? 

+ 

- / * ( « • 

('•T")«*«(f-£) + 

)+"]0*£)- (15) 
du . _ du \ "1 / du 

_+M + „ _ ) + f o £ j ( 1 + _ 
Equation (15) reflects both finite strains and density changes. 
The solution procedure in the plastic region is an inverse 
numerical integration beginning at the interface £ = 1 and 
proceeding to the cavity surface £ = 0. Dependent variables 

U=u + H, N=(dU/dH)/Z (16a, b) 

are used to convert (15) into a pair of first-order nonlinear 
differential equations which are solved by a Runge-Kutta 
integrating subroutine [11]. A value for the unknown constant 
a is assumed. With the restriction a2 < 1 + 2^/3, the 
coefficient of d2u/d%2 in (15) will always be negative and no 
singularity will occur during the integration. Continuity of u 
at £ = 1 gives a starting value, (/(£ = 1), while (14) with the 
assumed value of a gives vx from which JV(£ = 1) is deter­
mined. The integration progresses with £ decreasing until £ = 
0 is reached and £/(i; = 0) is calculated. Then the cavity ex­
pansion velocity Ktan<£ corresponding to the assumed value of 
a is determined 

Ktan0 = c,t/(O) = acPt/(O) (17) 

The stresses ar and oe in the plastic region are related to the 
displacement through (13), (3), and (5). Graphical results are 
produced conveniently by assuming a range of values of a and 
calculating directly ar/K over a range of values of V. Results 
of the calculations show ar is always positive and <je > — Y 
for high enough values of the expansion velocity V. Then the 
assumed elastic-plastic response is valid. At low values of V, 
the tensile limit is exceeded, ag < —Y, and radial cracking 
should be modeled. 

Quasi-Static Penetration 

When the penetration speed is low enough, a quasi-static 
analysis of the target response is valid and leads to a closed-
form result for the penetration resistance. Solutions of this 
type with application to metal punching have been developed 
in [9]. The target response consists of three regions denoted 
plastic (r0 < /• < r ,) , cracked (rt < r < r2) and rigid (r2 < r) 
where 1 and 2 refer to the interfaces in Fig. 1 and r is the 
Eulerian coordinate. The rigid region approximates an elastic 
region in which (6) is satisfied. If ar = Y at r = r2, the 
maximum tensile stress in an elastic region is ae = - Y at r = 
r2. The elastic region is approximated by a rigid region by 
requiring 
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u(r2) = 0; ar{r2)=Y 

In the cracked region we require a0 = 0 to represent radial 
cracking of the material when its tensile strength is exceeded, 
ag < —Y. This region is significant if Y is much less than the 
compressive strength Q, as for rocks [7]. 

Stress Solution. Rewriting (2) in terms of r and omitting 
the interia term gives the equation of static equilibrium. This 
is integrated in the cracked region by using a0 — az = 0 and in 
the plastic region by using (4), (5), and (7). After satisfying 
(186), incipient plasticity (5) at r = r? , and continuity of ar at 
rx, the stresses are determined in terms of the unknown rx. 
Particular results are 

/ • 2 / r ,=(T 0 /y) / ( l - /* /3) 

(18a, b) Rigid-Cracked-Plastic Response 

ff/O : 
r0 f (1+2^/3) 
- [ £) 

p/{l+2n/3) 

(19) 

(20) 
( 1 - V 3 ) \r0 

where a^ is the radial stress at the known cavity surface r0. 

Displacement Solution. The compressibility equation (3) is 
now used to determine the displacement field u and the ratio 
r, //•(,. In (3) p0/p is written in terms of P through (4) and, 
following Chadwick [12], the substitution u = r — R is made 
to give 

RdR = 
rdr 

(\-P/K) 

After substitution for the previously determined stresses in P, 
equation (21) is integrated. The result that satisfies R = b at r 
= r0, equation (18a), and continuity of displacements at rt is 

b2+2 J " xdx 

1 + 
To TO 

Mi-^/3) 
( r / je) | i / ( l+2/ i /3) 

--rS-2 
rr2 

Jr, 
xdx 

(22) 

1 
T0r\ 

(3~n)x 

where b is the initial hole radius. f0 is a small parameter, f0 

< < 1, and the integrand on the right side of (22) is ap­
proximated by 

= x + 
f0r\ 

for i 

(3-/*) + . 

( 3 - / * ) * 

while the terms involving f0 in the integrand on the left side of 
(22) are neglected. Then setting b = 0, and using (19) gives 

(3-*0 o (23) 
r0 f0 \ 6. 

where Y = Y/K. The error in the approximation (23) is less 
than 1 percent for the antelope tuff parameter values given in 
the following. The stress a^ required to expand a hole from 
zero initial radius to finite radius r0 is given by (20) with rt /r0 

given by (23) and estimates the stress on a penetrator at low 
speed. 

In the limit as /x — 0, equation (23) and the use of 
L'Hospital's rule with equation (20) gives 

ff/o = To (1 +1« ( 1 + 1 " ~ ) H = 0 (24) 

Equation (24) has application to quasi-static penetration in 
materials such as concrete and sea ice which have ap­
proximately constant shear strength over a substantial range 
of pressure. 

Results (given later) of the elastic-plastic solution for an­
telope tuff parameters show ag exceeds the target tensile 
s trength^ < — Y at low enough penetration speeds. A model 
is introduced in which the dynamic target response consists of 
three regions as for the quasi-static response, a plastic region 
for 0 < R < Rit a cracked region (oe = 0) fori?, < R < R2, 
and a rigid region for R > R2, where R is the Lagrangian 
coordinate. The interfaces at Rt and R2 are propagating 
radially outward and ae > 0 is required in the plastic region 
since material enters it from the cracked region. The loading 
path of a material particle is shown in Fig. 3. 

A similarity variable is introduced based on the outer wave 
speed c2 and the dependent variables are written in the 
nondimensional form 

f = 
R 

c2t c2t 

which apply throughout this section. 

v = • (25a, b, c) 

Field Equations. The effect of radial cracking is accounted 
for by setting ag = 0 in the cracked region. Using (3), (4), (7), 
and (25a, b) in (2) gives the equation of motion for the 
cracked region 

<2]> [ y £ ' - « + »>•] 

('+f)[f 

d2U 

-2(f + «) 
du 

a = c2/cp 

= 0, { , < £ < ! (26) 

(27) 

The equation of motion in the plastic region has the same 
form as before (15) with £, u, and a now given by (25a, b), 
and (27). 

Interface Conditions. As discussed in the quasi-static 
response section, the rigid region approximates a region of 
elastic response and is represented by requiring 

w = 0; v = 0; Y (28a,b,c,d,e) -Pol <rr
 = Y; at 

at £ = H . 
Applying the conservation of momentum and mass 

equations (8) and (9) across the rigid-cracked interface £2> 
using ag = 0 at £2 , and using (4), (7), and (28b-d) gives 

= 3 - 17 iJ, (29) 

with a and v2 ~ given by (27) and (25c). 
At the cracked-plastic interface £,, a similar procedure 

shows v, p, ar, and ag are continuous. An additional condition 
holds at this location, 

«tf =T-0/(l-/*/3) 

as determined from (5) with a0 = az = 0. 

(30) 

Solution Procedure. As in the elastic-plastic calculation, 
the field equations (26) and (15) are numerically integrated 
using the variables U, N (16a, b). One difference is that now 
both interface speeds cx and c2 are unknown at the beginning 
of the solution. A value of a = c2/cP is assumed which 
through (29) determines v2 ~ . With this and u = 0, equations 
(16a, b) determine starting values of U and N for a numerical 
integration of (26) which continues until a value of ar is 
calculated which satisfies (30). The corresponding value of £ 
= £i and the cracked-plastic interface speed is determined 
from cx/c2 = ft + «, . At £i the variables are continuous and 
the plastic field equation (15) is now integrated until J = 0 is 
reached and Kis determined through (17). 
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Fig. 4 Radial stress profiles in antelope tuff for two target response 
models and two penetrator velocities 
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Fig. 5 Radial stress on the conical nose of a penetrator into antelope 
tuff for various target response models 

Results and Comparison of Response Models 

Following the numerical procedures discussed previously, 
results are calculated for the various response models using 
the antelope tuff target parameters p. = 1, f0 = 0.005, v = 
0.234, and Y = 0.0007 from [7, 8]. Stress wave profiles in 
antelope tuff are shown in Fig. 4 for the elastic-plastic and 
rigid-cracked-plastic models at two penetrator velocities. 
Ktanc/i/cp = 0.104 is the minimum speed at which the tensile 
strength is not exceeded in the elastic-plastic solution and the 
curves agree closely, except for the small jump at the elastic-
plastic interface. At the lower speed the tensile strength Y is 
exceeded over a region of the elastic-plastic profile which is 
approximately half the extent of the cracked region. These 
profiles are representative of quasi-static profiles which 
depend on the current cavity radius, but not on its history, 
and, therefore, also represent the response produced by an 
ogival-nosed penetrator at low speed. They indicate the 
loading of a material particle increases monotonically and 
smoothly in contrast with the loading process (initial peak 
followed by unloading) which has sometimes been assumed in 
previous penetrator analyses as justification for the locked 
hydrostat approximation. 

Figure 5 shows the radial stress component on the conical 
nose da over a range of penetration speeds. For Vtan<j>/cP > 
0.104, numerical results indicate ot > — Y and the elastic-
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Fig. 6 Radial stress on the conical nose of a penetrator into antelope 
tuff and sea ice for various values of the tensile strengths 

plastic solution is valid. At lower velocities a cracked region 
should be modeled in the response. The rigid-cracked-plastic 
solution gives a 20 percent lower value of o,0 than does the 
elastic-plastic solution as V — 0 and does not differ 
significantly for Vtan4>/cp > 0.104. At low penetration 
speeds the rigid-cracked-plastic stress on the penetrator is 
higher than that which would be calculated if the rigid region 
were replaced by an elastic region. 

The model of [4] is based on (4) and (5) with T0 = 0. It gives 
(ĵ o — 0 as V — 0, but approaches the other models at high 
enough velocity. 

The "rigid-plastic" model consists of a plastic region 
governed by (15) and a rigid region represented by setting a^ 
= T0 ( l - ju /3) , from (30), and w,+ = 0 at R = /?,+ . This 
model overestimates a^ by about a factor of two in the quasi-
static limit and merges with the more accurate models at 
higher speeds. 

A comparison of elastic-plastic results based on az = (ar + 
ff9)/2, as frequently assumed in metal analyses [9], and on az 

= ag, as used in the present work, shows a maximum dif­
ference of 12 percent in a^ in the quasi-static limit and a 
smaller difference at higher speeds. 

Tensile strength measurements for rock may vary by a 
factor of 2 or more as discussed in [7]. Figure 6 shows the 
effect of uncertainty in Y on the stress versus velocity curves 
for antelope tuff (^ = 1, t0 = 0.005) and sea ice (/* = 0, f0 = 
0.0026 from [13]) for the rigid-cracked-plastic model. Dif­
ferences in Y are significant only at very low speeds for both 
materials. 

Figures 5 and 6 indicate that the rock property detail 
required to estimate penetration resistance depends on the 
penetrator speed. At the highest speeds shown, it is sufficient 
to know p0 , K, and ji\ as the speed is decreased, r0 is also 
needed; and at still lower speeds into the quasi-static regime, 
Ybecomes important. 

Comparison With a Field Test 

Results from the rigid-cracked-plastic, cavity-expansion 
analysis shown in Fig. 5 are used to compute the deceleration, 
velocity, and depth histories corresponding to a recent field 
test into a layer of antelope tuff [14]. Target material data are 
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Fig. 7 Acceleration - time measurement and predictions for a field 
test into antelope tuff 

presented in Figs. 2 and 3. Parameters used in the theory are 
those of Fig. 5 and K = 2.0 GPa, p0 = 1-62 Mg/m3 . 

The penetrator had total length 1.56m, aft-body diameter 
0.156m, an ogival nose shape with 6.0 CRH (caliber radius 
head), and mass 162 kg. For this test, the penetrator was 
propelled with a Davis Gun [4] and impacted the antelope tuff 
layer at 520 m/s. A 55.3 kg pusher plate, which fits the in­
ternal diameter of the gun barrel, was attached to the end of 
the penetrator. An onboard accelerometer measured the 
deceleration history with 2 kHz resolution and this was in­
tegrated to give velocity and depth [14]. The deceleration data 
were filtered to 500 Hz to remove structural vibrations and 
obtain the rigid body deceleration shown in Fig. 7. 

The theory in this study is for a penetrator with a conical 
nose whereas the test penetrator had an ogival nose. Data 
from several hundred soil penetration tests [2] indicate that a 
6.0 CRH ogival nose and a conical nose with tan</> = 0.30 are 
nearly equivalent and this is used for the calculations. 

For the theory, it is assumed that no deceleration takes 
place until the equivalent conical nose is embedded. Post-test 
observations of dry rock, concrete, and sea ice targets indicate 
a crater near the target surface, which is usually one to two 
nose lengths deep, followed by a tunnel, which has nearly the 
penetrator aft-body diameter. As in [4], sliding frictional 
forces between the conical nose and the target are neglected 
and equilibrium in the r and z directions is applied to a target 
particle at the conical surface to show a = a^ = az0, where a 
and ffro are the normal pressure and the radial stress on the 
conical nose, respectively. Integrating the normal pressure 
over the nose gives F = -wo2 aA, where F is the resultant axial 
force on the penetrator and a is the aft-body radius. The curve 
of Fig. 5 for the rigid-cracked-plastic model is used to 
calculate the penetrator rigid body deceleration which is 
compared with the measurement in Fig. 7. According to the 
theory, at / = 0.50 ms the nose is just embedded, at / = 3.0 
ms the pusher plate is removed from the penetrator by the 
rock surface producing a deceleration jump, and at 40 ms the 
penetrator velocity reduces to zero and is assumed to remain 
zero which results in the deceleration jumping to zero. The 

corresponding calculated final penetrator depth is 7.0 m while 
the measured depth was 7.9 m. 

The theory underpredicts deceleration at late time and this 
could be accounted for by the effect of sliding friction be­
tween the penetrator and rock target. Post-test observations 
[15] of penetrators show surface melting of the nose and some 
wear on the aft-body. Data for steel on steel [16] indicate a 
constant coefficient of friction/ = 0.08 for sliding velocities 
greater than 300 m/s and that / increases as the sliding 
velocity decreases; e .g . , / = 0.25 at 30 m/s. A comparison of 
the computed and measured responses shows a departure in 
the velocity regime where the data of [16] would indicate an 
increased friction resistance. If friction is included on the nose 
and neglected on the aft-body, the resultant axial force is F = 
ira2 da (1 + //tan<£), where / is the coefficient of sliding 
friction between the penetrator nose and rock target. In [16] it 
is suggested that the frictional resistance is controlled by a 
thin melt layer of the material with the lower melting point, 
which for the penetrator test would be the steel of the 
penetrator. Thus, the steel on steel data may approximate the 
sliding frictional resistance of steel on antelope tuff and these 
data from [16] are used to obtain the predicted deceleration 
curve with friction in Fig. 7. This curve shows a significant 
increase in the deceleration just prior to the penetrator 
stopping which is in qualitative agreement with the measured 
deceleration. 

Conclusions 

At high enough penetration speeds, an elastic-plastic 
solution for the Mohr-Coulomb target response is valid, while 
at low speeds an additional response region containing radial 
cracks is needed in the solution. The present target model 
gives a nonzero minimum force on the penetrator in the quasi-
static limit as compared with a zero force from the model of 
[4]. Calculated stress wave profiles in antelope tuff show 
smooth, monotonic loading of a target particle for either 
conical or ogival-nosed penetrators over a substantial low 
speed regime. Graphical results indicate that the target 
description detail required to determine the force on a 
penetrator depends on the penetrator speed. A comparison of 
predicted and measured penetrator decelerations for a field 
test into antelope tuff shows reasonable agreement. A sharp 
increase in the measured deceleration just before the 
penetrator stopped could be a result of velocity-dependent 
frictional forces. 
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Inertia! Effects in Poroelasticity 
The dynamic behavior of a chemically inert, isothermal mixture of an isotropic 
elastic solid and an elastic fluid is studied. Geometrically, this mixture is assumed to 
comprise a layer of fixed depth, bounded below by a rigid, impervious surface, and 
above by a free surface to which loads are applied. The resulting boundary-initial 
value problem is solved by use of a Green's function. Two different loading con­
ditions are used to demonstrate the effect of including inertia terms in the equations 
of motion. In the first example of a constant compressive load, our result is found 
to agree with the inertia-free solution only for a certain long-time approximation. 
The second example shows that for a harmonically varying compression, resonance 
displacements occur at certain loading frequencies, whereas the solution obtained 
by neglecting inertia does not predict this behavior. 

1 Introduction 

This paper is concerned with the question of whether one 
can justify neglecting constituent inertia terms in the 
equations of poroelasticity. The poroelasticity model is a 
linearized model of a compressible isothermal mixture of an 
isotropic elastic solid and an elastic fluid. Formulations of 
this model can be found in many articles on poroelasticity. In 
this paper, the governing equations are presented in the 
notation used by Bowen [1,2]. 

If one approaches classical diffusion theories from the 
standpoint of the general theory of mixtures, it becomes 
apparent that Darcy's law and Fick's law can only be reached 
after a complicated list of specializing assumptions. This list 
always contains some assumption regarding the acceleration 
of the constituents. Within the context of porous media 
models, Darcy's law simply neglects the acceleration of the 
fluid. It is frequently the case that the acceleration of the solid 
is also neglected. For example, the classical article by Biot [3] 
developed an inertia-free model for the study of consolidation 
problems. This model has been utilized extensively in the 
study of fluid-filled porous materials. The article by Rice and 
Cleary [4] should be consulted by readers interested in the 
Biot model. 

When interia terms are neglected, the resulting partial 
differential equations are singular perturbations of the 
original equations. As such, one would not expect the ap­
proximate equations to yield acceptable short-time solutions. 
For example, one could not satisfy the same number of initial 
conditions with the approximate equations. In spite of the 
singular nature of the inertia-free approximation, persuasive 
arguments can be made that suggest that inertia terms are only 
important for times that are small. Roughly speaking, one 
argues that diffusion is a slow process whose effects become 
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important for a long time. Therefore, suggests the argument, 
one might as well neglect at the outset terms in the governing 
partial differential equations which have no significant efffect 
on the long-time answers. By the use of a rather simple 
example, we will show that the preceding argument is not 
always correct. An example will be given that illustrates a 
long-time inertial effect that cannot be neglected. 

The approach used here is straightforward. We will for­
mulate and solve certain problems with and without the 
inertia terms. We will then look at approximations sufficient 
to reduce the solutions with inertia to the solutions without 
inertia. Next, we will investigate whether these ap­
proximations are realistic. In deciding whether a particular 
approximation is realistic we will frequently use order-of-
magnitude arguments based on published material properties 
of definite porous materials. The material properties adopted 
here are those summarized by Rice and Cleary [4]. 

Section 2 contains a summary of the governing equations of 
poroelasticity. Section 3 represents the solution of a class of 
one-dimensional initial-boundary value problems in terms of 
an appropriate Green's function. The initial-boundary value 
problem for the Green's function is such that it can be 
represented in a classical form as an eigenfunction expansion. 
The time-dependent part of the Green's function obeys a 
system of ordinary differential equations. The inertial effects 
of interest in this paper are isolated in the form of this system 
of equations. Section 4 contains the details of how one 
calculates the Green's function. This calculation involves 
factoring a certain fourth-order polynomial. It turns out that 
rather accurate approximations can be derived for the roots of 
this polynomial. Section 5 contains the derivation of these 
approximate roots. 

Section 6 contains our first example problem. Essentially it 
is the same one-dimensional problem solved by Biot [3] except 
that all inertia terms have been restored. This problem at­
tempts to determine the displacement resulting from a 
compressive load applied to a porous material of specified 
length. The sufficient conditions required to reduce this 
solution to Biot's are discussed in detail. Among these con­
ditions is one that characterizes the initial layer, inside of 
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which inertial terms cannot be neglected. By use of the 
example data mentioned in the foregoing, the conclusion for 
this problem is that inertial effects are essentially unim­
portant. In other words, the sufficient conditions are 
reasonable physical assumptions. 

Our final section contains a slight modification of the Biot 
problem. The compressive load is allowed to oscillate with a 
prescribed frequency. This problem is solved with and 
without the inertia terms. In this case the approximations 
sufficient to reduce the solution with inertia to the one 
without are simply unacceptable. We will show that the 
prescribed frequency must be unreasonably small so one can 
utilize the inertia-free solution. This example illustrates the 
long-time inertia effect essential to the premise of this paper. 

In Appendix A we have listed the material constants that 
have been calculated from the data presented by Rice and 
Cleary. 

2 Governing Equations of Poroelasticity 

For a binary isothermal mixture of an isotropic elastic solid 
with a linear compressible fluid, the governing partial dif­
ferential equations are: 

Pf dt2 • \f grad(div uf) + \fi grad(div us) 

duf 3ut _ , ^ V _ 
' \ dt dt 

(2.1) 

and 

a2u. 
dt2 • = (\s + ns) grad(div us) + JXS div(grad us) 

+ A y i g r a d ( d i v u / ) + s ( ^ - - ^ ) , (2.2) 

where pj is the reference density of the fluid, u^ is the fluid 
displacement, ps is the reference density of the solid, and us is 
its displacement. The coefficients \f, \fs, \ s , and /xs are elastic 
constants, and £ is the drag coefficient. A derivation of these 
field equations from the general theory of mixtures can be 
found in the articles by Bowen [1, 2]. The material constants 
in (2.1) and (2.2) are required to obey the following 
inequalities: 

X/>0, 

2 

3 

^ > 0 , 

\K+ TUS} >X2 
fi> 

(2.3) 

(2.4) 

(2.5) 

and 

£>0 . (2.6) 

The constitutive equations used to derive (2.1) and (2.2) are 

T= (X / +X / J (divu7) 1+ (\s + \fs) (trEs) l + 2fisEs 

(2.7) 

and 

Pffif = - X7 div u7 - \fs tr Es (2.8) 

where T is the stress on the porous material and Hf represents 
the chemical potential for the fluid. It is customary to replace 
the chemical potential by the fluid pore pressure Pf. These 
two quantities are related by 

<t>Pf = Pfixf, (2.9) 

where 4> is the porosity of the solid in its reference state. The 
quantity Es appearing in (2.7) and (2.8) is the infinitesimal 
strain tensor for the solid, defined by 

E* = - (grad us + (grad us)
 T). (2.10) 

This work is concerned with one-dimensional longitudinal 
motions of the fluid and solid. For this case, the field 
equations may be simplified and written in matrix form as 

d2u ^ d2u du 

Here, u is the displacement matrix defined by 

~uf(x,t) 

us(x,t) 

(2.11) 

(2.12) 

where Uj and us are now the one-dimensional fluid and solid 
displacements, respectively. The matrices M, Q, and E in 
(2.11) are symmetric matrices defined by 

Q = 

M = 
Pf 0 

0 P. 

\s + 2/x, 

and 

E = 
- 1 

1 

(2.13) 

(2.14) 

(2.15) 

Here, M is the bulk density matrix, Q is the elastic coefficient 
matrix, and £E is the damping matrix. Because of the 
inequalities (2.3)-(2.5), the matrix Q is positive definite. 
Clearly M is positive definite and E is positive semidefinite. 

3 Boundary-Initial Value Problem Formulation and 
the Green's Function 

In this paper, we are interested in a class of boundary value 
problems geometrically similar to one investigated by Biot [3]. 
Consider a column of fluid-saturated poroelastic material 
confined laterally by a rigid sheath so that no lateral ex­
pansion can occur. At the top, the stress and the pore pressure 
are prescribed. At the bottom of the column, the fluid and 
solid displacements are prescribed. 

In the mathematical statement of this problem, take x to be 
positive downward with its origin at the upper surface. 
Initially we have 

u(x,0) = f(x) 

and 

in 
dt 

(x,0) = g(*) 

(3.1) 

(3.2) 

for 0 < x < h, where h is the length of the column. At x = 0 
we require that 

T(0,0 = -s{t) 

and 

(3.3) 

(3.4) Pf(0,t)=r(t) 

for 0 < t < oo. At x = h we require that 

u(h,t)=k(t) (3.5) 

for 0 < t < oo. The functions f, g, s, r, and k constitute the 
data for our class of problems and, of course, are regarded as 
given. It is convenient to define a column matrix q (t) by 
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q(0 = 
-s(0+</>/-(0 

(3.6) 

With this definition, the boundary conditions (3.3) and (3.4) 
can be written 

du 
Q ^ - ( 0 , O = q ( O 

ox 
(3.7) 

after (2.7)-(2.9) and (2.14) have been used. 
By use of standard Green's function arguments, the 

solution u(x,0 of our initial-boundary value problem can be 
expressed in terms of the data and a Green's matrix. The 
result is as follows: 

u(x,t) = j o G(x,t,xo,0)Mg(x0)dx0 

+ ~\oG(x,t,xQfi)Mf(x0)dx0 

+ {[ G(x,t,x0fi)Ei(x0)dx0 Jo 

- f G(x,t,0,t0)q(t0)dt0 Jo 

f dG 
- — (x,(,/i,(„)Qk(/„)d/0. 

Jo d*0 
(3.8) 

The quantity G(x,t,x0,t0) is the Green's matrix defined by 

M 
dt2 

dG 
(x,t,x0,to) + £E~ (x,t,x0,tQ) 

dt 

~Q 
d2G 
-^ (x,t,xQ,t0) = 8(t-t0)8(x-xQ)l, 

where 

G(x,t,x0,t0) = 0 

for? <t0 andO < x < h, 

G(h,t,x0,t0) = 0 

for 0 < / < oo and 

dG 

d~x 
(0,/,Wo) = 0 

(3.9) 

(3.10) 

(3.H) 

(3.12) 

for 0 < / < o o . In (3.9) I is the 2 x 2 identity matrix, x0 is an 
arbitrary point in (0,h), and t0 is an arbitrary time in (0,oo). In 
addition, 8(x-x0) and 6(t-t0) are the Dirac delta functions 
with poles at x0 said t0, respectively. 

4 Solution for the Green's Function 

We will use an eigenfunction expansion to determine 
G(x,t,x0,t0). If one examines the eigenfunctions associated 
with the space part of our differential operator, it is possible 
to conclude that G(x,t,x0,t0) has the representation 

G(x,t,x0,t0)= ^ K „ ( / , / 0 ) C o s i " ~ nX 

MK„(^) + ?EK„(W o )+ ( -?^J^QK„(( , ( 0 ) 

h 

Ah2 

«(/-/„) I. (4.2) 

The initial condition (3.10) implies that 

K„ (/,/„) = 0 (4.3) 

for t < t0. This fact allows us to compute the Laplace 
transform of (4.2) and obtain 

(s2M + HsE+ (-n~^ * Q ) K„ (s,t0)= j e-«o I, (4.4) 

where s denotes the transform parameter and K„ (s,t0) 
denotes the Laplace transform of Kn(t,t0). The formal 
solution of (4.4) is 

K „ ( ^ 0 ) 

( 2 « - 1)2TT2 

s2 adj M + £sadj E + -f— adj Q 
2 4/r 

= — e~s'o 
h 

det Ls2M + £sE + 
( 2 « - 1 ) 2 T T 2 

4h~2 o) 
(4.5) 

where adj denotes the matrix adjoint operation. In other 
words, adj Q is the transposed matrix of cofactors of the 2 x 
2 matrix Q. Because M, Q, and E are 2 X 2 matrices, the adj 
operator is linear. It is useful to note in passing that if we 
neglect inertia in (4.5) by placing M to zero, the resulting 
formula is the one obtained by Bowen [5, Sect. 4] in the 
derivation of the Green's function for classical consolidation 
problems. 

To compute the inverse Laplace transform of K„(s,t0) in 
(4.5), we must calculate the roots /3„ of 

(ft det ft2M + £fr,E + 
( 2 « - 1 ) 2 T T 2 

Ah2 o) -0, (4.6) 

The four roots of (4.6) are either all real, two real, and one 
complex conjugate pair, or two complex conjugate pairs. In 
each case it is possible to prove that the real part of each root 
cannot be positive. 

Since analytical solutions to fourth-order polynomials are 
difficult to interpret, it was necessary to solve (4.6) 
numerically for certain example porous materials. The 
materials selected and their material properties are discussed 
in Appendix A. For our immediate purposes, it is sufficient to 
note that none of the materials considered had four real roots 
for any nonzero value of n. Roughly speaking, for small n 
there are two real and one complex conjugate pair of roots, 
and we will factor (4.6) in the form 

d e t ^ M + ^ E + ^ ^ f ^ Q ) 

= de tM(f t ,+ a „) ( /3„+ T „) ( ( /3„ + r„) 2 + «S). (4.7) 

As n increases, the numbers <x„ and y„ approach each other 
until they become equal. For larger values of n these two real 
roots branch into another complex conjugate pair. In this 
case, we will factor (4.6) in the form 

det(/32M + ^ „ E +
( - ^ ^ - 2 Q ) 

Cos 
(2/z- 1)TTA-0 

Th 
(4.1) 

= det M((/3„ +£,(•>)*+„„ (i»X0S„ + tn(2))2 + «„(2)2). (4.8) 

Note that (4.1) obeys the boundary conditions (3.11) and 
(3.12). The 2 x 2 matrices K„ are determined by substitution 
of (4.1) into (3.9). The result of this calculation is that each 
K„(t,t0) must obey 

In the first case, by use of the factorization (4.7), we can 
invert (4.5) to obtain 

K„ (/,/<>)= - f # ( ' - ' o ) [ e - a " ( ' - ' o ) A„+e-V- 'o>B„ 
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-e- f -c- 'o) Cos o>„ (/-/o)(A„ + B J 

+ e - f « < ' - ' o ) S i n c o „ ( ^ ^ o ) ( ^ L Z ^ A„ + ^ ^ B „ 
\ CO., U„ 

1 
+ — M ' ) } • (4.9) 

The derivation of (4.15) can be found in the article by Bowen 
[5, Sec. 4]. 

Given the representation (4.1) and the preceding forms for 
K„ (t,t0), the solution (3.8) can be written 

»<*.'>= L Cos^ ^ 

where H is the Heaviside step function, 

1 
A M — 

" ( d e t M ) ( 7 „ - a „ ) ( ( a „ - r „ ) 2 + oJ„
2) 

( 2 « - 1 ) 2 T T 2 

—~r, [««adJ 
+ 01,, ) <-

M 
[K„(/,O)MJO Cos 

{In — \)-KX0 

2h 
g(x0)dx0 

• a„ £ adj E + 
Ah2 adj QJ, (4.10) V dt 

(t,0) M + £K„ (/,0) E ) j f l Cos " J**0 f (*0) dx0] 

B " (detM) 7 TT7 TvTT—2^ 7 " a dJ 

( 2 « - l ) 2 x 2 

M 
- £ ) Cos 

(2/7-l)xx 

~ 7 „ £ a d j E + 
4/!2 adj Q J . 

2h 

(2H-1)TT 

[ j o K„(Mo)q(<o)rffo 

(4. II) 

(i) 

It follows from (4.9) that 

K„(r0
+,r„)=o (4.12) 

and 

M—^(?o + >?o)=x L (4-13> 
o/ n 

These results could have been established directly from (4.2). 
In the case of large n, the factorization (4.8) is used and 

(4.5) inverts to the result 

K„{t,t0)= j H (t-t0)[e~^('^(Cw 

Sin co<," U - ^ - D j / ' C o s o j , " (t-tQ)) 

+ e-#)<<-'o>(C<2>Sin42>(r-/0) 

-D j , 2 'Cos co<2> ( ? - ; „ ) ) ] . (4.14) 

The matrices Cj,", Cj,2), Dj,", and Dj2) are defined in terms of 
M, Q, E, and the roots of (4.8) by lengthy and complicated 
formulas. It turns out that the number of terms in the ex­
pansion (4.1) before one must use (4.14) is extremely large for 
the example materials discussed in Appendix A. For a height 
of 100 m, the smallest number of terms arises for Berea 
sandstone. In this case it takes more than 12,000 terms before 
one must utilize (4.14) rather than (4.9). Thus, for the sake of 
brevity, we will not list the formulas that define Cj,1', Cj,2), 
D<",andD<2». 

To make comparisons with the inertia-free case, it is 
desirable to invert (4.5) in the case where M is placed to zero. 
The result in this case turns out to be 

2 2 — c ' ( ' " ' o , 

Kn(t,t0)=—HV-t0)e
 4* F 

+ ( - 1)" (2"2h
1)lr \'0 K„ U,h) QM/o) dt0] • (4.18) 

In the case where inertia is neglected one simply takes M to be 
zero in (4.18) and adopts (4.15) as the expression for K„ (t,t0) 
rather than (4.9) and (4.14). 

5 Analytical Approximations 

Consider the polynomial (4.6) written in the expanded form 

(det M) /34 + {/r( (adj M)E)0J 

(2n-l)27r2 

+ 

+ 

+ 

Ah2 

(2«-l)27T2 

Ah 

(2rt- l)47T4 

16A4 

/ r ( (ad jM)Q)/3 2 

2 £//-[(adjQ)E)/3„ 

detQ = 0. (5.1) 

It turns out that rather good analytical approximations to the 
roots of (5.1) can be derived in certain cases. These ap­
proximations are useful when we compare our results with 
results from the inertia-free approximation. First we need to 
introduce the acceleration wave speeds u, and u2 defined by 
the roots of 

det(Q-w2M) = 0 

and the "frozen" wave speed w0 defined by 

fr(adjQ)E 

(5.2) 

(5.3) 
tr(adj M)E 

If by convention we take ux to be the largest acceleration wave 
speed, then it can be shown that 

u\>u\>u\. 

adjE %h 
5U-tQ), (4.15) 

(5.4) 

Readers interested in the origins of the squared speeds ul, u\, 
and u\ within the context of wave propagation problems in 
poroelasticity should consult Biot [6], Bowen [1, Section 2.10; 
2, Section 10], Bowen and Chen [7], and Bowen and Reinicke 
[8]. Given the definitions (5.2) and (5.3), the polynomial (5.1) 
can be written 

/ r ( (adjQ)E) i r 2 (2«- l ) 2 

where c is the compressible consolidation coefficient defined 
by 

|8* + «o/3j + 
(2n-l)27r2 

Ah2 

detQ 

and 

F = 
1 

$fr((adjQ)E) 

detQ 

(4.16) + 

where 

( " i+" 2 ) |3 2 

, ( 2 « - l ) „ , , 
o>0u

2
0f3„+——4— w?M| =0, (5.5) 

(2/ !- l )27T2 , (2«- l )47T4 

^/•((adjQ)E) 
(ad jQ-

//•(adjQ)E 
ad jE) . (4.17) u0 detM \pf p,/ Pf Ps' 
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Numerical values of constants u0,uuu2, and w0 are shown in 
Table 1 of Appendix A. The quantity w0 is defined in terms of 
the drag coefficient in such a fashion that it has the physical 
dimension of frequency. Therefore, l/w0 is a characteristic 
time of diffusion. As Table 1 indicates, this time is very small. 
For this reason we seek approximations to the four roots of 
(5.5) valid for small e„, where e„ is a dimensionless quantity 
defined by 

( 2 M - 1 ) 7 T U0 

w0 2h 
(5.7) 

Because t„ increases with n, the approximations given in the 
following are not valid for all n. However, e„ is small for 
rather large n for the example materials shown in Table 1 
providing the height h is not exceedingly small. For example, 
with an h of 100 m, the largest value of et arises for Berea 
sandstone. This value is approximately 5 x 10~ 5 . One can 
easily see that it takes approximately 10,000 terms before e„ is 
near unity. Thus , it is not surprising that approximations 
based on the assumption of small e„ are often valid. In the 
notat ion of the factorization (4.7), the approximate roots of 
(5.1)areeasilyshowntobe 

u\u\ 

«o 
w0e

2+0(e2), 

yn = " o • 
u\+u\- •ul 

u\ 
w0e2+0(ej), 

f„ = 
(u\-ul){ul-u\) 

2u0 
w0e2+0(e2) 

and 

w„=w0e„+0(ei) 

Another form for (5.8) is 

( 2 « - 1 ) 2 T T 2 

Ah1 c + 0(el). 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

where c is defined by (4.16). If terms 0(ej) are neglected, this 
root corresponds exactly to the single root which Biot [3] 
obtained in his inertia-free calculation. There is an interesting 
special feature of the example materials listed in Table 1. In 
each case the speed ux is very close or equal to the speed u0. 
Because of this fact, it follows from (5.10) that the values of 
the coefficients £"„ will always be extremely small. One could 
readily generate approximate roots of (5.1) valid for all n if 
one were to construct a small dimensionless parameter based 
on the difference ux - H 0 . Such an approximation might be 
useful in certain applications, however we prefer not to ex­
ploit this approach here.2 

Given (5.8)-(5.11), it is possible to derive approximations 
for the matrices A„ and B„ defined by (4.10) and (4.11). The 
results turn out to be 

and 

w0 <-i 

F is defi 
it follows that 

A „ = F + 0(e„) 

adjE 

(5.13) 

- M - ' ] + 0 ( e „ 2 ) , (5.14) 
wo (./r[(adjM)E) 

where F is defined by (4.17). Given (5.13), (5.14), and (4.17), 

If one equates »j to u0 in (5.1), the resulting polynomial can be shown to 
have at least two real roots unless the integer n is larger than 1/2 (1 + 
ugh/itui). This result is the basis for our comments in Section 4 regarding the 
large number of terms in (4.1) before one must utilize (4.14). 

Wn <-

I f adjQ 
- M - i 

w0 ^ «o det M 

0 / fr((adjM)E] ('-¥) adjE 
)+0(e„) (5.15) 

and 

A„ + 
w„ 

adjE 1 

w0 e„?/-{(adjM)E] 
+ 0(e„). (5.16) 

It is possible to see from (5.8)—(5.11) some of the fun­
damental differences that result when one retains inertia 
terms. When inertia is omitted, (4.15) shows that there is one 
exponentially decaying mode for each n. Because of (5.8) and 
(5.12), we see that this mode decays slowly. This slow dif­
fusion mode is present in (4.9). The root a„ is of the second 
order in e„ and thus small. Unlike the inertia-free case, 
equation (4.9) shows a second diffusion mode. Equation (5.9) 
shows that the root 7,, is quite large. Thus, the second dif­
fusion mode is, in a sense, a fast diffusion mode. In addition 
to the two exponental modes, (4.9) displays two damped 
oscillatory modes. It is perhaps clear that in principle one can 
select boundary conditions that tend to excite any one of these 
modes. This fact is basic to the fundamental conclusion of 
this work. 

In closing this section, it is interesting to record the large e„ 
roots of (5.1). In terms of the notation introduced in (4.8), the 
roots are 

L")/enw0=,/„'2 , 2 , - + 0 ( ^ J , 
V CM / 

L ( 2 ) / e „ W o : 

2 ( « 2 - M 2 ) e„ 

U0 — U2 1 

2(u 2 -w 2 )7„ 

and 

•Uo(-i) 

w „ < » / e „ w 0 = ^ + o ( l ) , 
"0 ^ in > 

w „ < 2 > / e „ w 0 = ^ + 0 ( l ) . 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

6 Biot Problem 

In the inertia-free case, Biot [3] solved a one-dimensional 
problem that fits our general scheme. His problem 
corresponds to the following choices for the boundary and 
initial conditions: 

(6.1) 

(6.2) 

(6.3) 

,.. .., , , , . (6.4) 
//•((adjQ)E) "' 

Because Biot neglected inertia, he did not find it necessary to 
prescribe an initial velocity. In our case we shall take the 
second initial condition to be: 

and 

f(*) = -

s(t)=P0, 

rU)=0, 

k(0=0, 

(h-x) [!]• 

g ( * ) = 0 . (6.5) 

The constant P0 in (6.1) represents a uniform applied stress at 
x = 0. The choice r(t) - 0 indicates that x = 0 is a surface 
that is pervious to fluid flow. Equation (6.3) arises from the 
requirement that the surface x = h is fixed and impervious to 
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fluid flow. Equation (6.4) results from the assumption that t 
= 0, the fluid content change is zero, and the initial stress 
equals —PQ. The details of this argument can be found in 
Biot's paper. Because Biot neglected inertia in his model, 
there is a data compatibility requirement that T(x,t) is, in 
fact, independent of x for all t. Biot used this fact in deciding 
on his particular initial condition. In our case such a com­
patibility requirement does not exist. In any case, equation 
(6.4) is adopted to make comparisons with Biot's result. 
Bowen [5] has shown that the displacement that results from 
(6. l)-(6.4) in the inertia-free case is 

u(x,()- 4h2P0 1 A _ J flK, 
7T2 tr ((adj Q) E} ^ i (2« - 1 )2 dt (M>)M 

1] ( 2 « - l ) a x ^o|(i>„(^o)^o)[?] 

Cos 
(2n-l)wx 

2h~' 

and (6.6) is replaced by 

(6.10) 

UB(X,t)-
8hPn MYIE 1 

•M& ( 2« - l ) 2 ' 
l-e AhA 

( 2 / I - 1 ) T X 
Cos — 1- • 

P0 (h-x), (6.6) 
2h ' ?r(adjQ)E 

where F is the square matrix defined by (4.17). Our first 
example will be shown to be a generalization of the result 
(6.6). 

Given (6.1)-(6.5), the general expression for the 
displacement, (4.18), reduces to 

u(x,t) = 
1 1 

Tr2 fr[(adjQ)E) ^ ( 2 « - l ) 2 dt 
2 -^ (t,0) M 

c: Cos 
(In-l)irx 

Th •/,of;(I>.(wo)*o)[!] 
Cos 

n = \ 

(2n- \)irx 

2h 
(6.7) 

where, from (4.9), in the case of small n, 

h dK„ 

+ ( r„ e~y Cos u„t + u„ e-?n< Sin u„t] (A„ +B„) 

+ {-ffl e-in< Sin u„t + u„ e~y Cos u„t\ (^iZll 

) 
+ ls-Ji B„ + i M (6.8) 

and 

— [ K„ (t,t0) dt0 = — (1 - c - V ) A„ + — (1 - e - V ) B„ 
2 Jo a„ 7 / | 

1 

UB(x,t) 
8APn 1 

(2 / i - l ) iw 
Cos — 1-

„=, ( 2 « - l ) 

^o 
2h ? r (ad jQ)E 

Next we will approximate (6.8) by 

dK„ . „. 2 f / adjE 
?7((adj]VI)E) * < • • » - - } ( ( 

(6.11) 

adjE 
(«] -«0X"0-"2) 2 

4 w06fl' 
2«0 Coso)0€„n. (6.12) 

fr{(adjM)E) 

Equation (6.12) follows from (6.8) by use of (5.8)-(5.11), 
(5.13), and (5.14) to approximate each coefficient in (6.8) by 
the value it takes for small e„. In addition, the argument of 
each exponential and trigonometric function is approximated 
by applying the small e„ approximations (5.9)-(5.11). Since 
neglecting inertia is a singular perturbation of the equations 
of motion, we expect (6.11) to agree with (6.10) for times 
outside of some interval near t = 0. Therefore, it is no sur­
prise that the approximations sufficient to reduce (6.10) to 
(6.11) require some assumption about the time t. The 
assumption we will make is to restrict / such that 

a> 0 f>>l . (6-13) 

Because w0 is typically quite large, equation (6.13) is satisfied 
for very small times. This assumption reduces (6.12) to 

adjE « « ( , 0 ) = 1 
dt h ?r((adjM)E) 

, 2 2., 2 2. 
("1 -«0)<"0-"2) 2 

4 «0«»' 
2«0 

C o s uoe„t. (6.14) 

<4 + fn 

(<*„ - L 

I $„ (1 -e-y Cos u„t) +wn e-U Sin u„t)(A„ +B„) 
The same two approximations used to obtain (6.14) can be 

applied to (6.9). The resulting approximation is 

"I "2 

co„(l -e~y Cosoint)-{„ e-y Smu„t] 

7«- f« _ 1 

\'K„U,t0)dt0=^ ?° A 
JO U\Uiwnt„ (. 

l - e "o 

2 , 
W0£„(>. 

A„ + ^ ^ B „ + 1 M - ' ) . (6.9) 

Similar formulas follow from (4.14) for large n. 
As explained in Section 1, we are interested in conditions 

sufficient to reduce (6.7) to (6.6). As a first formal step we 
will replace the infinite sum in (6.6) and (6.7) by a finite sum 
of TV terms. The integer N is restricted by our next ap­
proximation. We will adopt the small e„ approximations 
derived in Section 5. As explained in Section 5, because of the 
magnitude of the characteristic frequency co0, t„ remains 
small for rather large n. Immediately we see that we need not 
concern ourselves with the terms in the solution (6,7) which 
require the use of (4.14) rather than (4.9). Given our 
specification of N, equation (6.7) is replaced by 

1 f a j E M- '1 ' f t"f-«d)(«6-«D 
«3Wr{(ad jM)E) J coge,, I 2u% e" 

( l - e 2"o 

(«i-«o)(«o-«i) 2 
- u0c„t 

Cos u0e 
• ' ) 

(«i-«oK«o-«i) 2 
4 " 0 c / i ' 2*3 - " o : _ .l\ a d J Q 

i / f r { ( a d j M ) E ) 

+ e '"o Sin «<,«„']( 

u\u\ \ adj E 

u\ det M 

M - ' + (l-^)- a d J E 1 
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2 2 1 - e 
Z "Qln< 

2"0 Cos u>Qt„t 
Cos co0e„?Cos 

(ln-\)irx 

2h ' 
(6.21) 

where, of course, uB is given by (6.11). The second term in 
(6.21) is identically zero because 

(u\-ul){ul-u\) 
•e„ e 

T "O'n' 
2«0 

Sinco0e„rj^ 
a d j E 

tr j (adj M) E : ) • 

(adj E ) M [ [ ] = (ad j E ) [ P / ] = (Pf + Ps) [ [ ] 

= ( f r ( a d j M ) E ) [ [ J 

(6.15) and 

Further approximations to (6.15) seem to be reasonable. We 
observed in Section 5 and in the foregoing that co0 is typically 
a very large number. Therefore, we will drop from (6.15) 
terms multiplied by factors l/co2, and l/coc>e„. The term 
proport ional to 1/cooe2 will t>e retained because of the small e„ 
assumption we are utilizing. The same assumption suggests we 
retain the term proport ional to l /co0e2 . These assumptions 
reduce to (6.15) to 

a d j E M 

(6.22) 

(6.23) 

h f 

1 

to) dt0 

a d j E 

"o 

«i«o"oe« 

2 2 
I "1"2 2 \ 

4~ w0£n' \ 
1 - e "o p 

tu\-ul-)(u\-u\) 

wgejl ? / - ( (adjM)E) 
1 - e 2«0 

"0'/;' 

Cos co0e„/ 1. (6.16) 

Before (6.16) and (6.14) are substituted into (6.10), it is 
convenient to rewrite (6.16) in the form 

Therefore, we have identified approximations sufficient to 
reduce the solution (6.10) to the corresponding inertia-free 
result (6.11). As a summary, the reduction was obtained as a 
result of the following approximations: 

(0 Approximate (6.7) by (6.10). 
(H) Approximate (6.8) by (6.14) by use of the assumptions 

that e„ is small and / is such that w0t > > 1. 
O'r'O Approximate (6.9) by (6.16) by use of the assumptions 

given in 0*0 a n d the assumption that co0 is sufficiently large to 
allow terms multiplied by l/co2, and \/u>lt„ to be dropped 
from (6.15). 

As a numerical example, consider Berea sandstone, which 
has an co0 of approximately 106 s e c - 1 . The resulting time 
" b o u n d a r y layer" defined by co0? > > 1 is extremely thin, 
with (i30t = 10 for / of only 10~5 sec. As a result, one would 
not expect any practical advantage to result from the retention 
of inertia in the solution of the problem defined by 
(6.1)-(6.4). However, this expectation is not true for all 
problems. In the next section, we shall illustrate a problem for 
which inertia terms have an important effect for all times. 

C 8/; 1 / 
\ Kn(t,t0)dt0=—- - j { \ - i 
Jo cir (2n- \Y \ 

,2 2 . , 2 2. 
( « l - « 0 ) ( " 0 - " 2 ) 2 

7 uQen' 

•K1 (2 /2 - l ) 2 f / - (adjQ)E 

Cos u*dtnt J. (6.17) 

In deriving (6.17) from (6.16) we have used (4.16), (5.3), (5.7), 
and the identity 

d e t Q = «?w^ d e t M . 

Using (6.14) and (6.17) and the identity, 

%h 1 ( 2 / 1 - 1 ) * * 
Cos — =h—x, Tr2 ^ ( 2 n - l ) 2 - " 2h 

written in the approximate form 

8h 1 ( 2 n - l ) x * 
Cos = h—x, (2 /7 -1 ) 2 2h 

(6.18) 

(6.19) 

(6.20) 

we can write (6.10) as 

ShP0 
u (x,t)=uB(x,t) + 

[!]--«-K1)S 

l (adj E) M 

Tr2 tr\ (adj Q) E) I tr\ (adj M) E) 

1 

( 2 « - l ) 2 

, 2 2 . , 2 2. 
(«l - w 0 ) ( « 0 - ; / 2 ) 2 

Z ">0en' 
2"0 

7 H a r m o n i c Loading P r o b l e m 

In this section, we will make a small modification to the 
problem considered in Section 6. Instead of the constant 
loading represented by (6.1), we will consider a harmonically 
varying pressure: 

s{t)=P0Cosut, (7.1) 

where w is a specified frequency. It we retain the boundary 
and initial conditions (6.2)-(6.5), our general solution (4.18) 
reduces to 

u(x,t) •• 
4h2Pn 1 1 dK„ 

(t,0)M 
TT2 / r { ( a d j Q ) E ) ~ ( 2 « - l ) 2 dt 

po £ (\nCosutQKH(t,t0)ctto) 
„ = i V J 0 ' 

(2 /7- l)wx 

(2n-\)irx 

?] Cos-
2h 

(7.2) 

where dK„(t,0)/dt is given by (6.8) and, from (4.9), 

h f 1 
— Cos crf0 K„ (?,/<,) * 0 = 2 , , («« (Cos ^ - e " V ) 
2 J o a,, + coz 

+ coSinco/j A„ + 

-coSin co?) B„ • 

- j r J7„ ( c o s c o / - e V ) 

r,i+"2 

[^ + coz 

V R + r 2 - a ! 2 ) 2 + ( 2 c u f „ ) 2 

Sin (co/ + </<„) + V l f T ^ 2 e ~ "V Sin (a>„ r - 0,,) ] (A„ + B„) 

340/Vol. 50, JUNE 1983 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1 r 
+ — J co„ Cos (cot — a„) 

V ( ^ + ^-co2)2+(2cof„r2 l 

- V f T + ^ e - ^ C o s ( o o „ ? - 0 j ] [ ( ^ - ^ ) A „ 

\ co„ / co„ J 

where 

Sin </>„ = 

C o s <$>„ = 

Sin 4/„ = 

Cos i/<„ = 

r„(^+w2+u2) 
Vf2 + «j v (r2+co2 - co2)2+(2a,r„P 

w„(r«+^-"2) 
V f 2 ^ 2 V ( f 2 +co 2 - co 2 ) 2 + (2cof„)2 

r„(f2+co2+o)2) 
V f T n ? v (r2+c.2 - co2)2+(2WrT2 

co(f2+co2-co2) 

vr2+co2 v (r„+ o>2 - co2)2+(2Wf„T2 

2cof„ 

and 

Sin cr„ = 

COS (7„ 

V ( f 2 + c o 2 - c o 2 ) 2 + (2cof„)2 

f'. + co^-co2 

V(f2+u )
2-o J

2)2+(2o Jf„"P 

(7.3) 

> (7.4) 

(7.5) 

, (7.6) 

,(7.7) 

(7.8) 

(7.9) 

A similar formula is obtained if (4.14) is utilized rather than 
(4.9). 

In the inertia-free case, the solution to the boundary value 
problem (7.1) and (6.2)-(6.4) turns out to be 

uB(xJ)=P0Yi ( ] 0 Cosut0Kn(t,t0)dtQ)) i ] 

(2n- \)irx 
Cos-

2h 
(7.10) 

where, from (4.15), 

h f 
— ] o Cosco/0K„ (t,t0)dt0 = 

, (2/7-1)*** 
coz + 

I6h* 

r ( 2 « - l ) 2 7 r 2 

[ 4A2 

( 2 « - l ) 

c Cosorf-e 

+ cj Sin cot 
J 7r 

462 adjE 
Cos cot. (7.11) 

r 2 ( 2 n - l ) 2 fr{(adjQ)E] 

As in Section 6, the solution (7.2) can be shown to reduce to 
(7.10). The approximations that allow this reduction are those 
listed at the end of Section 6 and the assumption that 

co<<co„ (7.12) 

for n = 1 , 2 , . . . . Without the assumption (7.12), one must 
adopt the full solution given by (7.2), (6.8), and (7.3). 

If one agrees that e„ being small is acceptable, then by use 
of (5.11) it follows that co must be small in comparison with 
the product co0e„. The worst case arises when «= 1. For an h 
of 100 m one can easily calcuate from the data in Table 1 that 
co0ei is of the order of 10 Hz. The largest co0ei arises for 
Tennessee marble where the value is approximately 13 Hz. 
The smallest value is approximately 8 Hz for Berea sandstone. 
Therefore, one would not expect (7.12) to be an acceptable 

approximation for all porous materials. Frequencies co that 
violate (7.12) can be regarded as the rule rather than the 
exception. The important point is that if one adopts (7.12), 
this assumption contradicts the small e„ assumption. 

To stress the point just made, consider the circumstance 
where 

co = V co 2 - r? (7.13) 

This frequency is the one that makes the coefficient 

1 

V (co2 + f 2 - co2)2 +(2u£„7 

a maximum for n=l. Essentially, the frequency (7.13) 
corresponds to the lowest resonance frequency for our 
problem. Given (7.13), it follows that 

1 1 

V(co2 + r2-co2)2+(2cor,)2 2fico, 

Sin 0, = 
CO, 

Cos 0 | = 
r^_ 

Vco? + tf 

and 

Sin a, = 

C o s C[ 

V , ,2 _ *2 _ V ^ l fl 

CO, 

-JL 
C O , 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

Because the damping coefficent ft is small, the coefficient 
(7.14) is quite large and dominates the expansion (7.2). For 
example, in the case of 100 m of Ruhr sandstone, numerical 
values of h and co, are such that l/2fico) equals ap­
proximately 200,000 sec2. The corresponding coefficients of 
the higher-order terms are very small. For example, the value 
for 

1 

^(coi + f2 -co2 )2+(2cof2 )2 

turns out to be approximately (27)(10~6) sec2. The small e„ 
approximations given in Section 5 can be used to show that 

1 "" (7.20) 
2fico, 

if ux T± «o> and 

1 

( w 2 - " o ) ( " o - -ul)u>le\ ' 

1 

V(co2 + f2-co2)2+(2cof„)2 « 5 « i W / « r 

for n - 2, 3, . . . . Because, from (5.7), 

- ^ - = 2 « - l , 

1) 
(7.21) 

(7.22) 

equations (7.20) and (7.21) support the assertion that the n = 1 
term in the solution (7.2) dominates the series and, as a result, 
the interia term in (2.11) is important for all times t. 

One final comment is appropriate at this point. The 
resonance shown in the solution (7.2) causes a similar effect in 
the stress T(x,t) and the pore pressure Pf(x,t). These 
quantities can be calculated from (7.2) by use of the formula 
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(7.23) 
" -4>Pf(x,t) 

T(x,t)+4>Pf(x,t) J 
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A P P E N D I X A 

Material Properties 
Equation (5.1) from Section 5 is 

(detM)ftS + $fr{(adjM)E))# 
(2« - l ) 2 7T 2 

+ Ah2 /r((adjM)Q}# 

+ 
(2« - l ) 2 7T 2 

4h2 ^/•{(adjQ)E)ft,+ 
(2« - l ) 4 7T 4 

I6f? 
detQ = 0. 

A numerical solution for the roots of this polynomial has been 
carried out. For that solution, numerical values for the 
material properties pf, ps, £, \r, \fs, \s, and p.s were required. 

The elastic parameters and drag coefficients were derived 
from the numerical data given in Table 1 of the review article 
by Rice and Cleary [4]. Presented in the following are the 
formulas that relate the quantities tabulated by Rice and 
Cleary to the materials properties used here. 

Bowen [2, Sect. 9] shows that Poisson's ratio at constant 
pore pressure is given by 

2(x--£+*) 
(A.I) 

Also, the Poisson's ratio at constant trtj (fluid mass per unit 
of undeformed solid volume) is 

= X, + 2X/I + X/ 
m 2(X,+2X/i + X , + 2 ^ ) ' • ; 

Likewise, the Skempton coefficient B tabulated by Rice and 
Cleary [4] is given by 

(X/+X/s) 1 

2 <t> 
B-- (A.3) 

where (j> is the porosity in the reference configuration. 
Equations {A.\)-(A.7>) can be inverted to obtain X,., \/s, and 
\f in terms of the tabulated values of c„ , B, and p.s. Of 
course, the porosity <j> must be given in to calculate the 
numerical values of \ , Xys and Xy. 

An expression for the drag coefficient is also requried. It is 
possible to show that 

4>2 k 

« /V 
where k is the permeability of the porous material and u-j is 
the viscosity of the fluid that saturates the solid. 

Numerical values of the elastic parameters and drag 
coefficient computed from (A.l)-(AA) are presented in Table 
1 for the six materials considered in the Rice and Cleary ar­
ticle. Table 1 also contains numerical valves of the charac­
teristic frequency co0 and the characteristic wave speeds u0, 
ux, and u2. In Table 1 the viscosity of the fluid was taken to be 
that of water. The reader is cautioned that the data in Table 1 
are subject to the same limitations and restrictions as the Rice 
and Cleary data. 

Table 1 Typical rock-fluid mixture properties 

Property 

0 , 
ys, g/crn^ 
Xy, Kbar 

Xft, Kbar 
\ s , Kbar 
Hs, Kbar 

Kbar-sec 
«• 2 

a>o, sec ' 
«o, m/sec 
u\, m/sec 
«2> m/sec 

Ruhr 
sandstone 

0.02 
2.6 
0.165 
5.21 
206 
133 

1 .9x l0" 3 

9.58 xlO7 

4335 
4338 
727 

Tennessee 
marble 

0.02 
2.7 
0.468 
4.02 
273 
240 

3.92 

1.98 x 
5344 
5345 
1491 

10" 

Rock types 

Charcoal 
granite 

0.02 
2.7 
0.326 
4.13 
272 
187 

3.92 

1.98x10" 
4955 
4955 
1220 

Berea 
sandstone 

0.19 
2.6 
4.44 

13.9 
84.0 
60.0 

1.77X10"4 

1.02X106 

3208 
3208 
1315 

Westerly 
granite 

0.01 
2.7 
0.0751 
3.48 
311 
150 

0.245 

2.46X1010 

4800 
4802 
740 

Weber 
sandstone 

0.06 
2.6 
1.03 
9.91 
147 
122 

3.53xlO~3 

6.03 XlO7 

4056 
4056 
1223 

True densities for rocks are taken from Farmer [9, p . 15]. The bulk densities are given by pj = $y/ and ps -.= (1 
4>) 7 J . The fluid density 7y is taken to be that of water, 1.0 g / c m 3 . . 
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Stability of Steady Frictional 
Slipping 
The shear resistance of slipping surfaces at fixed normal stress is given by T = 
T(V,state). Here V = slip velocity, dependence on "state" is equivalent to func­
tional dependence with fading memory on prior V(t), and dr(V, state) /dV>0. We 
establish linear stability conditions for steady-slip states ( V{t),r(t) constant). For 
single degree-of-freedom elastic or viscoelastic dynamical systems, instability 
occurs, if at all, by a flutter mode when the spring stiffness (or appropriate 
viscoelastic generalization) reduces to a critical value. Similar conclusions are 
reached for slipping continua with spatially periodic perturbations along their 
interface, and in this case the existence of propagating frictional creep waves is 
established at critical conditions. Increases in inertia of the slipping systems are 
found to be destabilizing, in that they increase the critical stiffness level required for 
stability. 

Introduction 

For many mechanical systems in sliding contact with an 
adjoining body, loading by the imposition of a constant 
relative displacement rate, directed parallel to the contact 
surface, is observed to lead to nonconstant slip motion at that 
surface. This unsteady motion is often referred to as "stick 
slip." It is exemplified by squeaking machinery, oscillating 
violin strings, and unstable fault slip on the boundaries of the 
Earth's crustal plates. On the other hand, motion with 
constant slip rate is often observed in situations that appear 
very similar. What distinguishes these two cases? 

The simplest, although not complete, approach to this 
problem is to ask: Is steady sliding a possible stable motion? 
Classically this is analyzed by assuming the friction stress T (at 
fixed normal stress o) to be dependent on slip rate Konly, i.e., 
T = T(V) . Then a one degree-of-freedom elastic system yields 
the following simple result, attributed to Rayleigh in his study 
of the violin string-bow interaction (Kosterin and Kragel'skii 
[1]): If dT(V)/dV>0, steady sliding is stable; if 
dr(V)/dV<Q, steady sliding is unstable. If steady sliding is 
unstable, a nonlinear description, including full description of 
the function r( V), possibly embodying the concept of higher 
static versus kinetic friction, leads to predictions of 
oscillations that may be very abrupt (relaxation oscillations) 
or nearly sinusoidal (Kosterin and Kragel'skii [1], Brockley 
and Ko [2]). 

The simple stability result just mentioned contradicts the 
common experimental observation of steady slip in an 
adequately stiff machine even though the frictional stress T is 
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often less for greater steady sliding rates. The contradiction is 
resolved, however, by the analysis in this paper, which is 
based on a recently established constitutive framework for 
frictional slip, more comprehensive than that mentioned in 
the foregoing. 

We derive conditions within this framework for the stability 
against small perturbations of steady frictional slipping in 
some mechanical systems. The analysis generalizes con­
siderably the first results within this constitutive framework, 
obtained by Ruina [3] for a special class of frictional con­
stitutive relations involving a single evolving state parameter. 
Implications for nonlinear analysis are mentioned at the end 
of the paper. 

Constitutive Description of Frictional Slip 

Recent experiments with rocks (Dieterich [4-8]; Ruina [3]) 
as well as earlier experiments with metals (Rabinowicz [9, 10]) 
suggest a constitutive framework, for sliding at fixed normal 
stress cr, in which the shear stress r resisting unidirectional slip 
is regarded as being a function of both the slip rate V and the 
state of the surface, where the latter evolves with ongoing slip. 
We summarize this dependence by writing 

T=T( F,state) (for a constant) (1) 

and regard the dependence on "state" as being equivalent to a 
functional dependence of T on prior V. That is, assuming a 
loss of memory of slips in the distant past, 

T(t)=F[V(t); V(t'),-oc<t' <t]. (a(0 constant) (2) 

A useful way of studying this functional dependence 
(Dieterich [6-8]; Ruina [3]), which will be illustrated shortly 
for a linearized perturbation version of equation (2), is to 
determine the response r(t) to a suddenly imposed step 
change in V(t). Such experiments as carried out thus far 
suggest a competition between the instantaneous dependence 
on rate and the dependence on the evolving state. Namely, T 
increases (decreases) simultaneously with the suddenly im-
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Fig. 1 Resistive shear stress T in response to a sudden step AV in slip 
rate imposed at time (' 

posed increase (decrease) of V. Presuming this instantaneous 
change to represent response of the surface at its current state, 
we have therefore that 

3T(K,state)/3F>0. (3) 

This may be contrasted with the constitutive framework often 
considered for straining of inelastic solids, in which the 
material exhibits an instantaneous elastic response and thus 
no jump in stress for a jump in deformation rate. 

However, the instantaneous increase of r resulting from an 
increase of V is not maintained. Rather, as slip progresses 
with, say, V held constant at its increased value, T is found to 
decay in value, and we interpret this as meaning that the 
"state" of the surface is evolving toward a new one consistent 
with the increased V. Indeed, it is indicated in the experiments 
cited that independently of prior slip history, if V is main­
tained constant, then T evolves toward a steady state value, 
Tjj, which is a function only of V. We interpret this as 
meaning that the state term in equation (1) evolves to one that 
is dependent only on V, and therefore require that the con­
stitutive relation exhibit the behavior 

T ( V, state) - TSS (V), for V constant. (4) 

Furthermore, in most of the experimental studies cited in the 
foregoing, it is found that TSS(V) is a decreasing function of 
V, 

drss(V)/dV<0, (5) 

although studies at elevated temperature (Stesky [11, 12]), and 
on surfaces that have undergone relatively little total slip 
(Solberg and Byerlee [13]; Dieterich [8]), show that the 
inequality (5) need not always be met. We show subsequently 
that under plausible assumptions of the nature of the decay to 
steady state, inequality (5) is a necessary, but not sufficient, 
condition for instability (under small perturbations) of steady 
slip. Regarding the order of magnitude, experimental results 
[3, 5-8] suggest that the velocity derivatives in (3) and (5) are 
of order ±0.01 a/K. 

The existence of an instantaneous positive viscosity-like 
property of frictional response as in (3), with a long-term 
negative viscosity, as in (5), is a recent discovery in the work 
of Dieterich [5-8] and Ruina [3], although such a competition 
of effects was postulated by Tolstoi [14]. Classical descrip­
tions of friction seem to recognize only inequality (5), often 
summarized as saying that "static" friction is greater than 
"kinetic" friction (e.g., Jenkin and Ewing [15]). 

For our present purposes of examining stability within a 
small-perturbation theory, we linearize the dependence of 
r ( 0 o n V(t) in equation (2). In particular, we perturb (2) 
about a steady state at slip rate V0, writing 

V(t) = V0 + x(t) (\x(t)\/V0<<\), (6) 

and express the result for r(t) as 

Ht)=Ta+fxO)-\0h(t-t')x(t')dt' (7) 

(assuming that x(t) = 0 for t<0 and that conditions at / = 
— oo have no effect). Here all of rss,f, and h(t) depend on 

— » V Q + * 

-Area = l 

Fig. 2 One degree-of-freedom system represented by sliding block 
and attached spring. The velocity of the spring end is imposed as V0 

and stability of steady slipping is examined. 

V0. The significance o f / a n d h (t) is illustrated in Fig. 1 for a 
small step increase in V, from V0 to V0 + AV, at time / ' . It is 
evident that 

Qh(t)dt = drss(V)/dV (8) 

where the derivatives of T are evalated in the steady state with 
speed V0. Hence the inequalities (3) and (5) are equivalent, 
respectively, to 

f oo 

/ > 0 , and h(t)dt>f (9a,b) 
Jo 

where, again, we expect (9a) to be a general property and (9b) 
is required for the instabilities to be described. We also 
assume later that h(t) >0 , i.e., that the relaxation in Fig. 1 is 
monotonic. 

We close this section with a few further remarks on fric­
tional constitutive relations. First, the discussion thus far is 
for a = constant and the same condition is assumed in the 
subsequent stability analyses. We presume that a suitable 
generalization for nonconstant o(t) would be to include in F 
of equation (2) a direct dependence on a(t) and a functional 
dependence on a(t'), —ao<t'<t. A strong, approximately 
linear dependence of r on a is well known but, to our 
knowledge, experiments have not yet documented whether 
there are memory effects relating to a(t) analogous to those 
previously discussed for V(t). Second, characteristic slip 
distances in the decay process of Fig. 1 are typically small, 0.3 
to 200 ;itm representing the range of surfaces studied so far. 
Thus, we neglect the fact that points currently mating across 
the slip surface at time t had slightly different prior slip 
histories (if the adjoining solids are deformable). 

Finally, a special form of the dependence of r on state, 
adopted in description of experimental results (Ruina [3], 
Dieterich [5-8], Kosloff and Liu [16]), is to represent the latter 
by a set of variables 0,, d2, . . . , dn, collectively the column 
(0), subject to first-order rate equations. Thus, with a again 
constant, 

T=T(V,\0)), l8} = lg(V,\6})\ (\0a,b) 

The equation (7) may be thought of as a linearization of such 
a state variable description. In this case h(t) would be given 
as a sum of (possibly complex) exponentially decaying func­
tions. Here we take the form of equation (7), as in Fig. 1, to 
be the basic constitutive assumption independent of the 
nonlinear description, such as equation (1), (2), or (10), of 
which it is a linearization. 

Stability of One Degree-of-Freedom Elastic System 

Consider a one degree-of-freedom elastic system, 
represented generically by the rigid block of unit base area in 
Fig. 2, loaded by a linear spring element whose end is con­
strained to move at speed V0, namely, the steady slip speed 
for which stability is to be examined. Writing the slip speed as 
V0 + x, x can be interpreted as the shortening of the spring 
from its steady state length, and thus the force (or stress, 
given the unit base area) exerted by the spring is 

T=Tss-kx. (11) 

The equation of motion is therefore 

mx=T-T+q=Tss-kx-T+q (12) 
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where q(t) is an arbitrary perturbing force, switched on at t 
= 0. Hence by equation (7) for T, 

kxU)+mx(t)+fx(t)-\ h(t-t')x(t')dt'=q(t), (13) 

The Laplace transform of x (t) is given by 

S oo 

Qx(t)e~s'dt=q(s)/D(s) (14) 

where 

D(s)=k + ms2+s[f-h(s)} (15) 

A p o l e m i c ) = q(s)/D(s) at 5 = s0 corresponds to a term 
of the form exp(.s0/) in the inverse transform of x(s), x(t). 
Evidently, then, the steady slipping state is stable if the 
equation D(s) = 0 has no solutions sQ with Re(s0) > 0. If 
D(s) - 0 for some Re(s) > 0 then steady sliding is unstable 
since q(s) is arbitrary. (An alternative, less rigorous ap­
proach to the stability analysis is to look for solutions of 
equation (15) of the form x(t) = exp(st), for large /. This 
again leads to D(s) = 0 and thus the stability condition 
Re(s)< 0 for D(s) = 0.) 

We consider successively lower values of k and show next 
that as k reduces from oo to 0 one passes through a critical 
value, k„, at which two conjugate roots of D(s) = 0 cross the 
Im{s) axis, say, at ±//3, into the domain Re(s) > 0. Con­
sequently, the steady slip state is stable for sufficiently stiff 
systems, i.e., if k > kcr, and, at least in the vicinity of ka, the 
system exhibits flutter oscillations of frequency & whose 
amplitude grows in time if k < ka and decays if k > kC!. 

To demonstrate the result just stated we first observe that 
due to the presumed integrability of h(t), h(s) is bounded 
and h(oo) = 0 in the domain Re(s) > 0. Thus for k— oo, the 
equation D(s)= 0 can only possibly be satisfied in Re (s) > 0 
by 5—oo. But h(oo) = 0 so thatZ)(s) = 0 leads to a quadratic 
equation for 5 that has roots with Re(s) = —f/2m, a con­
tradiction i f / > 0 as required by (9a). We conclude that in the 
limit £— oo, D(s) has no zeros with Re(s) > 0. Next, for k = 
0, it can be observed that D(s) = 0 has at least one root in 
Re(s) > 0, on the positive real 5 axis. This follows because 
inequalities (9) and h (oo) = 0 show that 

f-ti(0)=f-\loh(t)dt<0, / - A ( o o ) > 0 , (16) 

and therefore that D(s) < 0 for small positive real .s but 
D(s) > 0 for large positive s. Thus, assuming continuity, a 
real root or conjugate pair of complex roots must pass into 
the domain Re(s) > 0 as k reduces from oo to 0. A root 
cannot pass through the origin or infinity, because inspection 
shows that D(0) and D(<x) ^ 0 when k> 0 (and w > 0 or 
/ > 0 ) . By elimination, it is therefore the case that a conjugate 
pair of complex roots crosses the Im(s) axis at critical 
conditions sinceD(s) has real coefficients. 

The crossing points ± ij3 are computed by setting 

D(±iP)=k„-mP2±ip[f-h(±i0)]=O (17) 

Separating (17) into real and imaginary parts yields two 
equations, one determining the critical frequency /3 by 

\iocosWt)h(t)dt=f (18) 

and the other giving an expression for the critical spring 
constant as 

n oo 

A:cr=/w/32+/3 sin((3t)h(t)dt. (19) 

Equation (18) shows that the frequency /3 of the flutter in­
stability is determined solely by properties of the friction law, 
/ a n d h(t), and not the mass m or stiffness k. Equation (18) 
also results as an answer to the following question: For what 

frequency /3 does the friction force in steady oscillatory 
motion x(t) = cos/it not absorb any more work than the 
steady state work TSSV01 This is also equivalent to the 
question: For what frequency /3 is the oscillatory displacement 
x(t) = cos/ft exactly out of phase with the excess friction 
force? Both statements follow because in steady oscillatory 
motion no energy is lost or gained by the spring or mass. Also, 
in steady sinusoidal motion both the force required to ac­
celerate the mass and to cock the spring are in phase with the 
position of the mass and spring. 

It seems reasonable to assume that h(t)> 0 because, by 
reference to Fig. 1, this assumption means that the decay of T 
toward its steady state value is monotonic. If we do therefore 
assume that/; (/) > 0, equation (18) will have a solution if and 
only if inequality (5), drss ( V) /dV< 0, which is equivalent to 
the second inequality of (9), is met. This is because the cosine 
transform of a positive function is bounded by the integral of 
that function, 

i oo /i co 

h(t)dt>\ cosfr h(t)dt, (20) 
o Jo 

with equality only at /3= 0. Thus a necessary (and sufficient, 
since the cosine transform vanishes as /3^oo) condition for 
equation (18) to have a solution with /3 ^ 0 is that 
\™h(t)dt>f, which is the second inequality of (9). Thus, if 
the decay process is monotonic, h(t) > 0, then drss( V0)/dV0 

< 0 is a necessary and sufficient condition for instability to be 
possible with some (sufficiently reduced) positive spring 
constant. 

We remark further that equation (18) for (3 can have at 
most one solution if the cosine transform of h(t) decreases 
monotonically with increasing /3. Such monotonicity would 
result if h(t) had a decaying exponential representation as 
would be the case in the state variable description if the 
equations (10ft) could be decoupled (at least when linearized). 
Note that a one-state-variable constitutive law would 
necessarily generate a h(t) satisfying this monotonicity 
condition. More generally, however, we cannot rule out the 
possibility that multisolutions for /3 may exist in some cases 
and, in such cases, the solution yielding the highest kCT in (19) 
is to be taken for the instability criterion. 

Equation (19) for ka shows that mass is always 
destabilizing, since increasing m increasees the threshold ka 

below which instability occurs. Note further that the right side 
of equation (19) is necessarily positive since the method of 
derivation has shown that inequalities (9) imply the existence 
of a kcr between oo and 0. The derivation applies for a system 
withw = 0, i f / > 0 , so at |8 given by equation (18), 

i oo 

sin/3: h(t)dt>0. (21) 
One consequence of the last inequality is that no system is 
stable when /3 exceeds its natural vibration frequency o> = 
{k/m)Vl, because then the result for kQX in equation (19) is 
plainly in excess of k. 

Single Decay Process 

To illustrate the preceding formulas, consider the single 
exponential representation of the decay shown in Fig. 1, 
namely 

h(t) = (l + \)rfe~rt, r>0. (22) 

Such an exponential form necessarily results, for example, if 
the constitutive relation in the form of equations (10) involves 
only a single state variable as explained in Ruina [3]. 
Assuming net rate weakening [equations (5), (9b)], X > 0. 

Equations (18) and (19) then give the frequency and stiff­
ness at critical conditions 

P = n/X, kcr = mr2 X +fr X. (23) 
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Alternatively, in terms of the frequency u of the spring-mass 
system at critical stiffness (to2 = kcr/m) 

ka=fr\Z{\-\r2/oi2), (24) 

Since 
/ = dr( K,state)/d V, X/= -dr s s ( V) IdV, 

both expressions being evaluated at V = V0, and \/r is the 
characteristic time of the decay process, the result for ka may 
be put into the more inspectable form 

KCT — — 
VdTss(V)/dV\ 

1 + 
mV 

dcdT(V,state)/dV] 
(25) 

with V = V0. Here we have introduced dc = V0/r as the 
decay parameter expressed in terms of slip distance rather 
than time, i.e., with the decay in Fig. 1 proportional to 
exp(- V0t/dc). Experiments (Dieterich [5-8]; Ruina [3]) 
suggest that the decay distance dc is approximately in­
dependent of the slip rate V0, and is thus closer to a material 
property than is \/r = dc/V0, which obviously depends on 
V0. Ruina [3] derived the quasi-static version of (25), with m 
= 0, by an analysis based on constitutive laws of type (10) 
with a single state parameter. The dynamical result could have 
been derived from the static relation since, in steady 
sinusoidal oscillations mx is in phase with -kx, the spring 
force. Thus any steady sinusoidal oscillation with frequency /3 
found with some k and m = 0, as in Ruina [3], could be 
replaced by a motion with finite m and an increased spring 
constant k + f52m. This reasoning can lead to (25) directly 
from the results of Ruina [3]. Similarly the term mfi1 could 
have been added to equation (19) by this reasoning after the 
derivation was done with no inertia (m = 0). Note also that, 
at any fixed V, TSS is approximately proportional to a. Hence 
X/aff and thus kCT<xa (when m = 0), as has been emphasized 
by Dieterich [3, 4] based on a qualitative instability analysis. 

Further Discussion 

How necessary is inequality (3), i.e., the positive in­
stantaneous viscosity property? We assumed in the analysis 
leading to equations (18) and (19) that at least one of the 
instantaneous viscosity/and the mass m is nonzero. Consider 
the case m = 0. The results of our analysis then carry through 
with m = 0 substituted in all equations containing m. Now if 
the instantaneous viscosity/—0 equation (18) shows that the 
frequency of flutter at neutral stability becomes infinite, 
(3—oo, but equation (19) with m = 0 shows that ka tends to a 
finite value (lim /3-oo of /3 J§° sin(Pt)h(t)dt). On the other 
hand, if we let /—0 with any finite m, equation (18) shows 
that /3— oo as in the foregoing, and now equation (19) shows 
that the critical stiffness becomes infinite, &cr—-oo. Equation 
(25) for k„, in the case of a single decay process, clearly shows 
the result just discussed. If / = 9T( K,state)/dK—0 a quasi-
static analysis, i.e., based on setting m = 0, gives a finite ka. 
But if m ^ 0 the limit /—0 of zero instantaneous viscosity 
gives an unbounded ka. Hence, presuming as implicit in the 
preceding discussion that there is ultimate velocity weakening, 
steady state slip should not be possible in any elastic system, 
no matter what its stiffness, if there is no instantaneous 
viscosity. One might reverse the argument and say that the 
experimental observation that steady state slip on a given 
surface is possible, in a system of adequate stiffness, implies a 
positive instantaneous viscosity (at least on surfaces that 
exhibit ultimate velocity weakening, inequality (5)). 

We now readdress the question of whether instability is 
possible at all if inequality (5) is not satisfied but rather 
reversed, with drss( V)/dV>0. This means that the surface 
exhibits ultimate velocity strengthening; the second of (9) then 
fails and instead 

[\{t)dt<f W>0). 

We have already shown that no instability is then possible if 
h (t) >0 , i.e., if the decay process in Fig. 1 is monotonic. Any 
case allowing instability must therefore show nonmonotonic 
decay. A specific mathematical form allowing such instability 
is that of oscillating exponential decay, 

h(t)=Re\H(a + ib)e-Ul+ib)l], 

a>0, b>0, in which case the foregoing inequality becomes 
Re(H) < / . Equation (18) can still be satisfied, so that in­
stability is possible, if b is sufficiently large compared to a. 
But experimental observations as made thus far do not lend 
support to decay with such marked oscillations, that are not 
likely the result of machine-sample interaction (of the type 
predicted here for k slightly greater than ka). We thus 
propose that the inequality (5), that the steady state friction 
force is a decreasing function of slip rate, is a necessary 
condition for the instability of steady sliding. 

Viscoelastic Effects 

Consider now the same one degree-of-freedom system of 
Fig. 2 but suppose that the spring element is viscoelastic. Then 
we may express the force exerted by the spring as 

7 = i f ! > t-t')x(t')dt' (26) 

where ky(t) is the viscoelastic relaxation function; y(t) is 
normalized so that 7(0) = 1 and hence k is the instantaneous 
spring constant and £7(00), with 0<7(oo) < l , is the long­
time or relaxed spring constant. If one has in mind a 
viscoelastic element that has an infinite instantaneous spring 
constant, as for example a spring and dashpot in parallel, the 
instantaneous viscosity can be subtracted from the viscoelastic 
element and added to the t e r m / i n the friction law. This then 
leaves the form of equation (26) with k finite. The possibility 
of instability is then determined by whether inequality (9b) is 
satisfied with this modified/. Writing equations of motion, it 
is seen that equation (14) applies for x{s) with 

D(s)=k[sy{s)]+ms2+s[f-h(s)]. (27) 

Observing that sy(s) — 7(00), 1, respectively, as s—0, 00, a 
similar argument to that outlined earlier can be followed to 
show that instability occurs by flutter oscillations of 
frequency (5 when k is reduced to a critical value, k„. The 
critical conditions are again given by D( ± i/3) = 0 and we find 

Qcosm[yV)-y(<»)]dt+f=\ocoW)lt«)dt, 

*cr{7(°°) +(3Jo sin(j8/)[7(0 -7(oo)]rff] (28) 

J 00 

sm(Pt)h{t)dt. 
0 

These equations are difficult to solve and we do not present 
explicit results. However, we remark that now /3 is dependent 
on the viscoelastic properties of the spring and on the mass m, 
and not merely on characteristics of the friction law, as it is 
for an elastic system. We can also see from the first of 
equations (28) that when the cosine transforms of y(t) — 
7(00) and h(t) are monotonic, as in the'typical case when 
both are represented by a sum of decaying exponentials in t 
with positive coefficients, the effect of viscoelasticity is to 
reduce /3 from the value for an elastic system, equation (18). 
This is as expected, since for steady oscillatory motion the 
friction surfaces changes from an energy sink to an energy 
source (once the steady state sink V0TSS is subtracted out) 
when /3 decreases through the value given by equation (18). 
Thus the viscoelastic energy absorbed is accommodated 
through the decrease in /3. 
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Slipping Elastic Continua and Creep Waves 

In this section we assume that the sliding bodies are 
identical elastic continua with interface along the ^,£2 plane 
ofa£i,£2 .£3 cartesian coordinate system, Fig. 3. For sim­
plicity we neglect inertia here. It is considered in a special 
version of the problem taken up in the next section. The 
sliding bodies are assumed to be translationally homogeneous 
in the £, direction, and steady relative slip at speed V0 in 
either the ^ or £2 direction is enforced by displacement 
boundary conditions imposed at £3 = ± H. The perturbation 
from steady slip along the interface is represented by a relative 
displacement <5, in the same direction as V0, between £3 = 0 + 

andO~ of the form 

5(^,0 = VQt+x(t) cos(K^+<t>) (29) 

where K is the spatial wave number of the disturbance and </> is 
any constant. More general perturbations may be obtained by 
Fourier superposition with various K, <f>- The relative slip 
speed at the interface is 

V(Sl,t) = V0+x(t) COS(K{, +</»). (30) 

Because of the translational homogeneity, the associated 
variation in resistive shear stress T along the interface, 
computed from elasticity theory in terms of the given 
displacement nonuniformity, must have the same spatial 
dependence but be exactly out of phase with it. Hence 

T(Zi,t)=Tss(V0)-k(K) X(t) COSOc^+0), (31) 

where the coefficient k = k ( K) can evidently be interpreted as 
an effective spring constant for disturbances with wave 
number K (compare equations (6) and (11) with (30) and (31)). 

The stiffness k(n) can be found simply for some 
representative models. For example, if the two elastic bodies 
are isotropic, homogeneous half spaces of shear modulus G 
and Poisson ratio v, then one can derive from elementary 
elasticity theory that 

*- = G I K I / 2 ( 1 - I > ) , G I K I / 2 (32) 

for the respective cases of plane strain (V in ^ direction) and 
antiplane strain (Kin £2 direction). For finite layers of height 
H (in the £3 direction) in contact, the preceding formulas 
remain valid in the short wavelength limit KH>>\, but in the 
long wavelength limit, KH<<\, both expressions for k 
approach the limiting value 

k = G/2H, (33) 

which corresponds to uniform (K—0) shearing of the layers. In 
fact, the complete expression for k(n) in the antiplane strain 
mode (see the next section) is 

/ t (K )=GI/cl / [2tanh( lK l / / ) ] . (34) 

Analogously to the treatment of the sliding block, we 
assume that a perturbing load distribution, generating shear 
stress 

<7(OCOS(K£, +4>) 

along the interface, is switched on at t = 0. Precisely, the 
preceding expression gives the shear stress that the considered 
load perturbation would cause along the interface if x(t) were 
constrained to be zero. Hence this term must be added to 
equation (31) for T(t-ltt). The resulting 7 at each location £1 
must satisfy the constitutive relation (7) when x(t) cos 
(«£, + (/>) is read-in for x(t). Hence we find that 

k(K)xU)+fx(t)-\ohV-t')xV')dt'=qU), (35) 

which is the same as equation (13) for the sliding block 
without inertia. Thus we may again write x(s) = q{s)/D{s) 
as in equation (14), but now with 

D(s)=k(K)+slf-h(s)\. (36) 

.velocity V0 imposed 
1 1 1 in 1 1 1 1 1 1 1 1 1 1 1 

I r1 i\i 1 1 1 1 1 1 i 1 1 1 ' 
^ - f i xed 

Fig. 3 Elastic continua in slipping contact. Bottom of lower layer is 
fixed. Top of upper level has imposed velocity V0 in slip direction. 

Hence, following the earlier discussion, instability occurs, if 
at all, by a flutter mode of frequency/3 satisfying Z?(±//3) = 0 
and given by equation (18). Disturbances decay or grow in 
amplitude according to whether (by equation (19) with m = 0) 

i Oo 

smWt)h(t)dt. (37) 

One expects that k varies monotonically with K SO that one 
of the following two cases occur: As K decreases from 00 to 
zero, k decreases from 00 to either: (/) a value in excess of ka 

(possible when finite H gives a long wavelength cutoff); or, 
(/(') a value smaller than k„ (and equal to 0 when the bodies 
are unbounded half spaces, H - 0°). In case (/) all per­
turbations are stable. In case 07) perturbations with suf­
ficiently high wave number (short wavelength) are stable, but 
those with lower wave number (long wavelength) are unstable. 

The result at critical conditions has an interesting in­
terpretation. Since x(t) then varies as Re(em) or 7w(e"")> 
the combination of space and time dependence as in equation 
(30) leads to disturbances with 

V(ix,t)-V0*co&{.Kalx±m- (38) 
This represents propagating quasi-static waves that move 
along the interface with speed (3/KCT. The existence of such 
waves was first noted by Ruina [3] in analysis of a simple 
model of a continuous elastic system with a sliding surface 
described by a one-state variable form of equations (10). 

As an example, for the friction law with a single ex­
ponential decay process, equations (22) and (23), /3 = /VX and 
the speed of the creep waves is 

speed = /3/KCT = r/\/Ka = f-VX/ (Kadc) (39) 

where dc is the decay distance, V/r. The critical wave number 
depends on details of the elastic continua. But for isotropic 
half spaces under antiplane slip we obtain from (32) that G 
K„/2 = kcr, where kCT is evaluated from (25) with m = 0. 
Thus the critical wavelength Xcr is 

Xcr = 2T/K„ = ir dcG/[ - Vdrss {V)/dV\ (40) 

Further, using this Kcr and the interpretation of X given 
before, the speed of creep waves is found from equation (39) 
to be 

speed = G/2V[ - dTssJVj/dV][dT( V,state)7dV] (41) 

According to the results presented by Ruina [3] and 
Dieterich [5-8], the bracketed terms in the last expression are 
each of order 0.01 o/V, where a is the normal stress. In that 
case we obtain 

Xcr « 300 dcG/a, speed = 50 VGIa. (42) 

If we choose a as the overburden pressure in the earth from a 
1 to 10 km depth range, one estimates G/a = 103 to 102 for 
faults under crustal earthquake conditions. Thus the creep 
wave speed is 5«103 to 5«104 times the nominal steady slip 
speed V. This is still much slower than seismic shear wave 
speeds if V is of the order of a cm/sec. or less. The 
corresponding wavelengths Xcr are then of order 3- 10s to 
3* 104 times dc, resulting in Xcr = 0.1 to 1 m if dc is of order 
3jum (representative of laboratory studies on polished 
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quartzite surfaces, Ruina [3]), but of the order Xcr =» 30 to 
300 m if, for example, a dc of the order 1 mm is postulated 
(which is somewhat larger than the largest results of Dieterich 
[8] for laboratory fault gauge). 

The analysis predicts that disturbances with X < Xcr are 
stable and decay in time but that those with X > Xcr exhibit 
oscillatory growth in amplitude, at least for X in the vicinity of 
Xcr. 

Inertia Effects in Antiplane Perturbations of Slipping 
Elastic Continua 

Consider isotropic, homogeneous elastic bodies as in Fig. 3, 
with enforced relative motion in the £2 direction, and let the 
relative displacement 8 along the interface be given as in 
equation (29) of the preceding section. This loading causes an 
antiplane strain deformation and, if "(£, ,£3,0 is the anti-
plane displacement field (in the £2 direction) measured 
relative to the steady sliding state, we have a boundary value 
problem described by the following equation of motion (43), 
and antisymmetry and boundary conditions (44): 

d2u/d^2+d2u/d^2=(l/c2)d2u/dt2; (43) 

«($i.fc.O = -«(fi ,-fc.O. w(£,,//,0=0, 
1 (44) 

K ( £ I , 0 V ) = 2 * ( 0 C O S ( K £ , +</>), 

where c is the shear wave speed. 
The Laplace transform of the solution is (for £3 > 0) 

u(Zi,%3,s) = =X(S)COS(K%I + 0)sinh[VK2 + s2/c2 (H-£,)]/ 

sinh(V/c2+J2/c2//). (45) 

The stress T( = T32) along the interface due to this 
elastodynamic loading can be written as 

r,(/)cos(K$1+0) = G[3H($1,$3,/)/a$3] t3=o (46) 

The last equation shows that 

fj (s) — —K(S,K)X(S), where 
, , (47) 

K(S,K) =G^/ K2 +s2/c2 /[2tanh(^K2 +s2/c2H)]. 
Now the friction stress T must equal the steady state stress TSS 

in addition to the elastodynamic stress from equation (46) and 
the perturbation stress: 

T=TSS(V0) + T, (t)cos(K^ + $) +q(t)cos(i<Zl + <j>). (48) 

The perturbation amplitude q(t) is again zero f o r f < 0 but 
otherwise arbitrary. 

The expression for T in equation (48) must equal the value 
required by the constitutive law of equation (7) with the slip 
perturbation x(t) cos (K£, +<j>). The Laplace transform of 
equation (48) with equation (47) then gives x(s) = 
q(s)/D(s), as inequation (14), but now with 

D(s)=K(s,K)+s[f-h(s)] (49) 

and K(S,K) given by equation (47). Again stability of steady 
sliding requires no poles in x(s) for Re(s) >0 and thus no 
zeroes of D{s) in Re(s) >0 . The subsequent analysis of this 
case follows the pattern established earlier. As IKI is reduced 
in value from oo to 0, roots of D(s) = 0 first pass into 
Re(s) >0 , if at all, by crossing the Im(s) axis. Hence, setting 
D(±iR) = 0 we obtain the pair of equations to be met at 
critical conditions 

cosWt)h(t)dt=f, 
0 

(50) 

KU0,Ka) = 0\-sin(0t)h(t)dt 

where 

G\IK2 -R2/?2 

K(IR,K) = , , p for K2>B2/C2 

2tanh(V K
2 - i3 2 /c 2 / / 

, (51) 

= for K2<R2/C2 

2tan(V(32 /c2-K
2 / /) 

The first of the pair of equations (50) is now familiar (see 
equation (18)) and gives the critical frequency R at flutter 
instability, if such instability can occur. The second of 
equation (50) is analogous to equation (19) with mR2 moved 
to the left-hand side. 

Instability can occur if the second of equations (50), whose 
right side is positive by (21), has a solution for some IKI 
between oo and 0. To analyze the second equation, let us 
observe that the equation AT (/«,«) = 0 implies no traction at 
£ 3 = 0 and thus gives the natural frequencies of clamped-free 
vibrations of either layer in Fig. 3, compatible with spatial 
periodicity of wave number K. These frequencies are given by 

Vu„2/c2 - K
2H=(2n - 1)TT/2, « = 1,2,3, . . . , 

or co„ = V K 2 C 2 + ( 2 K - 1 ) 2 0 T C / 2 / / ) 2 (52) 

The lowest frequency of all is co, for K - 0; calling this to,*, 
we have co,* = irc/2H. 

We now distinguish two cases: (/) /3<w,*, and (/'/) /3>o),*. 
For case (;') it is possible to show by simple analysis that 
K{iR,K) decreases monotonically with K as the latter decreases 
from 00 to 0;K(iR,00) = 00 and the least value of Kis 

G (ir/3/2co,*) / G \ 
K(iR,0) = — — ( < • J (53) 

2//tan(7r/3/2w,*) V 2H1 

If this value of K(iR,0) is less than the right side of the second 
of equations (50), then the equation (50) has a solution and 
instability occurs by flutter oscillations for wave numbers 
IKI<IK C , . I . Again, conditions in the vicinity of neutral 
stability, IKI = I Kcr I, can be described as the propagation of 
frictional creep waves along the interface, which grow in 
amplitude when I re I <l/cc rl . On the other hand, if K(iRfi) 
exceeds the right side of the last of equations (50), then no 
solution exists and slip is stable to perturbations of all 
wavelengths. This is analogous to the cutoff described in the 
preceding section with inertia neglected, and the results of 
that section are approached when the lowest vibration 
frequency of the layer is much higher than the critical 
frequency for slip instability, i.e., /3/a>,* —0. Also, just as for 
the one degree-of-freedom system, the inclusion of inertia is 
destabilizing; the critical wave number I KCI I in the analysis 
with inertia always exceeds that of the quasi-static analysis 
although, of course, the difference is negligible when 
R< <o>|*. 

For case (»), R > a>, *, it is evident from equation (52) that at 
least one IKI > 0 exists such that R coincides with a natural 
frequency for that K, and hence that K(IR,K) = 0. The largest 
IKI satisfying that condition, say IK, I, is readily seen to be 
that K for which R coincides with frequency o>i. Hence, from 
(52) with n = 1 and co, = R we find 

IK, I = V / 3 2 - C O V / C . (54) 

Then from equation (51) one can see that K(IR,K) decreases 
monotonically from 00 to 0 as IKI decreases from 00 to I K, I. 
Thus in this case, for which /3> w,*, there always exists a Kcr 

satisfying the second of equations (50), and I «rcr I is 
necessarily greater than I K, I. That is, the system is unstable to 
perturbations of long enough wavelength if R exceeds its 
lowest vibration frequency. 

Since the analysis of this section has relied only on rather 
general properties to be expected of any function K(S,K) 
relating nonuniformity of slip to nohuniformity of stress, it 
seems likely that similar conclusions would be reached for 
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other modes of perturbing sliding continua of the general 
class introduced in the last section. 

Concluding Discussion 

The systems discussed in our paper exhibit a common 
general pattern. In particular, if x(t) denotes the 
displacement perturbation from steady state slip and q(t) the 
perturbing force, then x(s) = g(s)/D(s), as in equation 
(14), where 

D(s)=Q(s)+s[f-h(s)). (55) 

H e r e / a n d h(t) axe defined by the friction law (7) whereas 
Q{s) is a transfer function. It relates the displacement per­
turbation to corresponding changes in stress T induced by the 
system (e.g., by its elastic or viscoelastic springiness and 
inertia) on the slip surface; i.e., if T{ (t) — T - TSS, then T\ (S) 
= -Q(s)x(s). 

In the various cases that we have examined, subject to (9), 
the form of the transfer function has assured that instability 
occurs by the flutter mode when an appropriately defined 
stiffness is reduced to a critical value. This contrasts with 
analyses that neglect the memory effects in (7) and thus 
deduce that rate weakening is a sufficient condition for in­
stability and that oscillations depend on nonlinear effects 
(e.g., Brockley and Ko [2, 17]). 

Indeed, this universality of the flutter instability, meaning 
that roots of D(s) = 0 inevitably pass to Re(s) > 0 by 
traversing the Im(s) axis in conjugate pairs, means that the 
bifurcation is of the Hopf type (e.g., Howard [18]). We have 
presented only a linear analysis here, but the generic behavior 
of the nonlinear solution in the vicinity of critical conditions is 
understood. In particular, in a one-sided neighborhood of k 
= kcr (in terms of the spring-block analysis) there exists finite 
amplitude periodic oscillations of amplitude that increases 
with \k — ka\. When the neighborhood is that for which 
k<ka, the growing oscillations of linear instability theory 
grow into a stable periodic limit cycle, at least close to k = 
ka. When the neighborhood is that for which k>kcr, the 
periodic oscillation is unstable, and the decaying oscillations 
of linear stability theory may, in fact, not be realized if the 
perturbation of the system is of too great an amplitude. 
Exceptionally, it may occur that the finite amplitude periodic 
oscillations occur with k = k„. This is precisely what we have 
found recently (Gu et al. [19]) for the nonlinear stability 
analysis of a certain one-state variable constitutive law 
proposed by Ruina [3], namely that for which equation (10) 
has the form 

T=T]+A / « ( K / K , ) - e , 

dd V 
— = - - W - a / h ( K / K l ) ] (56) 

where T,, C/C, A, and B(>A) are all positive constants. We 
remark that there is ample experimental evidence for the type 
of flutter instability that we predict here (Ruina [3], Scholz et 
al. [20], Teufel [21]). The flutter is of such low frequency in 
these experiments that inertia is negligible and classical 
calculations of the Rayleigh type cannot apply. Whether or 
not our results are appropriate to the type of fast oscillations 
observed by Brockley and Ko [2, 17] is not clear. Their results 
do show that T is not a function of V alone (although they 
neglect this in their analysis). Also, the experimental results 
show much richer nonlinear behavior than thus far discussed. 

For example, signs of period doubling are visible in the ex­
periments of Ruina [3] as k is decreased from kc,. 

It is plain that there remains much to be learned about 
nonlinear stability analysis in the framework of the rate and 
state-dependent frictional constitutive laws discussed here. 
The topic is of interest not only as an extension of studies of 
the type that we have reported, but also as foundation for a 
more general and realistic fracture mechanics of slip 
propagation (shear cracking) along fault surfaces. 
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On the Nonequivalenee of the 
Stress Space and Strain Space 
Formulations of Plasticity Theory 
Yoder and Iwan [7] have recently claimed that the stress space and strain space 

formulations of plasticity are equivalent. This conflicts with the results of Casey 
and Naghdi [6\. The main objective of the present paper is to demonstrate, with the 
use of fairly general constitutive equations of the type employed in [7], that the 
stress space and strain space formulations of plasticity theory are not equivalent. It 
is also shown that if the loading criteria of strain space are adopted as primary, then 
the main features of [7] may be obtained by specializing the results of[6\. 

1 Introduction 
By way of background, we recall that the traditional 

formulation of plasticity theory employs yield surfaces in 
stress space, together with loading criteria that involve the 
time rate of stress. It was shown by Naghdi and Trapp [1] that 
this formulation necessarily leads to unreliable results in any 
region such as that corresponding to the neighborhood of the 
maximum point of the engineering stress versus engineering 
strain curve for uniaxial tension of a typical ductile metal. An 
alternative strain space formulation was therefore proposed in 
[1] and was found to be free from the shortcomings of the 
stress space formulation. Furthermore, the strain space 
formulation was shown [1] to have the additional advantage 
that the loading criteria for perfectly plastic materials are 
exactly the same as for work-hardening materials, whereas in 
the stress space formulation the loading criteria are different 
for these two classes of materials and a separate treatment is 
required for perfectly plastic materials. 

The strain space formulation is elaborated on further in [2], 
which also contains a discussion of restrictions imposed on 
constitutive equations by a work assumption originally in­
troduced in a strain space setting by Naghdi and Trapp [3]. 
Additional related developments utilizing the strain space 
formulation, which also include consideration of strain-
hardening response, are contained in [4-6]. 

By way of additional background information, we recall 
that Naghdi and Trapp [1] also undertook a comparison 
between the two independently postulated sets of loading 
criteria in strain space and stress space. They concluded that a 
correspondence between the two sets of loading criteria could 
be established for all conditions except that of loading from 
an elastic-plastic state. However, it was shown by Casey and 

Naghdi [6] that the two sets of loading criteria cannot be 
independently postulated because they are connected by the 
constitutive equations of the theory: If they are independently 
postulated, then only a limited form of strain-hardening 
behavior is possible as remarked in the last paragraph of [6, p. 
289]. Due to the inadequacies of the stress space formulation, 
which were discussed in [1], Casey and Naghdi [6] adopted the 
approach that the loading criteria of the strain space for­
mulation should be regarded as primary and that the con­
stitutive equations of the theory should then be used to deduce 
associated loading conditions in stress space. The conditions 
induced in stress space during loading are not identical to 
those of the strain space formulation, nor do they imply the 
loading conditions of the strain space formulation.' 

In a recent paper, Yoder and Iwan [7] have claimed that the 
stress space and strain space formulations of plasticity theory 
are equivalent. Although we discussed this issue and related 
matters previously [8], within the space limitations of the 
Discussion [8], it was not possible to detail the relationship 
between the developments of [6] and [7]. The present paper 
provides the mathematical details that were omitted from [8]. 
As already noted in [8] the two formulations of plasticity are 
not equivalent.2 Moreover, if the loading criteria of strain 
space are regarded as primary, then as shown in Sections 2 
and 3, the main features of the work of Yoder and Iwan [7] 
may be obtained as a special case of that of Casey and Naghdi 
[6]. In particular, employing constitutive equations of the 
type utilized by Yoder and Iwan [7], we show in Section 2 that 
the loading criteria of their strain space formulation lead, as 
in [6], to different conditions in stress space. In Section 3, we 
discuss how the constitutive equations of Section 2 can be 
obtained as a special case of those employed in [1, 6]. 
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For a summary of the relationship between the conditions in stress space 
and the loading criteria in strain space, see [6, Table 1 ]. 

2 Although in [7] both single and multiple loading surfaces are employed, it 
suffices for the present purpose to consider only the case of single loading 
surfaces. 
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2 A Special Class of Constitutive Equations 

In this section we analyze a special class of constitutive 
equations of the type introduced by Yoder and I wan [7]. 
Confining attention to small deformations only, we denote 
the components of infinitesimal strain and plastic strain by e,y 
and efj, respectively, and the components of stress3 by <j,y. The 
elastic response is assumed to satisfy generalized Hooke's law 
so that 

°U=cUkl(Lkl-(?kl)> (1) 

where the constant moduli satisfy cijkl = cjikl = ciJlk = ck/ij. The 
inverse response may be written as 

eij = KUki°tci + 4< (2) 

where Kyk/ possess the same symmetries as cjJkl, and 
cijkl K-klmn = Kijklckhnn = '/2 (&im &jn + 6/n 8jm ) , (3) 

5y being the Kronecker symbol. In [7], the material was 
assumed to be isotropic in its initial reference configuration, 
so that the material coefficients Cykl and Kyk/ have a simple 
isotropic form.4 However, it is unnecessary to assume 
isotropy in what follows. 

Defining afj by 

0(/=C(/«e£/> (4) 
we note that (1) may be written as 

Oij = Cijkitki-ofj. (5) 

The tensor a", called a "stress relaxation" was defined in [7] 
through the constitutive equation (5) rather than in terms of 
(f, as we have done in (4). In view of (3), the relation (4) may 
be inverted in the form 

tfj = KijklOkl- (6) 

Suppose now, as in [7J_, that there exists in strain space a 
"relaxation" function F ^ . o ^ . L ) , where the scalar function 
L is defined by 

:j;(i^) dt', (7) 

0 < / ' < / is an interval of time and a superposed dot signifies 
material time differentiation. The "relaxation surface" in 
strain space is defined by P=0 at fixed values of o^ and L. In 
anticipation of later developments, we set 

„ dP 
S=T-lii (8) 

and assume that 

tf= -

'0 

0 

0 
1 , dP 

if 

if 

if 

if 

F<0, 

P=0 

P=0 

P=0 

and 

and 

and 

g<0, 

g = o, 

£>o, 
~D de 

(«) 

(6) 

(c) 
(9) 

where D is a positive scalar-valued function of (c.ff'*, L). It is 
also assumed that the partial derivative dP/de^O on the 
"relaxation surface." x 

The consistency condition in strain space implies that P=0 
if F= 0 and g >0 . Therefore, in view of (7), (8), and (9d) 

dP dP dP / 2 
~azT\T D--

dafj dey 
dF dF \ v' 

de,7 dey/ 
(10) 

Equations (9) and (10) are of the type considered in [7], 
although the present derivation is slightly different from that 
given in [7]. If F is assumed to be of the special form [7, 
equation (9)], then D in (10) may be expressed as [7, equation 
(10)]. 

The jield or loading function in strain space may be derived 
from F with the use of (4) as follows: 

P(tjj,ofj,L) =P{£ij,ciJkle
p

khL) 

=g(eij,efj<L). (11) 

The loading surface in strain space is given by g = 0 at fixed 
values of eP and L. Clearly, the "relaxation surface" and the 
loading surface in strain space coincide. 

In view of (8) and (11), 

(12) 

Further, by (7), (9), and (11), 

D8\ 3 de„ de„) 
L= -

u deu-
>0, (13) 

2 
T deu 

if g = 0 and g > 0 , and is zero otherwise. Finally, it follows 
from (4), (9), and (11) that 

"0 if g < 0 , (a) 

0 if g = 0 and £ < 0 , (b) 

if g = 0 and £ = 0, (c) 

if g = 0 and g > 0 , (d) 

iP.= (14) 
0 
1 

*ijkl 
dtki 

where the scalar D in (10) can now be expressed as 

D-- ' Kklij dA, de •j 

9g /_2_ dg dg \ 

dL V 3 den den ' 
(15) 

It is clear that instead of beginning with F we could have 
started out with the loading function g and the flow rules (14), 
and then we could have derived F through (11) as well as the 
flow rules (9). In this case, we would have written L in terms 
of e" by substituting (4) in (7). Thus, the relations (9) and (14) 
are equivalent statements of the flow rules in strain space. 

The conditions involving g and g in (14) are the loading 
criteria of the strain space formulation. These four conditions 
correspond to (a) an elastic state; (b) unloading from an 
elastic-plastic state; (c) neutral loading from an elastic-plastic 
state; and (d) loading from an elastic-plastic state. 

In their paper, Naghdi and Trapp [1] first discussed the 
usual stress space formulation of plasticity, in which loading 
criteria are written in terms of stress rate and the loading 
function in stress space. They then proposed an alternative 
strain space formulation, with loading criteria such as appear 
in (14). Comparing the two independently postulated for­
mulations, they concluded [1, p. 791] that a correspondence 
existed between the two sets of loading criteria in the case of 
elastic response, unloading and neutral loading, but not 
during loading. 

After observing that the loading criteria of the usual stress 
space formulation lead to unreliable results,5 and that the 
loading criteria of strain space are free from such short­
comings, Naghdi and Trapp [1] proposed that the strain space 
formulation be adopted as an alternative to the stress space 
formulation. 

For later reference we observe that, during loading, L can 
be written in the form 

This may be Cauchy stress or either of the Piola-Kirchhoff stresses, no 
distinction being made between these tensors in the infinitesimal theory. 

Incidentally, the right-hand sides of equations (4)( 2 of [7] should be 
symmetrized with respect to the indices / a n d / See the introductory remarks in Section 1. 
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L — 'u*u' 

where 

Kijkl 
( 2L

 dg dg ) 
V 3 de,„„ de,„„ / 

hj = 
dekl \ 3 de,„„ 3e, 

dg dg 

c rs ^'-uv 

(16) 

(17) 

The constitutive equation (2) may be used to derive from g a 
loading function/in stress space as follows: 

g(eij,efj,L)=g(KUkiOki + efj,e?j,L) 

=f(au,^,L). (18) 

The loading surface in stress space is given b y / = 0 at fixed 
values of eP andL. 

Once a strain space formulation is adopted, stress appears 
as a dependent variable and it is conceivable that certain 
geometrical conditions in stress space might be induced by the 
conditions assumed in strain space. It was demonstrated by 
Casey and Naghdi [6] that this is in fact the case. 

Proceeding as in [6], in the context of the present discussion 
we adopt the loading criteria in (14) and the flow rules in (14) 
as primary. As mentioned before, we could equivalently 
adopt (9), which are the relations assumed in [7]. 

In view of (18), (1) and (2) 

dey 

df df _ dg 

dak, dojj dek/ 

df dg dg df 

flefl 34 den dL 3L' 

We adopt the usual notation 

3/ . 

(19) 

(20) 

The relations (19)2,4 and the symmetry condition HUM = /cWj/-
allow (14G0, (15), and (17) to be expressed as 

1 . df 

'**>' Dsdoy' 

D=-
df^dg_ 

day defj 

df 

9f 
dL V 3 den deJ ' 

(21) 

On ^ 

_2_ _dj 

3 de„ 

df df 

dapq dapq 

Taking the time derivative of the identity (18), we find with 
the use of (12), (20), (Ua,b,c), (4), and (7) that f-g in an 
elastic state, as well as during unloading and neutral loading. 
Hence, the strain space criteria (14a, b,c) imply that 

/ < 0 , (a) 

/ = 0 , / < 0 , (b) 

/ = 0 , / = 0 , (c) 

(22) 

respectively. This was noted by Naghdi and Trapp [1]. 
In contrast to the results (22), the strain space criterion in 

(14c/) for loading from an elastic-plastic state does not imply 
t h a t / = 0 and / > 0 . To elaborate, from the condition that 
£ = 0, as well as (18), (12), (20), (19)4, and ( 2 1 ) u , it follows 
that during loading 

g D da,-, V de?i def, J defj 

D I def, dan dL \ 3 de,, de„ ) J ' 
(23fl) 

With the use of (19)3, the first expression in (23a) reduces to 

/ _ S 

J~l~~D' 
where6 

(236) 

dau dey 
(24) 

which may also be deduced from (19)3, (21)2, and the second 
expression in (23«). Evidently, during loading the sign of / i s 
determined by the constitutive functions that contribute to the 
coefficient of \/D in (23o)2. Three distinct types of material 
behavior are possible during loading, depending on whether 
fig is positive, negative, or zero. In [6], these three responses 
were called hardening, softening, and perfectly plastic 
behavior. Thus, during loading (g = 0, £>0) , 

^hardening, (a) 

if the material exhibits -

behavior, then 

softening, (b) (25a) 

perfectly plastic, (c) 

7 = 0 and f>0, (a) 

/=0and/<0, (b) (25b) 

i/=0and/=0. (c) 

Thus, the strain space loading criteria do not imply identical 
conditions in stress space nor do the stress space conditions 
imply those of strain space. The stress space and strain space 
formulations are therefore not equivalent. Indeed, the 
condition / = 0 , / < 0 , for example, corresponds both to 
unloading from an elastic-plastic state—defined by g = 0, 
£<0—and softening behavior during loading. 

For purposes of comparison with [7], we set 

df df df / 2 

defj day dL V 3 de,: den' 

It is then clear from (23a)2 that 

A 

(26) 

(27) 

and hence that 

> 0 if and only if the material is hardening, 

A= \ < 0 if and only if the material is softening, 

= 0 if and only if the material is exhibiting perfectly 
plastic behavior. 

Yoder and Iwan [7, p. 775] also regard strain-hardening, 
strain-softening and perfectly plastic behavior as 
corresponding, respectively, to the positivity, negativity, and 
vanishing of A. 

From (236) and (27) we obtain the relations 

A (28) £> = A + 2, 4 
A + S 

This quantity was denoted by A in [6], but in order to conform with the 
notation of [7] we reserve the symbol A for later use. 
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If a material is exhibiting either hardening or softening 
behavior, it is possible to express the flow rule (21)! in stress 
space form. Thus, in view of (21),, (25a,b), and (27) 

(29) e" D day JTg A day ' 
For hardening, both / and A are positive, while both are 
negative for softening. For perfectly plastic behavior ef/ 
cannot be written as a product involving /—which 
vanishes—and the strain space flow rule (21 )i must be 
retained. 

A geometrical interpretation of the three types of strain-
hardening responses was given in [6, Section 3], While during 
loading, the yield surface in strain space is always moving 
outward locally, the corresponding yield surface in stress 
space may concurrently be moving outward, inward, or may 
be stationary depending on whether the material is exhibiting 
hardening, softening, or perfectly plastic behavior. The 
occurrence of such behavior was illustrated with reference to 
the response in simple tension of a special class of elastic-
plastic materials [6, Section 4] and was also indicated in the 
discussion [6, Section 1] of the idealized stress-strain diagram 
for a typical ductile metal. 

The quotient fig, which is rate independent and dimen-
sionless, is related to the ratio of the outward velocities, va 

and ve, of the yield surfaces in stress space and strain space 
during plastic flow, where 

Thus 

V, = / ( T— T— ) 
V day day / 

J dg dg\ ~'A . 
V^glT- T~ ) >( 

\deij dey/ 

df df 
/ — — \ '/] 

f_ = _ t W dav dav \ 
S ye ^ dg_ dg_ J 

dekl dek/ 

(30) 

(31) 

For the case of uniaxial tension of special elastic-plastic 
materials, the quotient fig is related to the slope of the stress-
strain curve [6, equation (65a)]. 

It is worth emphasizing that both stress space and strain 
space are needed to discuss strain-hardening behavior, as 
defined in [6]. However, this is the case even in the traditional 
definitions for one-dimensional loading, where the slope of 
the stress-strain diagram is taken to be positive for hardening 
and zero for perfectly plastic behavior. 

In order to compare the preceding development further 
with that of [7], we let 

A = :Jo(y^) 
2 \ * , 

(32) 

Then, in view of (14) and (21),, 
2 df df 

D \ 3 dau do,, J 
(33) 

during loading, and is zero otherwise. It is then clear that 

' / d£y diij 
Adt' 

°\ K. 3L J 
dak, dak, gg 

L = 

>°\ df_ y_ 
dakj dakl 

where A' is the value of A at / = t'. 

dA', (34) 

Thus, for a given deformation, L is a function L, say of A 
(and also A is a function of L)1. Therefore once the defor­
mation is known, it becomes possible to construct a function 
$as follows8: 

f(au,efj,L)=f(ay,efj,L(A)) 

= *(<r,y,^,A). (35) 

At fixed values of tP and L the loading surface in stress space 
coincides with that given by $ = 0 at fixed values of <? and A. 
Also, 

d$ df a* 
<jy = / . 

a^ 
df_ 

94 
(36) 

where (35), (20), and (34) have been used. With the help of 
(36) 13,4, the expression (26) may be written as 

a* dt> 3* / 2 9* d* \ Yl 

V 3 d<7„ da,/ / 
A = -

defj day 9A 
(37) 

which conforms with the definition used in [7]. 
We also observe that A may be expressed as 

with 

A = / ^ 

df 

l& = 
day 

1 K 3L) 
2 dakl dakl) 

(38) 

(39) 

where (21), and (33) have been used. In view of (21)3 and (39) 

'H 
deu deu 

V_ _a// 
dakt daM 

tu­ rn 

3 A More General Class of Constitutive Equations 

In this section we discuss how the constitutive equations of 
Section 2 can be obtained as a special case of those employed 
in [1, 6].9 It is assumed that the stress response is given by the 
constitutive equation 

ay = ay(<U.), «U={e<y,eg-,K) (41) 

and that at fixed values of & and the work-hardening 
parameter K, (41)[ possesses an inverse of the form 

ey = eu(V), V={ay,efj,K}. (42) 

The loading function in strain space is gCU), with a 

For sufficiently special constitutive equations it is possible to express L as a 
constant multiplied by A [7]. 

It is to be noted that the function/in (18) may be obtained from g without a 
knowledge of the deformation. 

9The development in [1,6] is valid for finite deformations of elastic-plastic 
materials. Although we shall continue to use the notation of Section 2 in what 
follows, ay will now stand for the components of the symmetric Piola-
Kirchhoff stress tensor, and ey will denote the components of the Lagrangian 
finite strain tensor. 
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corresponding loading function f(V) in stress space. The 
constitutive equations for eg are the same as in (14) except 
that 

efj = \gPu if £ = 0 and g>0, (43) 

where X and p are, respectively, a positive scalar-valued 
function and a nonzero symmetric tensor-valued function of 
11. The function K is also assumed to satisfy a rate-type 
constitutive equation, namely 

k = eijefi, (44) 

where 6 is a symmetric tensor-valued function of I t . The 
consistency condition leads to [6, equation (16)]: 

3g 
1 + V,y ( 

def + OK '0 e„ =0 (45) 

and the quotient fig may be written as10 [6, equations (22) 
and (24)]: 

dg V *'-*[(S-£)+(£-£W 
: 1 + \pU 

df_ 

dak, 3K defj .} 

--*.[£•-£«.} (46) 

The work assumption of Naghdi and Trapp [3,4] states that 
the external work done on an elastic-plastic body in any 
smooth homogeneous cycle of deformation is non-negative, 
and implies that 

r dakl abM ~) 

dtki 
(47) 

where 7* is a non-negative function of I t . It then follows 
from (46)2, (47), and (24) that 

/ • l-\y*a. (48) 

We now reexamine the constitutive equations of Section 2 
in the light of the results listed in the present section. Equation 
(1) is a special case of (41)! with" 

da,. do,, da a 
" ijkl > = 0. (49) 

3e« 3e£, ''•""' 3K 

Also, equation (2) is a special case of (42)! and 

Comparing (44) and (16), we may identify12 K with L of 

(50) 

Other forms oif/g may also be found in [6]. 

In the constitutive equation (41)i, stress is a function of strain, plastic 
strain, and a work-hardening parameter. Yoder and Iwan [7, p. 774] remark 
that Naghdi "did not pursue the possibility of expressing stress as a functional 
of strain . . . , " an approach that they claim to discuss in [7]. We find no trace 
of a functional constitutive equation for stress in [7] and indeed, as we have 
shown, the constitutive equation actually utilized in [7] is a special case of (41)i. 
We should perhaps point out, however, that once a plasticity problem is solved, 
the stress may appear as a functional of the strain history. 

^Alternatively, K may be identified with A and <3,y with ltJ•. While the latter 
is perhaps a more natural choice, we shall adopt the other identification because 
of the appearnace of Lin (11), 

Section 2 and Qy with /,-,. In addition to the relations (19)1A3, 
in view of (49)2 we now also have dgldK = dfldK or (19)4. 
Further, from (49), (47), (3), and (19)2, we obtain13 

df 
dau 

where the symmetry condition Kijkl = KkHj has also been in­
voked. Since p^O, 7* must be positive. The flow rule (43) 
now becomes 

yfj = \y*g 
. df 

dan 
(52) 

so that the plastic strain rate is normal to the yield surface in 
stress space. Comparing (52) and (21),, we find that 

D = 
1 

xy* 
(53) 

It is then readily seen that (48) reduces to (236), (46), reduces 
to (23a)i, and (46)2 reduces to (23b). Furthermore, with the 
help of (51), (21)3) (26), and (53), (46)3 reduces to (27) and 
(28)2. 

Finally, it can be shown that for the special stress response 
(1), the work inequality of Naghdi and Trapp implies that 
both the yield surface in stress space and the yield surface in 
strain space are convex [4, Section 4]. 
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Constitutive Equations for 
Damaging Materials1 

The paper focuses on the derivation of the constitutive law for a material containing 
flat, planar microcracks. The damage law is derived from the dissipation potential 
in conjunction with the orthogonality principle. The dissipation potential is shown 
to exist in the space of conjugate thermodynamic forces related to the stress in­
tensity factors. Both brittle and ductile materials are considered within the 
framework of the small deformation theory and the time-independent processes. 

1 Introduction 

The energy imparted to a solid by a slowly changing (static) 
loading in an isothermal process is either stored as an elastic 
strain energy or dissipated through one of the several 
mechanisms of microstructural rearrangement. The mode of 
the energy dissipation has a strong qualitative and quan­
titative influence on the material response. Various theories of 
the Continuum Mechanics were established to describe dif­
ferent types of the material behavior governed by a specific 
dissipation mechanism. The conventional theory of plasticity 
focuses, for example, on the establishment of a rational 
macromodel describing the material behavior associated with 
the propagation of dislocations through the crystalline 
structure. The nucleation and growth of microvoids and their 
ultimate coalescence into macrovoids is, however, a distinctly 
different mechanism through which the imparted energy 
dissipates. In view of the physical difference existing between 
the two processes (propagation of dislocations versus the 
evolution of microdefects), the limited success of the plasticity 
theory in describing the combined phenomenon is hardly 
surprising. 

The simplifying assumption that the response of the 
material depends only on the current pattern of structural 
arrangement allows formulation of reasonably simple 
analytical models. A rational description of the two distinctly 
different dissipation mechanisms, i. e., contrasting modes of 
the microstructural change, obviously requires the in­
troduction of two sets of internal (hidden) variables: 

variables reflecting the structural changes associated with 
the propagation of line defects (typically some functions of 
the plastic strains), and 
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variables characterizing the evolution of microdefects or 
microcracks (damage or material degradation). 
This has been first realized by Kachanov [1] who introduced 

a separate variable defining the integrity of the material 
locally measured by means of void density in a cross section. 
The ensuing development of the Continuous Damage 
Mechanics has been too rapid to allow for a reasonably 
comprehensive review in this paper. A short summary of some 
of the proposed models can be found in [2]. 

In general, the transition from a model describing an event 
in one of the many sites on the microscale to a typical 
engineering representation on the macroscale involves some 
kind of an averaging procedure (see Rice [3]). Such a model 
has in fact been formulated by Seaman, Shockey, and Curran 
[4] in the form of a series of powerful computer codes. Yet to 
quote from Rice [3], "the use of averaging procedures that 
involve, even with substantial approximations, a direct 
calculation from microscale models entails substantial 
complexity, and this would seem overwhelming if required in 
each increment of deformation of each element of, say, a 
finite element formulation for some structural problem in­
volving inhomogeneous deformation." 

The alternate approach, typical of conventional continuum 
theories, involves formulation of a phenomenological model 
based on variables characterizing structural changes in an 
average sense. For example, as shown by Kroner [5], it is 
possible to predict the plastic response of a ductile body using 
a proper set of internal variables describing the dislocation 
distribution in a statistical sense. 

The proposed formulation of the theory presents further 
development of the model derived in [2]. First, it extends the 
theory to ductile materials. Second, it introduces considerable 
improvements into the original formulation for the brittle 
materials. The derivation of the flow potential directly from 
the dissipation power density is a major improvement of the 
model derived in [2] for the following reasons: 

it renders unnecessary any assumptions regarding the 
existence of potentials in spaces of other variables; 
it identifies the correct conjugate thermodynamic force 
which is related to the stress intensity factors from Fracture 
Mechanics (mindful of the role of the stress intensity 
factors, this point alone may have a far reaching con-
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sequence in the establishment of proper, experimentally 
verifiable, damage laws); 

it identifies convexity and normality as inherent properties 
of the flow potential. 

It is equally obvious that any other choice of the ther­
modynamic force would render the extension of the theory to 
more complex materials highly arbitrary. Therefore, it is felt 
that the present formulation is both an extension and im­
provement (in mathematical rigor and essence alike) of the 
model derived in [2]. 

damage. Considering the shape of the voids to be of little 
significance (higher moments of the void distribution [5]), the 
damage can, therefore, be locally defined by a vector function 

uj(x„t) = <4.x„t)Nj (1) 

where the scalar to is the void density in a cross section defined 
by the normal Nj. Naturally, the orientation of the normal Nj 
to the void surface must be understood in the sense of an 
appropriate averaging process over a statistically significant 
sample. 

2 Damage Variable 

From a purely geometrical standpoint, it is possible to 
classify the microdefects of the crystalline structure into three 
large groups: 

line defects (or dislocations), 

sharp, almost planar cracks emanating from triple points or 
second phase inclusions, and 

spheroidal voids (cavities) typically found along the grain 
boundaries. 

The first class of defects characterizes the response of ductile 
materials and is studied using the methods of the Theory of 
Plasticity. 

The phenomenological models describing the gradual 
evolution of planar microdefects and the cavitation of 
spheroidal microvoids belong to a branch of the Continuum 
Mechanics commonly known as the Continuous Damage 
Theory. In view of geometrical and metallurgical differences 
existing between microdefects of the two latter groups, it is 
unrealistic to expect that they can be described by a single 
internal (damage) variable. From a purely geometrical 
standpoint, it makes sense to describe the damage in the form 
of spheroidal microcavities by a scalar variable (Davison, 
Stevens, and Kipp [6]) and to use a vector function (Davison 
and Stevens [7], Kachanov [8], or Krajcinovic and Fonseka [2, 
9]) to characterize the damage consisting of multiple planar 
microcracks. 

Another possibility is to ignore the physical nature of the 
problem and describe the damage indirectly through the effect 
it has on the strains (Doughill [10], Bazant and Kim [11], or 
Nicholson [12]). While there is certainly nothing wrong with 
an artifice of this type, the loss of the physical insight into the 
phenomenon can hardly be helpful in the process of the 
material parameter identification. 

In an effort to establish a simple and practical analytical 
model, further discussion will be restricted to the small 
displacement gradient theory of solids characterized by the 
material properties that change with the development of line 
and planar microdefects. The thermodynamics with the in­
ternal state variables presents a suitable framework for the 
development of the constitutive equations for materials 
depending only on the current pattern of structural 
arrangement. 

To describe the two distinctly different processes of 
crystalline change, it is necessary to introduce two sets of 
internal parameters: 

a reflecting the state of plastic deformation, and 
co characterizing the level of the microvoid evolution 

locally. 

The exhaustive literature dealing with the theory of plastic 
flow renders unnecessary any further discussion on the 
relation existing between the set of the internal variable a and 
the plastic strains (see, for example, [3, 5]). 

As originally suggested by Kachanov [1] the area density of 
voids (and other decohesions) in a given cross section is, by all 
standards, an intuitively appealing characterization of the 

3 Flow Potential 

Concentrating on the derivation of the constitutive 
equations defining the internal variables in terms of the state 
variables, it is convenient to start with the Clausius-Duhem 
inequality which in the case of small deformation gradients 
reads 

Oijiu-p{i + Sf)- q . g r a d r > 0 (2) 

where 07, and e„ are the stress and strain tensor, p, \j/, S, T, 
and q the mass density (considered constant in the absence of 
cavities), Helmholtz free energy, entropy, temperature, and 
the heat flux vector, respectively. 

Assume further that the strain tensor allows decomposition 
into elastic and plastic component 

t = te + (P (3) 

Introduce the stress tensor 

dee 

and the generalized thermodynamic forces 

and Aj = p-— and Rj = p-— 

(4) 

(5) 
dctj „~j 

The Clausius-Duhem inequality (2) can now be rewritten in 
the form of a scalar product representing the rate of the 
entropy production per unit volume 

pZ) = X . J > 0 (6) 

where the thermodynamic flux vector J and the vector of 
conjugate forces X are in the present case 

X = p[a,y, -Aj,-Rj, - — grad 7J (7) 

(8) 

A comprehensive discussion of the postulates leading to (6) 
are available in the excellent "synthesis" paper by Kestin and 
Bataille [13]. 

In general, the constitutive equations are given in the form 

J = J ( e e , r , g r a d r , ^ ) (9) 

However, in the neighborhood of the equilibrium state, the 
general constitutive equations can be linearized (see, for 
example, Malvern [14]) and cast into a form 

Jm
=LmkXk (10) 

or reciprocally 

Xk=lmkJm (11) 

(see again the lucid discussion by Kestin and Bataille [13] or 
Moreau [15]). In absence of the nondissipative term, the 
matrices Lmk and lmk are symmetric. Hence from (6) and (10) 

pD = LmkXmXk = lmkJmJk a 0 (12) 

Introducing the dissipative (flow) potential F 
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Fig-1 A planar void at two successive instants of a loading process 

F=V2Pt)=V2LmkXmXk (13) 

the flux vector J can be written as 

dF 

' • ~ , " 4 ) 

A somewhat different discussion of the normality structure 
(14) of the flow potential is due to Rice [3] who demonstrated 
that a sufficient condition for the existence of the potential 
F(te, X, T) is that the rate of change of each component of 
the flux vector depends only on its conjugate force, i.e., that 

Jm=f{X,„,T,H) 

where H denotes the current state of the microstructural 
arrangement. The property of the orthogonality of the flux 
vector J (defining the rate of damage and plastic flow change) 
to the surface of the constant entropy production was also 
used by Halphen and Son [16], Sidoroff [17], and others. 

In certain applications it is convenient to define the dual 
potential F*(te, J, 7) such that 

where F* is a Fenchel transform of F. 
The benefits of the proposed procedure are quite obvious. 

Instead of an attempt to establish a separate damage law for 
every damage variable it is necessary to define only a single 
potential F under requirements described by Moreau [15]. In 
addition, the damage theory established in such a way is at 
least formally similar to the theory of plasticity. 

4 Brittle Materials 

The perfectly brittle materials characterized by the total 
absence of the plastic flow form the simplest class of all 
damaging materials. While all solids exhibit at least a 
modicum of ductility, the nonlinear aspects of the response of 
materials such as ceramics, gray iron, certain rocks, and even 
some high-strength concrete is dominated by microcracking. 
The brittleness is also emphasized by low temperature, high 
strain rates, second phase inclusions, etc. 

A comprehensive theory of the mechanical behavior of the 
brittle solids gradually degraded by the evolution of flat, 
planar microdefects was formulated by Davison and Stevens 
[7]. Their model was subsequently modified by Krajcinovic 
and Fonseka [2] to a form including Kachanov's one-
dimensional model as a special case. According to [2] the 
strain energy can be written in the form 

piA= Vi(\ + 2ix)eKKeLL -ix(eKKeLL -eK LeL K) 

+ C2(wpWP)~'/2eKLeLM^K^M + C3(wp(>3p)'3n(o)KuLeKL)2 (16) 

considering for simplicity only terms quadratic in strain and 
linear in damage variable and only a single damage system. In 

(16) \(T) and n{T) are the Lame constants (which are 
functions of the damage in case of spheroidal cavities [6]). 
The two material parameters C,-(«, T) = C;(T)(o>PwP)~ Vl are 
selected in a form reducing (16) to the original Kachanov's 
model (obtained for vanishing Poisson's ratio v). 

The damage vector to is defined locally by the void area 
density co0 in a plane defined by a normal e! 

a> = cdoei (17) 

where (1, 2, 3,) is the principal damage (void) coordinate 
system (such that N = ej). Selecting the coordinate axes 
("rotating" with the void, Fig. 1) such that the resolved shear 
is directed along e2, the void "rotates" about the axis e3. 
Hence the damage rate is 

Ji = d)0e[ +oj0e'i (18) 

For an infinitesimal rotation 8 < < 1 (see [2]) about e3 from 
(18) 

oi= co0e! +coo0e2 (19) 

From (4) and (16) the stress can be written in the form 

°ij=KIJKLtKL (20) 

where 

KUKL = ^{J8KL + 2jxbIKbjL 

+ C2(wPwp)~'A (8jKw,coL +bILwjuK) 

+ 2C3(o)pu)p)-
3/2w!oijuKwL (21) 

The thermodynamic force R conjugate to the damage variable 
«is from 

R, = =2C^{oipwp)-
VltMMtK,wK 

+ 2C2(o>po>p) ~
 Vl e1LeLKwK 

- {C{tMMuL+C2tLMuM)(wpwp)-
y2u>,uKtKL 

+ 4C3(<j>pwp)~
i/2eIMeKLo>MwKu>L 

-3C3(copo)p)"5/2a)/(a)A-a)Le/fL)2 (22) 

The simplest form for R and u is obtained in the damage 
coordinate system (since e13 = 0 and o>2 = co3 = 0 by 
definition). Thus from (22) 

Rt = C 1e e , 1+C 2( e? 1+ ef 2) + C3e?1 (23) 

and 

R2 = 2C1ee12+2C2(e1i+e22)e12+4C3e11e12 (24) 

where e = tMM is the volumetric strain. The dissipation power 
density is from (6) and (19) 

pt> = Rl u0+R2u0d>0 (25) 

The final step in establishing the analytical model consists 
of the formulation of the potential F (13) in terms of the 
generalized thermodynamic forces R2. The dissipation power 
inequality (12) in conjunction with the linearization (10) 
requires that /,„ (i.e., ai,„) is directed along the outward 
normal to the dissipation potential surface related to the 
surface of the constant dissipation power. The potential F can 
be shown to be convex with absolute minimum at X = 0 [13]. 
Assuming that the function F has a continuous first 
derivative, equation (14) can be rewritten as 

co/ = A ^ (26) 

where the scalar-valued function A > 0 ensures that the 
damage rate is directed along the outward normal to the 
surface F. 

This is in sharp contrast to the model developed in references [2, 9, 10] 
where the potential F was arbitrarily defined in terms of strains or stresses. 
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Fig. 2 Stress-strain curves of three concrete samples in uniaxial 
compression. Dots denote experimental results. The compressive 
cylinder strength is labeled tc. 

The scalar-valued dissipation potenetial function F(ee, R, 
T) should be determined on the basis of specific experimental 
data satisfying at the same time requirements of convexity and 
having the form (12). For example, for an isotropic damage 
surface 

F=LmnRmRn-Rl (27) 

where Ra(w, T) serves as the repository of the recorded 
history while Lm„ are some functions of temperature it is 
trivial to show that 

am=2ALmnRn (28) 

leading to 

PD = 2ALmnRmRn>0 (29) 

with 

A= r— A-W(L22W? + L,,W2-2L12c61co2),/' (30) 

where 

A = L „ L 2 2 - L ? 2 > 0 (31) 

Thus the form (27) satisfies all necessary requirements. The 
non-negative value of the specific dissipation power is ensured 
by the proper selection of material parameters C, in (21). The 
parameters Lm„ and R0 are determined from experimental 
results. 

Taking the clue from the theory of plasticity (see Martin 
[18], Chapter 2) an especially convenient form of (26) may be 
derived assuming that the direction of com depends only on the 
current state (te, R, a, T) while the magnitude of um can 
depend on R„ as well, when 

„ dF dF . 

where K = 1 if F = 0 and (dF/dR„)Rn > 0 (loading) or K = 0 
otherwise, while G(R, to, T) is a scalar-valued "softening" 
function. 

An extremely close agreement (Fig. 2) between the ex­
perimental data reported in [9] and the numerical results 

computed on the basis of the developed theory can be ob­
tained for three grades of the high-strength concrete using 
only three constants. While the absence of a complete set of 
measured data hinders the determination of the dissipation 
potential for a specific material, it is important to point out 
that the developed theory follows the experimentally observed 
major trends of the material response; 

(a) In uniaxial tension (e12 = 0 and consequently R2 - 0), 
the damage and ultimate fracture are perpendicular to the 
maximum tensile (axial) strain (see Dieter [19], Chapter 7). 

(b) In uniaxial compression (e12 = R2 = 0), the damage 
and ultimate fracture are again perpendicular to the 
maximum tensile (lateral) strain (so-called splitting of rocks, 
Jaeger and Cook [20], Chapter 4.5 and concrete Neville [21], 
Chapter 5). 

(c) If a damage field is in pure shear (only e12 ^ 0), the 
microdefects will simultaneously grow (Rx # 0, oi, ?* 0) and 
"rotate" (R2 * 0, o>2 ^ 0, or 6 * 0) (as observed for 
macrocracks, see Broek [22], Chapter 3 or Jaeger and Cook 
[20], Chapter 10). 

Once the dissipation potential function is determined, it is 
fairly straightforward to derive the stress-strain law on the 
basis of (23), (24), and (32). Using the Voight (vector) 
notation for the strain tensor from equations (23) and (24), it 
directly follows that 

Ri=iuij 03) 
where lower case indices denote the damage coordinate system 
(1, 2, 3,). The strains e,- in the damage coordinate system (1, 2, 
3) are related to the strains ej in the structural coordinates 
system (x, y, z) through the well-known transformation 
(capital letters stand for x, y, z axes) 

ti=r,jzj (34) 

where the components of the matrix ru depend on the angle 9 
subtended by axes x, and Xj. Since the angle 6 changes, in 
general, during the process of the damage evolution, the 
strain increments are related through 

ii=ruij+pijWj (35) 

since in view of (19) oj2 = u09. The four preceding formulas 
with 

combine into the damage law 

^M = «QMNiN (36) 

where 

QMN = [(8/« -fijgjkPkn )n„M\ ~' ifirgrsrsN) (37) 

Rewrite further (20) in the Voigt notation as 
°i=Kuej (38) 

Since the elements of the matrix Ku depend on co, dif­
ferentiation of (38) leads to 

a,=K,jej + C,jwj (39) 

The final incremental stress-strain relationship is obtained 
combining (36) and (39) 

o,=Duij (40) 

where the "stiffness" of the deteriorating material is given by 

D,J=KIJ + KQIMCMJ (41) 

It is important to notice that Du is not identical for two 
different unloading paths since Ku depends on the already 
accumulated damage. This is, naturally, in sharp contrast to 
the results of the conventional plasticity theory. This response 
typical of brittle materials was experimentally measured for 
rocks [20] and concrete [9, 11]. 
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5 General Materials 

The X-ray diffraction studies of fracture surface provide a 
conclusive proof that at least some plastic deformation 
precedes even the "completely brittle" failure mode of metals 
(Dieter [19], Chapter 7). The microdefects "initially 
propagate along the slip plane but eventually switch to the 
plane normal to the tension axis" (Low [23], p. 201). Hence 
the grain boundary sliding has "a prominent role in 
promoting the formation and growth of intercrystalline 
cracks and voids" (Garofalo [24], p. 95). In fact, some 
authors like Conrad [25] go even further and claim that 
" . . .no voids (are) formed when the (grain) boundary was 
perpendicular to the stress axis but voids always formed when 
shear traction was applied parallel to the boundary." 

These observations indicate that the gradual degradation of 
the material occurs as a result of a complex interaction of two 
dissipative mechanisms (so-called plastic flow and 
microcracking). The cracking apparently commences in the 
planes of maximum shears after some plastic deformation 
takes place. Analytically, the presence of two different 
dissipative mechanisms and two sets of different internal 
variables complicates the problem to a significant degree. 
Two of the most important steps consist of the establishment 
of the proper forms for the Helmholtz free energy \p(ee, a, <o, 
T) and the dissipation potential F{X,T). Separation of the 
free energy function is, for example, a popular simplification 
(see Davison, Steven, Kipp [6], Halphen, Son [16], Chaboche 
[26], etc.) which is, to a degree, based on a rational argument. 
Despite numerous attempts, the determination of the free 
energy function on the basis of the microscale models remains 
an elusive goal (see Rice [3]). Thus a phenomenological 
model, based on the present experience and some general 
speculations (like in Chaboche [26]) offers, at the present 
time, the best hope for the success. 

The dissipation potential is a scalar-valued function of the 
generalized thermodynamic forces which in two extremal 
cases of the ideally ductile and perfectly brittle materials 
reduces to the yield function and the damage function F(R, 
T) (given, for example, by equation (27)) correspondingly. 
The simplest alternative would be a form combining these two 
extreme cases, i.e., 

F=aFD(Ajy ctj, T) + pFB{Xj, UJ, T) (42) 

For an ideally ductile material /3(e, T) = 0, while for per­
fectly brittle material a{t, T) = 0. Introduction of a brit­
tleness index 

, oc + P 
d= ~ (43) 

a- p 
offers an attractive way to measure brittleness on the scale 
( -1;1) . For the present purposes, FB can be taken in any 
form satisfying the condition (13). The choice of the yield 
condition FD is, in view of the existing literature, even wider. 
The separable form (42) for the dissipation potential is quite 
obviously the simplest choice available. There is some doubt, 
though, whether this form would allow for rational analytical 
modeling of the fatigue process. 

Using again the Voigt notation for the stresses and strains, 
the generalized force and flux vectors are: 

Xi (ff„ ~A„ -Ri] 

aj = {ef, - d „ •-J, 

(44) 

(45) 

where if are plastic strain rates while the asterisk denotes 
transposition. 

From the normality property (14) 

. . „ dF dF . 
(46) 

dF . 
K=1 if F=0 and -—xm>0 (loading) 

oXm 

K = 0 otherwise (unloading) 

while G(Jm,ad
m, T) is a scalar-valued "hardening/softening" 

function to be determined from experiments. 
The remaining procedure is more cumbersome but formally 

similar as for the brittle materials. From the Helmholtz free 
energy function, quadratic in strains and linear in the damage 
variable, from (4) and (5) it follows (all in structural coor­
dinates system) 

Xi = gijaej=gij{ej-dj) 

where 

[ ej, <kj, oij) * 

(47) 

(48) 

and 

Am "•mn cn 

e, = {€, ,0,0)* (49) 

A combination of (46) and (47) leads to the damage law for 
the damaging material 

where 

From (4) 

Differentiating (52) it further follows 

kij=(Sim-Kgi,J„m) Xg„. 

(50) 

(51) 

(52) 

(53) 

(54) 

J til (55) 

where 

After some obvious manipulations 

where 

dF dF 

da„ dar 

The final form of the incremental stress-strain law is 
derived substituting (50) into (54) 

ar = (<5mr + KKmnfnr) ~ ' (Km„ +Kmpkpn)e„ (56) 

or simply 

°>=A-»e'n (57) 

6 Summary and Conclusions 

The proposed analytical model offers a rational and 
systematic establishment of constitutive equations for a 
material undergoing irreversible changes of its crystalline 
structure under loading. The model is a generalization of the 
familiar Kachanov's one-dimensional theory which proved to 
be very successful in many diverse applications. 

In contrast to previously developed models (references [2, 
7, 8, 10] etc.), the one formulated here has a more rigorous 
structure avoiding several unnecessary and possibly incorrect 
assumptions. The "damage law" is derived directly from the 
"normal dissipative mechanism" [13] in conjunction with the 
orthogonality property. Consequently, the damage variable is 
directly related to its conjugate thermodynamic force rather 
than an arbitrary state variable. 

The number of material parameters is reduced to a 
minimum. Moreover, the intuitively appealing and ex­
perimentally verifiable measure of damage along with the 
rigorous formulation of the kinematics of the damage 
evolution should be of great help in the process of the iden­
tification of these material parameters. Finally, the present 
formulation establishes a link between the Continuous 
Damage Theory on one side and the Fracture Mechanics [2, 
27] and the Statistical Strength Theories [28] on the other side. 
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A P P E N D I X 
One-Dimensional Model 

The derivation of the original Kachanov's model [1] from 
the developed general theory is in itself a fairly trivial exercise. 
However, in view of the numerical results presented in 
references [2, 9, 28, 29], such an exercise proves to be very 
useful for the determination of the introduced material 
parameters (at least in terms of the order of magnitude). 

From (21) with v = 0, e,, = e% <xu = a, and all other eijt a,-,-
= 0 (/' * j' 9t 1), it directly follows that 

o = E(\-Da>)e 

where 

D=-2 
C,+C2 

(A A) 

(A.2) 

Also from (23) and (24) 

Ri=(Cl+C2)e
2="-l/2EDe1<0, R2=Q (A.3) 

which satisfies the Clausius-Duhem inequality (2) if (C, + C2) 
< 0. Furthermore, if the dissipation potential is simply 

F=R2-Rl (A A) 

where R0 = R0 (o) = ku" with n being a positive integer, the 
consistency equation dF = 0 leads to a simple relation 

i/2(ED)2e3de = ak2w2^lda1 (A.5) 

The model proposed in [28] for a general case and [29] for 
concrete is obtained directly by putting 

D=l, « = 2 and Ar = 8 o i / £ (A.6) 

where aF is the tensile rupture strength. Since the Poisson's 
ratio is not actually equal to zero, the values for the material 
constants as obtained in (A.6) are only approximate. 
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Inversion of Creep Response for 
Retardation Spectra and Dynamic 
Viscoelastio Functions 
The basic problem addressed here is that of obtaining the unknown retardation time 
spectrum from experimental creep response curves. The spectrum may be a set of 
discrete times or it may be a spectrum characterized by a continuous distribution 
function. The present work employs a general model which assumes that the ob­
served creep compliance is due to the summed effect of an arbitrary distribution of 
mechanisms. The analysis requires the solution of Fredholm integral equations of 
the first kind. It is well known that this problem is ill-conditioned so that any 
numerical scheme will have to involve some smoothing to obtain accurate solutions. 
The present work employs Butler's method of constrained regularization which 
takes advantage of the fact that the solution is positive and uses data-dependent 
smoothing. This work indicates that the imposition of the positivity constraint 
makes the computation of the solution much better conditioned. Computations 
with the method of constrained regularization employing near-optimal smoothing 
demonstrate its superiority over the method of Schapery for obtaining accurate 
solutions when the data are very noisy. 

Introduction 

Creep and stress relaxation data have been used extensively 
to study the rheological properties of various materials [1-6], 
and various equations based on phenomenological theories 
have been proposed to represent experimental or inferred data 
[7-10]. These phenomenological theories are based on the 
assumption of linear viscoelasticity and Boltzmann's 
superposition principle. This makes it possible, in principle, 
to calculate any other viscoelastic function if one viscoelastic 
function is known for all values of frequency, or it makes 
possible the calculation of the distribution function of 
retardation times of strain when the creep function is given 
[11,12]. 

In the present paper we present a method for the deter­
mination of the retardation time spectrum from the creep 
compliance data. The determination of this spectrum is posed 
as an inversion problem. Specifically, the spectrum is the 
solution to a Fredholm integral equation of the first kind. It is 
well known that the problem is ill-posed [13-15]; large-
amplitude, high-frequency oscillations in the solution produce 
very small change in the data. Conversely, small data 
variations may produce large variations in the solution. In the 
literature, many researchers have approximated the kernel in 
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the integral to obtain the spectrum [12]. This is due to the 
formidable problems in inverting first-kind integral equations 
with noisy data. Approximation of the kernels requires the 
computation of various derivatives of the experimental data, 
and this limits the order of the approximation that may be 
used, because the effect of noise in the data is magnified in the 
answer obtained. 

Schapery [16] suggested a procedure to invert the integral, 
but it is difficult to obtain accurate solutions with Schapery's 
method when the data are noisy. Recently, Swanson [17] used 
a procedure developed by Bellman [18] to obtain solutions to 
Laplace transform inversions in dynamic viscoelasticity. The 
distribution function obtained by both methods could be 
negative. Furthermore, Swanson's technique was not tested 
for noisy data or when the solution is made of discrete-
impulsive spectra. The method of the present paper is shown 
to resolve discrete spectra and give accurate solutions from 
noisy data. This method was developed by Butler [19] for 
inverse problems in medicine. It uses constrained 
regularization, in which the solution is constrained to be non-
negative and Tihonov [14] regularization is used. A similar 
constrained regularization was given by Wahba [20]. 

It should be noted that there are other approaches to the 
solution of integral equations which could be useful in ob­
taining the distribution function from the creep response. 
Sven-Ake Gustafson [21] has introduced a very efficient 
constrained optimization method. For application to our 
problem the data would have to be smoothed first because 
Gustafson's method is not designed for noisy data. Finally, 
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we mention that the Tihonov regularization could be replaced 
by other standard regularizations, such as that based on the 
singular vane decomposition as used by Eckhardt [22]. 

In the following the method of constrained regularization is 
briefly reviewed. The method is then applied to the inversion 
of creep response for quartz monzonite and compared with 
the method of Schapery. Comparisons with some exact 
responses are then used to illustrate the applicability of the 
method. 

Determination of Distribution Function 

The creep function J(t) is given in terms of the distribution 
functionX(T) by [12] 

Quar tz Monzonite 1003K 

JU)=J*-\™X(T)e~"rdr, 

X(T) satisfies the condition 

f X(r)dT=AJ 

(1) 

(2) 

where AJ = J„ —Jo- Here, / „ is the relaxed compliance and 
J0 is the instantaneous elastic compliance before any ap­
preciable flow or retarded elastic (anelastic) deformations 
have occurred. 

To obtain the distribution function X(T), the Laplace 
integral (1) is written in the more convenient form 

4>(t) - i : F(s)e s'ds. (3) 

The function F(s) introduced in this expression is related to 
X{ T) by the equations 

4>(t)=Ja-J(t), (4) 

X(T)=S2F(S), (5) 

and 

S=\/T. (6) 

In this paper, F, is referred to as the distribution function. By 
means of equations (5) and (6), it is always easy to obtain the 
retardation spectrum X( T) from F. 

Briefly, the steps involved in Butler's method are as 
follows. To obtain F from creep data, let us write equation (3) 
more specificially. Discrete data 4>f are taken at various points 
t,. It is assumed that these data contain random noise {e,-) 
associated with the rth measurement. Then, relation (3) may 
be written 

y(t,)-- i oo 

k(tlr 
0 

s)F(s)ds, i=\, N, (7) 

where the data vector is yUi) = </>(/,-) + e,(t) and k(ths) = 
exp[-sr,-]. In the problems of interest in this paper, physical 
considerations require the spectrum to be non-negative 

F(s) > 0, (8) 

and boundedness of the solution and data, 

[F(s)]2ds<<x, 

\y(s)]2ds<oo. 

(9) 

(10) 

The technique of Butler solves a minimization problem to 
approximate the unknown spectrum F by a function fa which 
depends on the observed data and a regularization parameter 
a. The approximate solution / „ is obtained by minimizing the 
function 

N 9 

+ V)='EWi(\DW,f)f(s)ds-yVl)} +a\\f\\2, (12) 

J / J , 

t 
Fig. 1 Creep response for quartz monzonite and comparison with 
results computed from Schapery's method (dashed curve) and the 
present work (dash-dot curve) 

where the weights Wj are inversely proportional to the 
measurement error variances. The weights are scaled such that 
E/l \ Wj = N. Here D is the domain where the solution fa is 
positive, a is a positive regularization or smoothing parameter 
to be chosen, and II* II denotes either the Euclidean RN vector 
norm or the L2-norm as appropriate. Minimization of (12) 
leads to the system of equations 

/ ( s ) = m a x (0,*(s) .c) , (13) 

(Kf-y)+ac = 0, (14) 

where k(s) denotes the vector-valued function whose rth 
component is k(tits) and the integral operator K is defined by 
Kf = J k(s)f{s)ds. The desired approximate solution fa 

satisfies the preceding system of equations for a given 
smoothing parameter a. If (13) is substituted into (14), then c 
satisfies the equation 

c=T(k-c)y, (15) 

where T(k-c) = (M(k-c) + o/)~' andM(£*c) istheNxN 
matrix whose entries are given by 

Mij(k'c) = k{tj,s)k(tj,s)ds. (16) 

Since M is symmetric and positive semidefinite, (M+crf) is 
nonsingular. Note that c enters nonlinearly in (15), so that we 
solve it using Newton's method. 

The next step in the method of constrained regularization is 
to determine the optimal smoothing parameter aopl. The 
parameter a is chosen to minimize a function which is an 
estimator of the data prediction error less an additive constant 
IIFII2 which is independent of a. This auxiliary function is 
written 

H(a) = \\fa-F\l2-\\F\\2 

=y^TMTy-2^Dfa(s)F{s)ds, (17) 

where equation (15) has been used in evaluating / „ . Assuming 
the noises have mean zero, are uncorrelated, and have known 
variances, Butler showed that (17) could be written 

H(a) =y^ TMTy -2y^ Ty + 2a(N)y2\\c\\, (18) 
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Fig. 2 Comparison of spectra obtained with Schapery's method 
(dashed curve) and present work (solid curve) for quartz monzonite 

where all noise variances of are taken equal a2. If the noise 
variances are unequal, simultaneous transformation k(ths) 
— k(tj,s)Wi and yUi)—yVi)Wj leads to the same form­
ulation. The value of a that minimizes H(a), aopt, is taken as 
the optimal choice of the amount of smoothing. Three cases 
of aopt that minimizes H(a) must be distinguished and are 
discussed in detail by Butler. However, the value of aopt 

appropriate to the present work is given by 

aopt=triV l /2/llcll. (19) 

In spite of this theory, we have found in practice that the aopt 

given by (19) is sometimes too large, leading to excessive 
smoothing. 

Dynamic Viscoelastic Functions 

Once the retardation spectra is determined, a Fourier 
transform of (3) gives the dynamic viscoelastic functions as 
follows: 

JR(oi) =J0 + 
o 1+coV 

dr, 

y,(«)= x(r) 
Jo 

, , 2 2 dT' 

1 + or r 

(20) 

(21) 

and 

Q-'(w) = / / ( « ) / / « ( « ) , (22) 

where JR (co) is defined as the storage compliance and is the 
ratio of the strain in phase with stress to stress, Jt is the loss 
compliance and is the ratio of the strain 90 deg out of phase 
with the stress to the stress, and Q \ the inverse quality 
factor, is the tangent of the loss angle. It is associated with 
dissipation or loss of energy. 

The integrals in relations (20) and (21) are evaluated using a 
modified adaptive Gaussian quadrature (AGM) [23] com­
bined with a Gauss-Laguerre [24] routine. 

Examples 

To illustrate the potential of the method of constrained 
regularization to invert retardation spectra from experimental 
creep data, a selection of problems with time-dependent 
effects are presented. The first example is that of inverting for 

Quartz Monzonite 1003K 
10' 

J R / J O 

10" 
10 10 10 10 10 

frequency in Hertz 
Fig. 3 Normalized storage compliance for quartz monzonite 

Quartz Monzonite 1003K 
1 0 q 

VJo 

T-nTr"~~~T i i i i 111| i i i• i i r r r r " 

10"° 10~a 10"' 10° 10' 
frequency in Hertz 

Fig. 4 Normalized loss compliance for quartz monzonite 

viscoelastic properties of quartz monzonite at 1003K and 180 
MPa confining pressure from laboratory creep data. The 
second example is the inversion of two wave-like functions 
previously studied by Swanson [17]. The final numerical 
example is that of inverting for spectra that are known to be 
discrete. 

Quartz Monzonite Spectra. This example is considered to 
show the capability of the method in inverting for retardation 
spectra of real materials. The creep compliance normalized 
with respect to the unrelaxed elastic compliance J0 = 
2.34 x 10"6 /MPa estimated from the high-frequency modulus 
in granite at high temperature [25] is shown in Fig. 1 as the 
solid curve. It must be emphasized that this data set has not 
been corrected for instrument response and therefore depicts 
greater energy absorption than is characteristic of this 
material at the given temperature and frequency. This sample 
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Fig. 5 Inverse quality factor for quartz monzonite 

Wave- l ike func t ion b=5 

TTTTll FT 
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Fig. 6 Comparison of numerical (solid curve) and exact (dashed curve) 
Laplace transform inversion, • = 5 

has been chosen because it shows significant time-dependent 
strain and is contaminated by noise characteristics of this 
measurement technique [26]. The mechanisms responsible for 
this response have not yet been identified. The retardation 
spectrum is shown by the solid line in Fig. 2. Figures 3-5 
depict the normalized dynamic viscoelastic functions and the 
inverse quality factor obtained by the method discussed in this 
paper. In Fig. 2, we compare the spectrum obtained from the 
method of this paper (solid curve) with Schapery's technique 
(dashed curve). It is clear from this figure that Schapery's 
technique gives rise to spurious oscillations in the spectrum 
and is incapable of obtaining a realistic spectrum when the 
data are noisy although the compliance recomputed from the 
spectrum clearly represents the data as shown in Fig. 1 where 
comparisons are made. The oscillations shown in Fig. 2 are 
characteristic of ill-posed problems. 

Although the spectrum depicted in Fig- 2 certainly appears 

Fig. 7 Comparison of numerical (solid curve) and exact (dashed curve) 
Laplace transform inversion, b-oo 

Viscoelastic Solid 2.0% Noise 

1 i urn; i i i inn! i n iiiiq—i i i i i i i i j—ri i inii| n i iini| r~n imi| 
10"3 10"2 10"' 10° 10' lCf 103 104 

s 
Fig. 8 Spectra for a viscoelastic solid with two relaxation peaks 

realistic, we have insufficient direct measurements with which 
to compare our numerical results. It is therefore not possible 
to assess the accuracy of the method from these results alone. 
In the following, two examples with known solutions are 
presented in order to test the accuracy of the method. 

Exact Wave-Like Spectra. The following functions were 
considered by Swanson [17] in his investigation. 

As) = ( 1 -exp[-b(s- 1)] J (exp(-O.ls) )H(s- 1), (23) 

y(t)=expl-(t + 0.\)]{b/[(t + 0.W + b + 0A)]}, (24) 

for b = 5 and for 6— oo 

f(s)=exp(-0.1s)H(s-l), (25) 

.y (0=exp[ - ( f + 0.1)]/(/ + 0.1), (26) 

wherey(t) are the data. The functions/(s) have the character 
of viscoelastic retardation spectra (see Fig. 2 for example). A 
comparison of the numerical (solid) and exact (dashed) in­
verse transform f(s) is depicted in Figs. 6 and 7. In these 
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Fig. 9 Comparison of exact (dashed curve) and numerical (solid curve) 
inverse quality factors (2 percent noise) for a viscoelastic solid with two 
relaxation peaks 

Viscoelastic Solid 20.0% Noise 
10° -3 
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frequency in Hertz 

Fig. 10 Comparison of exact (dashed curve) and numerical (solid 
curve) inverse quality factor (20 percent noise) for a viscoelastic solid 
with two relaxation peaks 

examples, aopt was obtained by using a = 10~5 in equation 
(19). The comparisons of the exact and numerical solutions 
show the accuracy that can be obtained with the method of 
constrained optimization. Numerical experiments with a = 
10~10 gave results similar to those in Figs. 6 and 7. With a 
identically zero, the iterations did not converge. Thus it is 
clear that a very small but necessary amount of smoothing 
along with a positivity constraint provides acceptable 
solutions. It is observed that the arrivals are somewhat earlier 
in the numerical solution and more rounded at the peak for 
the more step-like solution (large b) than in the exact solution. 
This is an effect of the regularization. It is also observed that 

the oscillations observed by Swanson are not seen in the 
present solutions. In the two cases presented, the numerical 
solution never deviated far from the exact solution, and the 
maximum deviation occurred for the more step-like function 
( 6 - 0 0 ) . 

Discrete Spectra, Because materials of practical interest 
may contain relaxation mechanisms that exhibit discrete 
spectra or may not be so smooth, it is appropriate to examine 
the capability of the method to solve first-kind integral 
equations under more stringent conditions, i.e., impulsive 
discrete spectra. A numerical creep compliance experiment is 
performed with the following characteristics. 

J(t) = 7 0 +A7,(1 -e-'/ri) + A/2(l -e-'/n), (27) 

where J0 = 1.429/MPa, AJ{ - 0.5/MPa, T, = 10 sec, A72 = 
1.0/MPa, and T2 = 0.05 sec. The spectrum for this material is 
clearly represented by Dirac delta functions located at TX and 
r2 of magnitudes A/] and AJ2, respectively. A typical 
numerical solution for spectra containing 2 percent random 
noise is depicted in Fig. 8. In this analysis, the noise was 
generated from the equation 

e,(0=**R*/ (28) 

where p is a fraction representing the percent noise and R is a 
pseudorandom number distributed between - 1 / 2 and 1/2 
having zero mean. 

Since the spectra are discrete, it is not appropriate to 
compare exact and numerical spectra as they are Dirac delta 
functions. Hence, we make comparisons of the ratio of in­
tegrals of the spectra, J//JR = Q~l. The exact value of Q~x 

for this example is obtained from relation (2) using the 
equations 

2 

JR («) = / „ + £ M / [ l + (cor,)2] (29) 
/ = i 

and 
2 

J,(a) = £ A / , « T , / [ 1 +(«r,)2] . (30) 
/ = i 

The comparisons of the exact inverse quality factor Q1 

with the numerical solution is shown in Figs. 9 and 10 for 2 
percent and 20 percent noise in the data, respectively. Here, 
the exact Q ~' is displayed with dashes and the computed Q ~' 
with solid curves. For those levels, we found noise variances 
of 3.7 x 10"6 and 3.7 x 10~4, respectively. For the case of 2 
percent noise the computed aopt was adequate. However, the 
variance of 3 . 7 x l O - 4 , representing 20 percent noise in the 
data tended to oversmooth the solution using aopt derived 
from equation (19). In this case we reduced aopt by a factor of 
10 and obtained the results shown in Fig. 10. This example 
does show that we can resolve discrete spectra using the 
proper amount of smoothing with the method. The selection 
of aopt by objective criteria is worth further investigation. 

Summary and Conclusions 

In this paper, a technique to invert creep compliance data 
for retardation spectra and to determine dynamic viscoelastic 
functions from the spectra has been shown to give accurate 
results, even in the presence of noise. This accuracy has been 
assessed in terms of the comparison of the numerical solutions 
with exact results. Numerical experiments have shown that to 
obtain accurate results, it is necessary, but not sufficient that 
(1) the discretized data be sampled at enough points to 
reasonably represent the observed behavior, and (2) the 
difference between the input data and the data function 
computed from the approximate solution be small, that is, 
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small residuals relative to the approximating function Kfa —y. 
However, our numerical experiments have shown that for 
decreasing signal to noise ratios, the value of aopt given by 
equation (19) tends to oversmooth the solution. Excessive 
smoothing leads to a large residual. 

By using the method described in this paper, reliable, ac­
curate solutions can be obtained to problems of inverting 
relaxation spectra and determining dynamic viscoelastic 
functions when noisy discrete values of data are given. 
Certainly, the most surprising aspect of the.method is its 
ability to resolve discrete spectra. This places more stringent 
demands on this method and overwhelmingly shows its 
capabilities over previous methods discussed in the literature. 

Acknowledgments 

This work was performed under the auspices of the U.S. 
Department of Energy by the Lawrence Livermore National 
Laboratory under Contract No. W-7405-ENG-48. 

References 

1 Ke, T. S., "Experimental Evidence of Viscous Behavior of Grain 
Boundaries in Metals," Physical Review, Vol. 71, 1947, pp. 533-546. 

2 Nowick, A. S., "Anelastic Effects Arising From Precipitation in 
Aluminum-Zinc Alloys," Journal of Applied Physics, Vol. 22, 1951, pp. 
925-933. 

3 Tobolsky, A. V., and Catsiff, E., "Elastoviscous Properties of 
Polyisobutylene (and Other Amorphous Polymers) from Stress-Relaxation 
Studies. IX. A Summary of Results," Journal of Polymer Science, Vol. XIX, 
1956, pp.111-121. 

4 Plazek, D. J., and Magill, J. H., "Physical Properties of Aromatic 
Hydrocarbons. I. Viscous and Viscoelastic Behavior of 1:3:5-Tri-cx-Naphthyl 
Benzene," the Journal of Chemical Physics, Vol. 45, 1966, pp. 3038-3050. 

5 Pandit, B. 1., and Savage, J. C , "An Experimental Test of Lomnitz 
Theory of Internal Friction in Rocks," Journal of Geophysical Research, Vol. 
78, 1973, pp.6097-6099. 

6 Ferry, J. D., Viscoelastic Properties of Polymers, 2nd Ed., Wiley, New 
York, 1970. 

7 Lomnitz, C , "Linear Dissipation in Solids," Journal of Applied Physics, 
Vol.28, 1957, pp. 201-205. 

8 Anderson, D. L., and Minster, J. B., "The Frequency Dependence of Q 
in the Earth and Implications for Mantle Rheology and Chandler Wobble," 

Geophysical Journal of the Royal Astronomical Society, Vol. 58, 1979, pp. 
430-440. 

9 Berckhemer, H., Auer, F., and Drisler, J., "High-Temperature 
Anelasticity and Elasticity of Mantle Peridotite," Physics of the Earth and 
Planetary Interiors, Vol. 20, 1979, pp. 48-59. 

10 Smith, T. L., "Empirical Equations for Representing Viscoelastic 
Functions and for Deriving Spectra," Journal of Polymer Science, C, No. 35, 
1971, pp. 39-50. 

11 Gross, B., "On Creep and Relaxation," Journal of Applied Physics, Vol. 
18, 1947, pp. 212-221. 

12 Nowick, A. S., and Berry, B. S., Anelastic Relaxation in Crystalline 
Solids, Academic Press, New York, 1972. 

13 Franklin, J. N., "Well-Posed Stochastic Extensions of Ill-Posed Linear 
Problems,'' Journal of Mathematical A nalysis and Applications, Vol. 31, 1970, 
pp. 682-716. 

14 Tihonov, A. N., "Solution of Incorrectly Formulated Problems and the 
Regularization Method," Soviet Math. Dokl., Vol. 4, 1963, pp. 1035-1038. 

15 Baker, C. T. H., The Numerical Treatment of Integral Equations, Ox­
ford, Clarendon Press, 1977. 

16 Schapery, R. A., "Approximate Methods of Transform Inversion for 
Viscoelastic Stress Analysis," Proceedings of the 4th U.S. National Congress 
on Applied Mechanics, Vol. 2, 1962, pp. 1075-1085. 

17 Swanson, S. R., "Approximate Laplace Transform Inversion in Dynamic 
Viscoelasticity," ASME JOURNAL OF APPLIED MECHANICS, Vol. 47, 1980, pp. 

769-774. 
18 Bellman, R., Kalaba, R. E., and Lockett, J., Numerical Inversion of the 

Laplace Transform, Elsevier, New York, 1966. 
19 Butler, J. P., Reeds, J. A., and Dawson, S. V., "Estimating Solutions of 

First Kind Integral Equations With Non-negative Constraints and Optimal 
Smoothing," SIAM Journal of Numerical Analysis, Vol. 18, 1981, pp. 
381-397. 

20 Wahba, G., "Constrained Regularization for Ill-Posed Linear Operator 
Equations, With Applications in Meteorology and Medicine," University of 
Wisconsin, Department of Statistics, Technical Report No. 646, 1981. 

21 Gustafson, Sven-Ake, "A Computational Scheme for Exponential 
Approximation," Z. Angew. Math. Mech., Vol. 61, 1981, pp. T284-T287. 

22 Eckhardt, U., and Mika,-K., "Numerical Treatment of Incorrectly Posed 
Problems," in Numerical Treatment of Integral Equations, Albrecht, J., ed., 
Birkhauser Verlag, Basel, 1980, pp. 92-101. 

23 Robinson, Ian, "An Algorithm for Automatic Integration Using the 
Adaptive Gaussian Technique," Australian Computer Journal, Vol. 8, 1976, 
pp.106-115. 

24 Davis, P. J., and Rabinowitz, P., Methods of Numerical Integration, 
Academic Press, New York, 1975. 

25 Kern, H., and Richter, A., "Temperature Derivatives of Compressional 
and Shear Wave Velocities in Crustal and Mantle Rocks at 6 Kbar Confining 
Pressure," Journal of Geophysics, Vol. 49, 1981, pp. 47-56. 

26 Bonner, B. P., and Heard, H. C , "Internal Friction and Transient Creep 
in Granitic Rocks at High Pressure and Temperature," Int. Union. Geo). 
Geophys. Gen. Assem., Abstract, Vol. 17, 1979, p. 119. 

366/Vol. 50, JUNE 1983 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



S.R.Lin 
Manager, 

Thermostructural Analysis Section, 
Structures Department, 

The Aerospace Corporation, 
El Segundo, Calif. 90245 

T. H. Lin 
Professor, 

Mechanics and Structures Department, 
School of Engineering and Applied Science, 

University of California, 
Los Angeles, Calif. 90024 

Fellow ASME 

Initial Strain Field and Fatigue 
Crack Initiation Mechanics 
On single aluminum crystals under cyclic loadings, fresh slip lines appeared during 
the reversed loading, lying very close to, but not coincident with the slip lines 
formed in the forward loading. These slip lines indicate the start of extrusion or 
intrusion as commonly observed in fatigue specimens. An initial stress field is 
present in all metals. The initial stress field favorable to the aforementioned 
sequence of slip is one having a positive shear stress in one thin slice P and a 
negative one in a closely located thin slice Q. A forward loading causes a positive 
shear stress, which is of the same sign as the initial shear stress in P, but of opposite 
sign to that in Q. Hence the shear stress in P will reach the critical value first to 
cause slip. Due to the continuity of the stress field, slip in P relieves not only the 
positive shear stress in P but also in Q. This has the same effect as increasing 
negative shear stress in Q. During the reversed loading, Q has the highest negative 
shear stress and hence slides. Similarly, this slip causes P to be more ready to slide in 
the next forward loading. This process is repeated to cause a monotonic alternate 
sliding in P and Q. In this way, an extrusion or intrusion is nucleated. A crack can 
be started from an intrusion. The thin slices P and Q are considered to be in a most 
favorably oriented crystal located at a free surface. An initial stress field giving 
positive shear stress in P and negative in Q is calculated from an assumed initial 
inelastic strain field which, in turn, can be caused by distribution of dislocations. 
The buildup of plastic shear strain in P and Q causing the start of extrusion or 
intrusion is shown. 

Introduction 
Single crystal tests show that slip occurs on certain crystal 

planes along certain directions. This slip depends on the 
resolved shear stress and is independent of the normal stress 
on the sliding plane. The dependence of slip on the resolved 
shear stress is well known as the Schmid Law. Gough and 
others [1-3] loaded single crystals under cyclic torsion and 
found that the slip planes and directions that operated in 
fatigue were the same as those in unidirectional tests. The 
active slip systems in each part of the crystal were those 
subject to the highest resolved shear stress. 

Slip lines often were developed in the early stage of fatigue 
cycling, producing "soft" regions where local deformation 
tends to concentrate [4-6]. Slip lines generally multiply and 
grow into persistent slip bands in these regions. They act as 
preferential sites for the nucleation of microcracks. Material 
away from these regions is comparatively dislocation-free, 
showing no apparent plastic deformation. 
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Tests on single crystals of aluminum under cyclic tension 
and compression by Charsley and Thompson [7] have shown 
that a reversal of stress after a prior tensile deformation gives 
rise to new slip lines. Similar "compressive" slip lines were 
observed on an aluminum crystal by Buckley and Entwistle [8] 
to form between "tensile" slip lines. Forsyth [9] found the 
slip lines produced in forward loading and those produced in 
the reversed loading to be in the same fatigue band, very close 
but distinct from each other. 

Wood and Bendler [10] have tested copper circular rod 
specimens under torsion. These specimens were elcc-
tropolished in phosphoric acid and then scratched as markers 
with a 0.5 diamond dust. A typical specimen subject to a 
single twist through a large angle is shown in Fig. 1. The twist 
has caused the scratches a, b, and c above the slip band AB to 
displace relative to the scratches below AB. By contrast, there 
was no relative displacement for scratches d, e, and / across 
the fatigue band CD, for specimens subject to cyclic torsion, 
as shown in Fig. 2. Within the fatigue band each scratch 
displaced equally to the right and left, producing a zigzag. 
These tests show conclusively that both forward and back­
ward slip have occurred within the fatigue band and the slip 
that occurs in cyclic loading does not lead to significant 
deformation in the bulk of the matrix. This explains why there 
are no dark spots on the X-ray reflection photo of fatigue 
specimens [11]. Extrusions have been observed in fatigue 
specimens [12, 13]. The reverse of extrusion (i.e., intrusion) 
has also been found. Intrusions are often considered an 
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closely spaced but distinct from each other, and are in the
same slip band. It has been shown that to relieve the same
amount of resolved shear stress in a thin slice, the amount of
slip (i.e., the plastic strain required) near the free surface is
much more than that at the interior [16J. Hence the thin slices,
alternately sliding in the forward and reversed loading, are
taken to be in the most favorably oriented crystal at the free
surface of a polycrystal. Under a tensile and compressive
loading, the slip plane and slip direction of this crystal make
45 deg with the specimen axis. The initial stress field r I

favorable for this sequence of slip to initiate an extrusion is
one having positive shear stress in one slice P and a negative
one in closely located slice Q [17-19J, as shown in Fig. 3.

A tensile loading induces a positive resolved shear stress r4
in the most favorably oriented crystal. In P, the resolved shear
stress will be the sum of r I and r4 . This stress will be the first
to reach the critical shear stress, rC , which is defined as the
shear stress necessary to initiate or to cause further slip. Due
to the continuity of the stress field, slip in P relieves not only
the positive shear stress in P, but also in its neighboring region
including Q [17, 18]. This keeps the positive shear stress in the
neighboring region from reaching that of P during the for­
ward loading, and also increases the negative resolved shear
stress in Q to cause Q to slide more easily in the reverse
loading. When the negative resolved shear stress in Q reaches
rC in the reverse loading, slip occurs in Q and a new residual
stress field is produced. The slip in Q causes the relief of
negative resolved shear stress not only in Q but also in its
neighboring region including P. The relief of negative
resolved shear stress has the same effect as increasing the
positive resolved shear stress in P, thus making P more ready
to slide in the next forward loading. This process is repeated
for every cycle, providing a natural gating mechanism jor the
monotonic buildup oj local slip and plastic shear strain in P
and Q. The plastic strain in P and Q tends to push out the
region between them and starts an extrusion. If the signs of

Fig. 1 Initially straight scratches a. b, c are displaced unidirectionally
by static band A8

embryonic fatigue cracks. Other experimental observations
and a number of suggested models for fatigue crack initiation
were summarized in two excellent reviews by Grosskreutz [14J
and Laird and Duquette [15J.

From the previously discussed experimental observations
on fatigue slip lines, the slip lines formed in the forward
loading and those formed in the reverse loadings are very

Fig. 2 Cyclic slip band CD produces no overall displacement of
scratches d, e, f; within the slip band the scratches are displaced
equally backward and forward
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Fig. 4 Equivalent force in a parallelogram grid 

initial stress in P and Q are interchanged, an intrusion instead 
of an extrusion will be initiated. This model explains the 
observed monotonic raising of extrusions and deepening of 
intrusions, and also shows the general characteristics of an 
initial stress field favorable for the initiation of a fatigue 
crack. 

Calculating of Initial Stress From Initial Strain 

The stress fields caused by inclusions in an elastic media 
have been extensively investigated since the publications of 
Eshelby's papers [20, 21]. The inclusion problem is similar to 
the problem of finding the initial stress field caused by 
inelastic strain. The analogy between the externally applied 
forces, in an elastic body and inelastic strain, which may be 
composed of plastic, creep, and thermal strains, has been 
generalized and developed by Lin [22] from Duhamel's 
analogy for thermal stress. This generalized analogy reduces 
the analysis of a body with inelastic strain to the analysis of an 
identical elastic body with an equivalent additional set of 
applied forces. Referring to a set of rectangular coordinates, 
the strain is considered to consist of the elastic strain efj, and 
inelastic strain e'j 

ejj = efj+e'jj (1) 

The stress is related to the elastic strain as 
r<, = 5i,-te£*+2Geg (2) 

where &y is the Kronecker delta, X and G are Lame's con­
stants, and the repetition of subscript denotes summation 
from 1 to 3. The condition of static equilibrium gives 

TUJ+F^O; TUVj = f: (3) 

where a subscript after a comma denotes differentiation with 
respect to a coordinate variable, and 
Fj = ;'th component of the body force 
v 
T. = (th component of the surface traction on the surface 
with outward unit normal v. 

Substitution of equation (2) into equation (3) yields 

\ekk:i + 2GeUJ +F,-( Xe£*,/ + 2Ge\jj) = 0 (4) 
\ekk Vi + 2Ge0 Vj = T? + (he'kk Vi + 2Gejj Vj) (5) 

Fig. 5 Initial resolved shear stress field caused by a plastic strain field 

It becomes apparent that the term - (Xe^ + 2G4,;) has an 
equivalent effect as Fh and the term le'kkVj+ 2Ge\jVj as 7,- in 
causing the strain field e-,j. Hence, the strain distribution in a 
body with inelastic strain e'j under external load is the same as 
that in a purely elastic body without any inelastic strain but 
with the additional equivalent body force and surface trac­
tion: 

F,= -( Xei*,, + IGe'ijj); t, = \e'kk v, + 2Gejj Vj (6) 

The residual stress field of the actual body will be given as 

4=8uMekk -e>kk) +2G(e,y - 4 ) (7) 

where e,y is the strain field caused by F, + F, and 7} + T}. 
This inelastic strain such as thermal strain is often discon­
tinuous. When e\jj is discontinuous the equivalent body force 
per unit volume becomes a surface force 2G{ejj)vj + 
Meik }Ji where [e'j} is the jump in e'j, similar to the surface 
force given by equation (5). 

The aggregate considered in this study is of fine grain; the 
grain size is small compared to total volume of the aggregate. 
The equivalent force caused by inelastic strain in the crystal at 
the free surface of the metal may be considered acting on a 
semi-infinite elastic medium. In the later calculation of slip 
line formation, the thickness of the slices is much less than the 
length of the slip lines on the surface. Consequently, the 
inelastic strains and their equivalent forces are taken to be 
constant along the slip line direction on the surface, and this 
semi-infinite medium is taken to be under plane deformation. 
There are four slip planes in a face-centered-cubic crystal. In 
this paper, sliding in one plane only is considered. 

In previous papers [17, 23] an initial stress field was 
assumed. Since this stress field can be caused by an initial 
inelastic strain, which can be produced by dislocations, this 
initial stress field is here explicitly calculated from a given 
inelastic strain field. The inelastic strain e' is assumed to 
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Fig. 6 A dislocation interstitial dipole 

exist in three thin slices P, Q, and R (Fig. 3) where a is along 
the slip direction. This inelastic strain component is taken to 
vary linearly from zero at the free surface to a maximum at 
the interior boundary (xx = 50 /x) in P and Q, while in R, it is 
taken to be twice that of P and Q and of opposite sign. 
Equation (6) gives the following equivalent body force and 
surface traction: 

Fa = {\ + 2ti)e'aa:a (7) 

F0 = 0 (8) 

Ta = (X + 2ix)e'aa; Te = 0, Ta=Q (9) 

Tp = -SeL (10) 

where (3is normal to the slip plane. Since e'aaa is constant, Fis 
uniform within the thin slices. In these equations, the 
repetition of subscript does not denote summation. These give 
uniform equivalent body force in the slices balanced by the 
equivalent surface, forces on the right boundaries. These 
equivalent boundary forces acting on a parallelogram grid is 
shown in Fig. 4. The thickness of each slice measured along 
x2-axis is taken to be 0.05/x. The center distance between P 
and Q is O.lOju and the linear dimension of the crystal is taken 
to be 50/x. The e'aa at the right boundary of slices P and Q was 
taken to be 1930KN/m2 (280 psi)/G and 3860KN/m2 (560 
psi)/G in R. For numerical calculation of initial stress, each 
slice is divided into 1000 parallelogram grids along their 
lengths. The inelastic strain is taken to be constant within each 
grid. From the plane strain solution of a semi-infinite 
medium, the initial resolved stress field caused by a given 
equivalent forces Fa and fa on a parallelogram grid [24] was 
calculated. Then the resolved shear stresses due to Fa and Ta 
on all the grids of the three slices were summed to yield the 
initial resolved shear stress field, which is shown in Fig. 5. It is 
seen that the initial shear stress T^ in P is positive +27.6 
KN/m2 (4psi)andingnegative-27.6KN/m2 (-4psi). The 
regions outside P and Q as well as the region between P and Q 
have a negligibly small amount of resolved shear stress. This 
initial stress field so derived from the initial inelastic strain 
clearly is favorable to the initiation of extrusion as discussed 
earlier. This initial stress field satisfies the equilibrium and 
compatibility conditions. Consider a perfect crystal cube. If 
we cut a slit through this crystal and force a sheet of material 
of one atom thick into the slit, a pair of parallel edge 
dislocations A and B of opposite signs, sometimes called an 
interstitial dipole, is produced as shown in Fig. 6. If we cut a 
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Fig. 7 Grids for numerical calculation 

rectangular block shown by the dotted line, the free length of 
this block will be one atomic spacing more than the 
corresponding length of the block without this pair of 
dislocations, due to the presence of this inserted sheet. If there 
are n such dipoles in a length of N atomic spacings, this gives 
an inelastic strain e'aa of n/N. Hence the initial direct inelastic 
strain can be caused by distributions of dipoles. The effect of 
dipoles on fatigue crack initiation is also shown by Mura and 
Tanaka[25], 

Initiation of Extrusion and Intrusion 

Again from the plane strain solution of a semi-infinite 
medium, the stress field caused by a given plastic strain ep

a$ in 
a parallelogram grid centered at xr i.e., (x, , x2 ) shown in 
Fig. 7 was calculated. For numerical calculation, the crystal is 
divided into 1010 parallelogram grids oriented 45 deg to the 
free surface (10 grids along the xx -axis, and 101 along the x2-
axis. The relief of the resolved shear stress at x due to this e%0 
is expressed as 

Ta„(x) = 2GC(x,a/3;xr,a(3) e^(xr) (11) 

where C(x,a/3;xr;a/3) is the resolved shear stress ra&/2G at x 
due to unit plastic shear strain e£3 at xr. Here this is called the 
resolved shear stress influence coefficient. This influence 
coefficient varies with the dimensions of the grid. For a small 
thickness-length ratio, this coefficient varies linearly with 
thickness. These influence coefficients were calculated for the 
grid dimensions as shown in Fig. 7. The detail calculation of 
this coefficient is given in reference [26]. 

The material considered is pure aluminum polycrystal 
subject to alternate tension and compression applied along the 
*2-axis. The resolved shear stress in the most favorably 
oriented slip system due to the applied cyclic stress r0 is the 
same for all points in the medium. 

T^(X) = T0 /2 (12) 

The plastic strain e£ varies from point to point in the slices P 
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Fig. 8 Plastic shear strain distributions 

and Q. After slip occurs, there is a residual shear stress. The 
total resolved shear stress is the sum of the applied, initial, 
and residual resolved shear stress, i.e., 

ra(3(x) = ~ + r ^ (x) - 2G£ C(x,a/3;x„ ,af3)eF
a 

L „ 
(13) 

where x„ denotes center point and ep
e the plastic strain of 

the ftth grid which slides. It should be noted that the repetition 
of the subscripts a/3 in the preceding equations does not 
denote summation. The initial stress field does not change 
with loading, so that dr'ap(x)/dT0 = 0. Then 

drafi{\) 

dr0 

1 v-i dep
B 

- -2G]jC(x,aP;xn,afi-j£* 
2 T dTo 

(14) 

Those grids in which the magnitude of the resolved shear 
stress is less than the critical shear stress rc are referred to as 
nonactive slip grids. If the sth grid with centroid at xs is one of 
these grids, its increment in plastic strain is zero: 

IT„ < r " Ae£« = 0 (15) 

In the region currently sliding, the magnitude of the resolved 
shear stress equals the critical shear stress: 

l T a ( 3 J = r c , l A e ^ „ l > 0 (16) 

where x„ denotes the centroid of a sliding grid. 
The macroscopic plastic strain of the crystal represents the 

a verge value in the crystal. Since slip is highly concentrated in 
the thin slices, the macroscopic plastic strain is much less than 
the local plastic strain. The rate of strain-hardening in terms 
of the local plastic strain is hence much less than that in terms 
of macroscopic strain. To simplify the calculation, this local 
strain-hardening is neglected: dTapn/dT0=dTc/dTQ = 0. 
Equation (14) then gives the following set of equations for 
each sliding grid: 

2G£c(x,„ , a /3;x„, a /3) 
dep 1 

drn 
(17) 

where (x,„) and (x„) represent centroids of sliding grids. There 
are as many nonzero unknowns dep

p /dr0 as there are 
equations. The plastic strain increment Aep@ in sliding grids 
for an increment of applied stress AT0 can readily be deter­
mined from the value of dep

e /dr0. Substitution of 
dep$ /dr0 into equation (14) yields the rate of change of the 

resolved shear stress at all grids. From the known value of 
Tap(x) at the nonactive grids and the corresponding values of 
dTali(x)/dT0, the increments in T0 required to activate each 
nonactive grid can be calculated and compared. The 
minimum of these increments in T0 is applied, resulting in one 
additional active slip grid for the next load increment. During 
the reversed loading, the incremental applied stress r0 

required for a new grid to slide can similarly be determined. 
Since the extrusion thickness has been observed to be about 

0.1 ix for aluminum crystals, the center distance between slices 
P and Q measured along the x2-axis is taken to be 0.1^.. For 
the present study, the critical shear stress TC is taken to be 
368.7KN/m2 (53.5 psi), the shear modulus G to be 
26.5KNxl0 6 /m 2 (3.85 x 106 psi), and the elastic Poisson 
ratio to be 0.3. These values correspond approximately to 
those for pure aluminum [27]. The relief of the resolved shear 
stress due to plastic strain in the slid grid is taken to be given 
by that at the centroid of the grid. The buildup of local plastic 
strain in P and Q is calculated for an applied stress T0 of 
±689.5KN/m2(±100 psi) along the x2-direction. One initial 
stress field is shown in Fig. 5 which gives a positive resolved 
shear stress of 27.5KN/m2(4 psi) in P and a negative resolved 
shear stress of - 27.5KN/m 2(-4 psi) in Q. The excessive 
resolved shear stress, defined as AT = r ^ + t^ -TC, is to be 
relieved by plastic strains in the slid grids. The maximum 
excessive resolved shear stress in P for this initial stress field is 
3.45KN/m2(0.5psi). 

Four other initial resolved stress fields with the same 
distribution and with excessive resolved shear stress in P of 
1.38, 0.609, 0.304 and 0.138KN/m2 (0.2, 0.1, 0.05 and 0.02 
psi), respectively, were also computed. The buildup of plastic 
strain at the free surface for these five initial stress fields at 
various cycles of loading were calculated. These plastic strains 
are approximately proportional to the number of cycles and 
proportional to the excessive resolved shear stresses. The 
plastic strain distribution in P and Q along the length of the 
slice is shown in Fig. 8 for the initial stress field with the 
maximum excessive resolved shear stress of 0.138KN/m2(0.02 
psi) at the end of 200 cycles. The local plastic strain buildup at 
the free surface is more than three times faster than that at the 
interior [24], Hence, in general, fatigue cracks are initiated 
from the free surface. The amount of the local plastic strain 
buildup at the free surface is an indication of extrusion and 
intrusion; hence it is also a measure of crack initiation in the 
early fatigue damage. 
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Conclusion 

A micromechanic model for local plastic strain buildup in a 
slip band of an aluminum polycrystal under cyclic tension-
compression loading was described. This model explains the 
monotonic increase of plastic shear strain in two distinct but 
adjacent slip lines, leading to the initial formation of ex­
trusion or intrusion observed in many fatigue tests. The 
existence of a natural gating mechanism in which the residual 
microstress field inhibits reversal of slip in. the same slip line 
under fatigue loading is fully demonstrated. An initial stress 
field causing such a gating mechanism was computed based 
on an inelastic strain field resulting from material im­
perfections such as dislocated dipoles. 

The amount of plastic strain buildup at the free surface is 
an indication of the degree of extrusions or intrusions, and 
hence is taken as a measure of the fatigue crack initiation. The 
quantitative calculation shows that the initial buildup of local 
plastic strains is proportional to the number of loading cycles, 
and to the initial excessive resolved shear stress. Essentially 
the same results were obtained when compared to the previous 
computation based on an assumed simple initial stress [17]. 
The present initial stress field explicitly satisfies the conditions 
of compatibility and equilibrium. The slip distribution 
calculated in this analysis also satisfies these conditions, as 
well as the dependency of slip on the resolved shear stress 
throughout the metal at all stages of cyclic loading. 
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Sanders3 Energy-Release Rate 
Integral for a Circumferentially . 
Cracked Cylindrical Shell 
Analytical and numerical values for Sanders' path-independent energy-release rate 
integral I and the combined stress-intensity factor are obtained for a cir­
cumferentially through-cracked cylindrical shell. Two types of loadings are con­
sidered. First, the shell is subject to axial tension and, second, the shell is subject to 
edge moments. New procedures for evaluating I from the governing integral 
equations are presented. In particular, for a very thin shell subject to edge 
moments, a method of evaluating I by circumventing the solution of the integral 
equations is shown. 

Introduction 

Recently, Sanders' path-independent energy-release rate 
integral / [1] has been specialized to an arbitrarily loaded 
shallow shell containing a stress-free void and has been used 
to define and compute a "combined" stress-intensity factor 
for a bent cylindrical shell with an axial through-crack [2]. 
Also, the combined stress-intensity factor for a closed 
cylindrical shell with an axial through-crack subject to in­
ternal pressure has been computed [3, 4]. Furthermore, / h a s 
been shown to be a generalization of the more familiar path-
independent integrals for plates J, L, and M [5]. 

In this paper we calculate / for two companion problems to 
those considered in [2] and [3]. We will compute the combined 
stress-intensity factors for a linearly elastic, isotropic, 
cylindrical shell with a circumferential through-crack subject 
to two different types of loading. The length of the crack 2c is 
assumed to be small compared to the radius of the shell R so 
that shallow shell theory is valid. For a cracked shell, / 
depends on Poisson's ratio v and the dimensionless crack 
length 

X=[-(l-^)] c/\IRh (1) 

where h is the shell thickness. All positive values of X are of 
interest. For c fixed, X< <1 implies the shell is nearly flat 
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while X> > 1 implies the shell is very thin, /can also be shown 
to be related to the so-called stretching stress-intensity factor 
5 and bending stress-intensity factor B through the relation 

2w 
--Ci(\v)=Si(\,v) + 

(3+ „)(!-„) 
(2) 

C(X, v) is the combined stress-intensity factor and exhibits 
the coupling between stretching and bending in a shell. 

One problem considered consists of a long closed cylin­
drical shell, with a circumferential crack, under internal 
pressure p. The internal pressure produces axial tension that 
acts to open the crack. We will refer to this problem as the 
"stretching problem." The second problem under con­
sideration consists of an open cylindrical shell, with a cir­
cumferential crack, subject to uniform moments along its 
edges. If the axis of the cylinder is in the X\ direction and the 
crack lies along the x2 axis then the moments applied along 
edges of the shell parallel to the X\ ~x2 axes are M n = M0, 

Mr. •• vMn where M0 is some reference moment. The 
boundary conditions allow an uncracked shell to maintain a 
uniform cross section parallel to the x2 axis. We will refer to 
this problem as the "bending problem." 

The stretching problem has been considered previously by 
Folias [6], Erdogan and Ratwani [7], Duncan-Fama and 
Sanders [8], Murthy, Rao, and Rao [9], and Laksh-
minarayana and Murthy [10] for relatively small X. Here we 
consider the full range of X. In addition, a concurrent analysis 
of the circumferentially cracked general cylindrical shell 
under axial tension has been performed by Sanders [11]. We 
thank Professor Sanders for allowing us to see his analysis 
prior to publication. This is the first consideration of a bent 
cylindrical shell with a circumferential crack. 

For both the stretching problem and bending problem our 
analysis is split into three parts. For X < < 1 , a standard 
perturbation expansion in X is obtained for C(X, v). For 
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X = 0(1) numerical results are reported. Lastly, for X > > 1 
asymptotic solutions are obtained. Graphs for C(X,0.3) are 
displayed. 

The analysis of the cylindrically cracked shell is sufficiently 
different from that of the axially cracked cylindrical shell to 
provide a nontrivial application of the methods reported in [2] 
and [3]. In particular, the asymptotic form of the governing 
equations and computation of C(X, v) for X> >1 demon­
strate new procedures. For the stretching problem the 
asymptotic form of the governing integral equations are 
solved with the use of delta functions and the / integral is 
subsequently evaluated. For the bending problem we are able 
to directly evaluate the / integral for the asymptotic form of 
the governing equations without actually solving them. 

We consider only the nondimensionalized form of these 
problems as defined in [2]. To dirnensionalize / for the 
stretching problem use 

cp2R2 

To dirnensionalize I for the bending problem use 

D 
1= ^1 

where D=Ehi /[12(1 - v2)] is the bending stiffness of the 
shell. 

Sanders' Energy-Release Rate Integral 

We begin with the nondimensionalized governing equations 
for a linearly elastic, isotropic, shallow shell [2], For a 
cylindrical shell of radius R under internal pressure p these 
are: 

M, a(5,a|3 + 4\2(z<al3Nafi+p) = 0 

(3a) 

(3b) 

(ua,p+u^a)-4\2z,anW = (l + p)Nai -v8alJNiy, (3c) 

M, aff - -(\-v)W,ag-vba!3Wn (3d) 

where 

Z.ll = 2 . 1 2 = 0 , Z,22 = l- (4) 

Linearity of the governing equations and a stress-free crack 
allows the analysis of the cracked shell to be split into the 
consideration of the uncracked shell and the residual 
problem. The residual problem consists of the analysis of the 
shell with a crack subject to stresses equal and opposite to 
those in the uncracked shell. 

For the stretching problem the nonzero stress resultants and 
displacements for the uncracked shell found by solving 
equations (3) and appropriate boundary conditions are 

N°u=l, u°i=xu w° = v\-2, (5) 

where the superscript "o" indicates the uncracked shell. For 
the bending problem we find that 

1 f1 

H\v) = 2 J _, (7V 'i P" i + X"il +N°2i2u2 + Xw2] 

+ (Q1+M°l2a)[3w+\w] 

-Mfl[2w,1+\w,1]}dx2 (7) 

where a dot denotes differentiation with respect to X and the 
brackets denote the jump across the crack of the enclosed 
quantity, i.e., 

U](x) = limlf(x,e)-f(x,-e)} as e - 0 . 

Using equations (5) and (6) we see that I reduces to 

1 !(\v) = j IK, + -AM, \dx2 

for the stretching problem and 

1 
/*(V) = ;J>w„ + \w,1]dx2 

(8) 

(9) 

for the bending problem. Where necessary the superscripts 
"s" and "b" will be used to denote, respectively, a stretching 
problem quantity or a bending problem quantity. 

The second form of I is used to relate I to the stress-
intensity factors. Start with equation (45) of [2] and integrate 
around a contour that consists of two straight lines \x2 I < 1 -
<5, xx = ± 0 and two circles of radius 8 centered at the crack 
tips. It can be shown that the crack-tip stresses and 
displacements are given by the usual asymptotic square root 
expressions for a plate (see Chapter 4 of [12]). Letting 5—0 we 
obtain equation (2) which is the same relationship between the 
energy release rate and stress-intensity factors as for an axially 
cracked shell. 

The Residual Problem 

For the two problems considered here the residual bound­
ary value problems are given by equations (3) and (4) and 
boundary conditions 

Nu(±0,x2)=A, (10a) 

Ni2(±0,x2) = 0, (10/7) 

w,u(±0,x2) + vw,22(±0,x2) = B, (10c) 

(2-p)w,221(±0,x2) + w,ul(±0,x2) = 0, \x2\<l, (Wd) 

where A= -1, B = 0 for the stretching problem and ^4=0, 
B=-\ for the bending problem. Also, all stresses must 
vanish as /•—oo. 

The governing equations and boundary conditions can be 
reduced to two coupled singular integral equations by using 
double Fourier transforms (see, for example, references [13] 
and [2]). Specializing the results of [13] to the problems at 
hand we have 

| _ ( K2l(y-t)Fl(t;\,v)dt+\ ^ \K22(y-t) 

+ 4\2L2
 + (y)t}F2(t;\,p)dt=A, 

^iK3l(y~t)F](fX")dt+^i [Kn(y-t) 

M°n=l,M°22 = v,w0-- x11 u2 — \2x\. (6) where 
+ 4\2L3

 + (y)t}F2(t;\u)dt=B, \y\<l, 

(11) 

(12) 

In [2] Sanders' path-independent, energy release rate in­
tegral was derived for an arbitrarily loaded shallow shell 
containing a stress-free void. Two forms of I exist for the 
cracked shell. One is an integral along the crack. The other is 
an integral over circles of vanishing radius centered at the 
crack tips. 

Starting with equation (29) of [2] and noting that the void is 
a crack running from - 1 to 1 along the x2 axis we obtain the 
first form of /as 

L?(y)= - -(R\g,yy(0,y~\) + g,yy(0,y+\)}, (\3a) 

L3+(y) = ~^-3[g,yy(0,y-l) + g,yy(0,y+l)}, (13b) 

J<21(y) = mg,yyy(0,y)}, (13c) 

K22(y) = (l + p)Slg,yyy(0,y))-4\2(R{g,y(0,y)}. (13d) 

KJl(y)=-(l + v)<S{g,yyy(0,y)}, (13e) 
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K32(y) = - (3 + v) (1 - «) (R lg,yyy(0,y) 1 

+ 4X2y3(g,J,(0,>>)). (13/) 

As usual, (R and 9 denote, respectively, the "real part of" and 
the "imaginary part of" and-J-denotes the Cauchy principal 
value of the integral. The unknowns in the integral equations 
are related to stress resultants and displacements through 

So, using (25), 
i p i 

f [«!]£//=[ U F , + 4\2t2[w,[]}dt 

F^x^Xv) 
-\o[i [NnilKt)dt, (14) 

+ 4X2Jv(Io«F^)*- (27) 

Integration by parts results in 

F2(x2;\p) = -[w,2i](x2). (15) 

Occasionally, for compactness, we will omit some or all of the 
arguments of Fx, F2 and other quantities. The quantity g is 
the fundamental solution for a shallow cylindrical shell 
satisfying 

AAg-4i\2g,u=5(Xl)8(x2). (16) 

Explicit representations for the needed derivatives of g can be 
obtained from Sanders and Simmonds [14]. They are: 

4TT g,y(0,y) = (sgny)/1/2 [ £ - j "*<>(«) * ] . (17«) 

4 i r * , w ( O j O = - * o ( p ) . (176) 
4TT g w (0 , .y) = / ' ^ ( sgny )* , (P) (17c) 

where p = ;'1/2X \y I, ^ 0 and Tfj are modified Bessel functions, 
and ixn is short for e" 7 4 . Asymptotic expansions and series 
expansions for g,y, g,yy, and g,yyy are needed for the ap­
proximate solution of (11) and (12). These are readily ob­
tainable for K0 and Kx [15]. Asymptotic expressions for the 
integral of K0{z) in g,y(0,y) are obtainable by integrating 
asymptotic expansions for K0(z) ([16] or [17]). 

The solution of the integral equations have the form 

Fa(t\\v)={\-t2)-"2Ga(tM, 

\t\<\, a =1,2, (18) 

where the Ga are continuous [2]. This representation is used in 
analytic and numeric work. 

/ in Terms of Fx and F2 

The equations for a cylindrical shell can be used to show 
that 

(19) 

(20) 

_, [u,]dt=\' tF,dt + 2X2 L (-f) -^ )F,dt. (28) 

Finally, differentiating (28) with respect to X and collecting 
results we have Sanders' energy-release rate for the stretching 
problem in terms of the unknowns F} and F2; 

F(\v)=\l_jt(Fl + ~\Fl)dt 

+ 2X2\\('-j)(2F2+12^)dt-
(29) 

For the bending problem, integration by parts and con­
tinuity of the shell at *2 = ±1 implies 

j i[w,l]dx2=-\jix2[w,l2]dx2=\j {tF2dt. (30) 

Differentiating (30) with respect to X and collecting results we 
obtain 

Perturbation and Numerical Solutions of the I.E.'s 

(31) 

For X < < 1 a perturbation solution in X of the integral 
equations (11) and (12) may be obtained by the same 
procedures used previously in [18] or [13]. For the stretching 
problem we find that 

4*2 
Ff(x2;\,v) = (\-x\y2 v ' 4

x 2 + • 

F{(x2Xv)-
4*, 

( * » • • • • ) • 

(32) 

(33) 

"2,21 -4X 2 W ( 1 =N2 2 ,1 + V N,2 ,2, 

(\+v)Nn= - (Wl,2+«2,l)-

Evaluating the jump of each side of these equations across the 
crack and using the boundary conditions (10) for the stretch­
ing problem reveals that 

["2,2i]-4X2[w,1] = [/V22J], (21) 

[«i.2]+(«2,i]=0. (22) 

Thus 

[«i,22]+4X2[w,1]=-[yV22,1]. (23) 

Integration with respect to x2 and noting that [u^2\=Q at 
x2 = 0 yields 

d-4) l / 2 

Thus, using (29) and (2) we see that 

C i ( X , c ) = l + - ^ X 2 + . . . for X < < 1 . (34) 
16 

For the bending problem we find that 

Fb
2{x2;\v)= ~AXl (3 + p)(l-v)(l-x2

2y 

( ' 
7r(5 + 2o + !>2) 

16 
X2 + 

• • • ) 

(35) 

[ « i , 2 ] + 4 X 2 j o
J r 2 [ w „ ] ( 0 ^ = - F 1 

Integrate by parts to obtain 

^ i = - [ » i , 2 l - 4 X 2 x 2 [ H ' , 1 ] -4x2 jr 
Jo 

tF2 (t) dt. 

(24) 

(25) 

Now, integration by parts and continuity of the shell at 
x2 = ± 1 implies 

1 e l 

(26) \_l [u\]dx2= -^ _^x2[uli2\dx2. 

(only F\ is needed in / * ) . Thus, using (31) and (2) 

For e = 0.3. 

C f t(X,0.3)=0.6580(l-(0.4836)X2+ . . . ) 

for X < < 1 . (37) 

For X=0(1) we have obtained numerical solutions of (11) 
and (12) for the stretching and bending problems by using the 
Lobatto-Chebyshev method used in the solution of other 
crack problems [19, 2, 3]. The only new aspect of this part of 
the work involves determining the asymptotic series for 
8>y(Q,y)- Accurate results for Cb and Cs up to X=12 were 
obtained. These are shown (for y = 0.3) as the solid lines in the 
figures. 
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Fig. 1 Combined stress-intensity factor for stretching problem 

Asymptotic Solutions for Large A 

To obtain asymptotic expressions for Cs and Cb as A-~co 
we modify the integral equations (11) and (12) to avoid 
singularities in the kernels as X becomes large. Express the 
unknown F, in terms of displacements by substituting (25) 
into (11) and (12). Simplifying, we find alternate integral 
equations 

0 + e) f ' 
+ , kei \\7l\F2U)dt=Ay + cl (X), 

47T J - 1 

(1 + ") f ' , , 
kei \\t]\f(t)dt 

Air J - i 

(40) 

s: 
(3 + y ) ( l - y ) 

47T s: ker IAIJI F2(t)dt 

(R{g,m(0,v))fU)dt 

+ (! + »-){_, 3{g,m(0, v))F2(t)dt=A, (38) 

(1 + iOJ _ i3l«„„(0, v)}f(t)dt 

- (3 + 0 ( l - i » ) J _ i (Rig„„(0, ,)} F 2 ( 0 * 

- 4 X 2 j _ ) 3(g„(0, r,)\F2(t)dt = B (39) 

where i]=y — t,f{t) =[uu2]V) and [y I < 1. Note that for the 
stretching problem these are the integral equations of Dun-
can-Fama and Sanders [8]. To determine expressions for / ( / ) 
for the stretching problem (which is sufficient to evaluate the 
leading term in the large - X asymptotic expansion of Cs) we 
first integrate (38) and (39) with respect to y to obtain a more 
convenient form of the integral equations. Thus, noting that 
Ki(z) = -Kl(z) and that 

K0(i
U2x) =ker(x) +i kei(x) 

where ker x and kei x are Kelvin functions, we find that (38) 
and (39) become 

+ 4 » j _ i 3lg(0,\v)}F2(t)dt=By + c2(\). (41) 

Both of the Kelvin functions form delta sequences as X—oo. 
To see this, consider 

X < • ' X C1 

/ , = — + ker IAy-A/1 dt. 
4-JT J - 1 

(42) 

Let (7= \y — \t so that 
1 ( •Mj '+ l ) J p °° 

/ , = - — ker I a I tfa for \a\ da (43) 
4TT JX (J—D 4 7 r J - » 

as X—co, \y\<\. Now J" Are/- oda=ir/2y[2, [13], and we see 
that 

1 f1 1 
— t ker l\v—A/I <#—• —7=- as A~o°. 
47r J -1 4V2X 

(44) 

4TTJ 
ker \\r,\f{t)dt 

Numerical evaluation of kerWy — \t\ for increasing X 
suggests that the function is tending to a spike about y — t = 0 
and that the area under the curve approaches 1/4V2X. Thus, 
we propose that 

— ker \\y-\t\ ~ ~ as X-oo. (45) 
47T 4V2X 

Similarly 

— kei I Ay-A/1 V ~ as A-oo. (46) 
47r 4V2A 

Substituting (45) and (46) into (40) we have (for the 
stretching problem) 
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8(y-t) 

- ( ! + «') 

•fU)dt 

S(y-t) 

- ( i + v ) j ; Hy-t) 
4V2X • / ( ' ) * 

4V2X 
F2 ( 0 ^ - ^ + 02 (X) (47) 

as X—oo. Our numerical results for X = 0(1) for the stretching 
problem suggest that as X becomes large F2 approaches an 
odd linear combination of delta functions. Following a 
suggestion made by J. L. Sanders [20] we let 

H o(y-t) 

\\y-t\ 

2V2 
F2(t)dt~-y + c2(\) (54) 

F2(t) = K(\p)[8(t-l)-8(t+l)] 

in (47). Thus (since y^ ± 1) 

f(y) 
4V2X 

~y + c2(\) as X—00. 

(48) 

(49) 

as X—(». By assuming continuity of f(t) and F2 (t) equation 
(53) implies that 

f(y) , (1 + K) 

By symmetry, f2 (y) is an odd function of y so c2(X) = 0 and 

[«i,2]0)~-4V2X^ as X-oo. (50) 

Using (8), (26), and (50) we find that 

F(\,v)~6j2\\ t2dt = 4\[2\ as X-oo. (51) 

So 

Cs(\,p)~^2y[2/ir^n as X- (52) 

Next, note that according to Sanders and Simmonds [14] 

g(0,y) ~ 
/3/2 \y 1 

as y — 00. 

Thus, the asymptotic form of the integral equations (40) and 
(41) are 

r1 8(y-t) 
J -1 4V2X 

-f{t)dt 

, ' 8(y-t) 
-(! + ") 1 , 4V2X 2 ( 0 l ( M ' (53) 

+ ^^-F2(y)~-c{{y) as X-oo, \y\<\. (55) 

(56) 

4V2X 4V2X 

Both/(^) and F2 (y) are odd soct(y) =0 and 

f(y)~-{l + v)F2(y) as X-oo. 

Substituting (56) into (54) we obtain 

(\ + v)2 <" 

4V2X 
j ( b(y-t)F2(t)dt 

+ 4V2X ) _ , ^ - 0 ^ ( 0 t f / 

_ 2V2 l -1 l J ' - r l ^ ( ' ) * = - J ' + C2(X). (57) 

The last term on the left-hand side of (57) dominates as X—00 
which implies that 

X f \y-t\F2(t)dt~y-c2(\). (58) t 2V2 J -

If ^ = 0 then 

— ( ' 
2V2 J -

which implies that c2(X) =0 . So 

j ^ \t\F2(t)dt~-c2{\) (59) 

0.4744 

O.I 0 .2 0.3 0.5 1 2 3 5 

A 

Fig. 2 Combined stress-intensity factor for bending problem 

10 2 0 4 0 
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2V2 
f \y-t\F2(t)dt~y as X-oo, \y\<\. (60) 

Note that (60) implies that F2 (t) must be of the form 

F2(t,\") 
r(0 as X^oo. 

So we have 

- M \y-t\g(t)dt=y, \y\<\. 
2V2 J - ' 

(61) 

(62) 

This is a Fredholm integral equation of the first kind for g(y) 
with a displacement kernel. Formal solution of (62) by the use 
of Hilbert-Schmidt theory [21] results in a nonconvergent 
infinite series of trigonometric eigenfunctions for g(y). Even 
so, proceeding to evaluate /* using this divergent series results 
in 

Cb(\,v) 
1 

21/4V^rXl/2 

= (0.4744 . . . )X-' / 2 as X-°° , (63) 

which matches the numerical results (see Fig. 2). 
An alternate method for evaluating Ib (which avoids 

solution of (62)) is now presented. Recalling (31), (61), and 
(62) and that g(y) is an odd function we see that 

(64) Ib=k\-,t8{t)dt-
Now 

Il~\_itg{t)dt=-\_i 0-t)g(t)dt (65) 

sinceg(t) is odd. Let_y=l - e ( 0 < e < < l ) in (62) so that 

\ \l-e-t\g(t)dt = 2-Jl{l-e) (66) 

or 

(l-e-t)g(t)dt 

+ (t + e-l)g(t)dt = 2y/2(l-e). 
M -e 

Let e^Oso that 

(l-t)gU)dt = 2V2 = 2\Ib 

which implies that 

/ " (V)=27r (C(V)) 2 =^ . 
A 

Again, we see that 

Cb(\,v)~ 
1 

21/4V^X> 
as X—00. 

(67) 

(68) 

(69) 

(70) 

Conclusion and Remarks 

We have used Sanders' energy-release rate integral / for a 
shallow shell to compute the behavior of the combined stress-
intensity factor for a cylindrical shell with a circumferential 
crack subject to, alternately, axial tension and edge moments. 

These results and those of [2] and [3] may be able to provide 
upper and lower bounds on the combined stress-intensity 
factor for a cylindrical shell with a crack at an arbitrary angle. 
In this respect the results of [10] and [13] may be useful. 
Furthermore, for the very thin, bent shell we were able to 
arrive at an expression for the energy-release rate integral by 
directly applying the governing integral equations; that is, 
without actually solving the integral equations. This raises the 
interesting question whether the value of energy-release rate 
integrals (including /, / , L, and M) can be obtained directly 
(either analytically or numerically) without the pain of solving 
difficult integral equations. 
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Aeoustoelastic Determination of 
Forces on a Crack in Mixed-Mode 
Loading 
A technique previously presented [1] for the nondestructive evaluation of the J 
integral in cracked samples from ultrasonic measurements of stress, and suc­
cessfully tested on specimens under mode I loading, is extended here to mixed-mode 
loading. Experimental results are presented for both the J and L integrals in a 
specimen with a slanted central crack loaded in tension, which agree well with 
theoretical values. 

Introduction 

In reference [1] a method was proposed for evaluating the J 
integral nondestructively using ultrasonic measurements with 
longitudinal waves. The method was based on a semianalytic 
technique called "rescaling." Results were presented for two 
mode /, linear elastic fracture mechanics (LEFM) ex­
periments, for which the measured value of / compared well 
with theoretical values. 

In this paper an experiment which was conducted to explore 
the applicability of this procedure to more complicated 
loading is described. The experiment involved a specimen with 
a slanted central crack. For this case of mixed-mode loading 
both the J and L integrals were evaluated. Before discussing 
this experiment, the experimental procedure for applying 
acoustic stress analysis, and the "rescaling" method, both of 
which are described in detail in [1], are summarized here for 
completeness. 

Acoustic Stress Analysis 

Stress measurements with acoustic waves in the ultrasonic 
range are based on the dependence of acoustic velocity in a 
solid on the state of stress. The relation between velocity and 
stress is predicted by the theory of acoustoelasticity. For 
longitudinal waves in plane specimens, 

V-V0 AV 
To 

= B(<jn +CT22) (1) 

where V is the velocity of a normally incident wave in the 
stressed state, V0 is the velocity in the unstressed state, B is a 
material property depending on the elastic constants (in­
cluding the third-order (Murnaghan) constants) of the 
material, and a{i and a22 are in-plane stress components. To 
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apply (1) to stress analysis, an apparatus has been developed 
that permits scanning measurements with longitudinal waves 
on a plane specimen mounted in a liquid bath (Fig. 1). The 
electronic system needed to measure the relative velocity 
change is discussed in [ 1 ] . 

Evaluation of Path-Independent Integrals 

The experiment to be described involved evaluation of the J 
and L integrals in a plane cracked specimen using acoustic 
stress measurements. This evaluation is motivated by the 
utility of J and L in fracture mechanics. The importance of J 
as a fracture parameter is well known [2]. The meaning of L 
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HYDRAULIC CYLINDER 

LOAD CELL 
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WITH LIQUID 

TRANSDUCER 
MOUNT SPECIMEN 

Fig. 1 Acoustoelastic apparatus 
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for plane bodies containing cracks has only recently been 
discussed [3]. The following relation is derived there for the 
case of a crack in an infinite body subject to far field loading 
of,, ail, andof2: 

L = 
-2aKn 

(Kj + of^a) (2) 

where Kn = af2 ^l-wa, Kt = o$2 Vra for the infinite plate. 
Using this expression and the mixed-mode Irwin relation 

J=l(Kj+Kj,) (3) 

would permit evaluation of Kj and Ku from J and L if an 
appropriate value for of1, were known. It should be noted, 
however, that (2) holds only for homogeneous loading on a 
crack in an infinite body, and must be generalized for other 
types of loading. 

The approach used to nondestructively evaluate J or L is to 
determine the integrand at various points along a contour and 
then perform numerical integration. The J integral is given by 

(4) / = (Wnx-tkuKx)ds 

where c is a contour enclosing the tip of a crack, W is the 
strain energy density, nx is the outer normal to c, tk is the 
traction vector, and uk is the displacement vector. 

L is given by 

L = L e3y ( WxJn' ~ T>UJ ~ Tkuk,iXj)d( (5) 

where C completely encloses the crack. 
Determination of the integrand of either J or L involves 

knowledge of all components of stress, and also the rotation 
wxy. To obtain an estimate for all of these quantities from the 
limited information given by (1), the semianalytic "rescaling" 
technique was proposed in [1]: Acoustic data are taken in a 
specimen in the vicinity of the crack and sufficiently far from 
the boundaries of the specimen. In this region it is assumed 
the stress (and rotation) components in the finite specimen 
vary with position in the same manner as those in an 
analogously loaded infinite cracked panel, the only effect of 
the finiteness of the specimen being the altering of a 
multiplicative constant. The value of this constant is deter­
mined such that it will fit best the stress sum (an + a22) from 
the infinite plate solution to (au+a22) in the specimen 
(determined acoustically using (1)) and the adjusted infinite 
plate solution is then used to evaluate J or L. 

In a more complicated loading situation the infinite plate 
solution might involve several multiplicative constants that 
must be adjusted simultaneously using a procedure such as 
least squares fitting. 

Experimental Procedure and Results 

To test the performance of the rescaling method under 
more complicated loading conditions, an experiment was 
conducted in which a specimen was subjected to both biaxial 
tension and shear deformation. The specimen used was a 
panel containing a crack tilted at 45 deg to the axis of the 
panel (Fig.2) to which far-field uniaxial tension was applied. 
The specimen was made of Aluminum 6061 T6, for which the 
constant B in (1) had previously been calibrated to be 
10.5 x 10~6/MPa. Expressed in coordinates normal and 
tangential to the crack, this leads to the biaxial tension and 
shear tractions shown in Fig. 3. To simulate a nonlaboratory 
situation where the far-field tractions would be unknown, it 
was assumed the parameters a\, a2, and T are not known in 
advance and should be determined from the ultrasonic 
measurements. Two regions were scanned in the first and 
fourth quadrants of the X- Y coordinates system as shown in 
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Fig. 2 Slanted center-cracked panel specimen 
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Fig. 3 Tractions on slanted crack 

Fig. 2. To apply the rescaling method to this case, the values 
of the parameters as, a2, and r must first be determined, 
which will make the infinite plate solution "best fit" the 
measured data in the finite specimen. This was done using 
least squares fitting, as follows. Denote the measured value of 
the first stress invariant as (ou +a22)

M and the value of the 
infinite plate as (<TH + a22)°. It is desired to minimize 

n 

E=^Kon+a22)f*-(on+o22)h
2 (6) 

i = i 

where n is the number of points at which data are taken, 

(ffn + 022)°=°if(f(Xi,yi)+e2 + Th(x„yi) 

where / and h come from the infinite plate solutions for far-
field tension and shear [4]. Equating the three derivatives 
dE/dax, dE/da2, and dE/dr to zero leads to three equations 
that may be solved for at, a2, r. 

n n n ft 

<>1 DM'+ 2̂ £ ^ + ' £ ^'2 = X>/Ull + rf 
1=1 (=1 /=1 /=1 

n n n n 

°i Jiff + "2 £ / / + r £ hi = £ (<r„ + a22)f 
/ = 1 / = 1 ( = 1 f = I 

n n n 
ffi £/> + W + r £/*, '=£ (<Tu + rf (7) 
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( a ) 

(b) 

Fig. 4 (ffn + »22) contours in the first quadrant of the x-y coordinate 
system in Fig. 2; (a) measured, and (b) infinite plate solution 

where/, = f(x\, x2) and h< = h{x[, x'2). Frequency mea­
surements were made in the regions shown in Fig. 2 with the 
specimen unloaded and loaded to 90kN. Contour plots of the 
measured value of (au + a22) in the first quadrant of the xy 
coordinate system in Fig. 2 are shown in Fig. 4(c), and for 
comparison the values of (au + a22) in the same region of the 
infinite plate are shown in Fig. 4(b). The comparison for the 
fourth quadrant is shown in Fig. 5. The measured contours 
are similar in shape to the theoretical contours (with 
allowance for experimental noise). The discrepancy between 
the experimental and theoretical contours is most pronounced 
in the vicinity of the crack tip. This is due to the acoustic 
transducer size (approximately 3 mm in diameter) which 
causes averaging over a finite area which is noticeable in 
regions of high stress gradients. A computer program em­
ploying the least squares fitting method described in the 
foregoing was used on the experimental data, and the result 
was a2 =99.25 MPa, a, =114.7MPa, and r = - 9 3 MPa. The 
90kN load on the specimen produced an applied stress of 180 
MPa. If this value of stress is remotely applied to an infinite 
plate with a slanted crack, the following theoretical values are 
obtained: a2 = (7i = - T = 9 0 MPa. The specimen dimensions 
are sufficiently large in comparison with the crack length so 
that the infinite plate values can serve as a theoretical check. 
The measured and theoretical values agree within 10, 27, and 

Journal of Applied Mechanics 

(a ) 

(b) 

Fig. 5 (oi i +IT22) contours in the fourth quadrant; (a) measured, and 
(b) infinite plate solution 

3 percent, respectively. It is interesting (and fortunate) that 
the largest discrepancy is in CT, , but this error is unimportant 
because it does not affect the singular stresses at the crack tip 
and hence does not alter / . 

For this linear-elastic case the estimated value of a2 and T 
can be used directly to determine the stress intensity factors 

K, = a2^Jlra, Kn = -rJTra 

resulting in K, = 393.03 MPa {mm)'AK„ = -366.28 MPa 
(mm). The theoretical values are K, = -356.4 and K„ = -
356.4. The value of the J integral can be determined directly 
from the stress intensity factors using relation (3). This leads 
to the measured value J = 4.14 MPa-mm and the theoretical 
value J = 3.63, which agree with 14 percent. To this point the 
rescaling method as described previously has not yet been 
employed. It can be used to obtain a refined estimate of/. As 
discussed in [1], the value of the multiplicative constant 
adjusted during rescaling varies with position because of 
noise. The process of integration can be used to smooth out 
this noise if, while integrating along a contour to obtain J, the 
local value of this constant is used to evaluate the integrand at 
each point. The / integral thus obtained will be somewhat 
path-dependent due to the noise, and the values of J from 
several contours should be averaged. Following this 
procedure, the average value of J obtained along eight dif-
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ferent contours was 3.86 MPa-mm, which agrees with the 
theoretical value of / within 7 percent, so it is seen that this 
rescaling procedure refined the estimate of J considerably. 

As discussed in the foregoing, it is in mixed-mode loading 
that the usefulness of the L integral may arise. Consequently 
the L integral was also evaluated from the "rescaled" infinite 
plate solution, with the result L = 44.35 N. The theoretical 
value for L using the correct values of a,, a2, and T for this 
specimen and relation (2) is 36.34 N. The discrepancy is 22 
percent. The higher discrepancy with theory for L was ap­
parently caused by the error in ax, which had no effect on J 
but did affect the L integral. 

Conclusions 

The experimental results presented here and in [1] have 
demonstrated the possibility of nondestructively evaluating 
the /integral in several plane laboratory specimens containing 
cracks subjected to both mode / and combined mode / and 
mode II loadings. For the mixed-mode experiment described 
in this paper, the L integral was successfully evaluated and the 
values of the stress intensity factors K, and K„ were deter­
mined. 

The technique presented leads to accurate results in each of 
the experiments reported which were confined to the LEFM 
regime. In a subsequent paper the application of this 
procedure to the evaluation of the J integral in the presence of 
elastoplastic deformation will be described. 
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The Dynamic Stress Intensity 
Factor Due to Arbitrary Screw 
Dislocation Motion 
The dynamic stress intensity factor for a stationary semi-infinite crack due to the 
motion of a screw dislocation is obtained analytically. The dislocation position, 
orientation, and speed are largely arbitrary. However, a dislocation traveling 
toward the crack surface is assumed to arrest upon arrival. It is found that 
discontinuities in speed and a nonsmooth path may cause discontinuities in the 
intensity factor and that dislocation arrest at any point causes the intensity factor to 
instantaneously assume a static value. Morever, explicit dependence on speed and 
orientation vanish when the dislocation moves directly toward or away from the 
crack edge. The results are applied to antiplane shear wave diffraction at the crack 
edge. For an incident step-stress plane wave, a stationary dislocation near the crack 
tip can either accelerate or delay attainment of a critical level of stress intensity, 
depending on the relative orientation of the crack, the dislocation, and the plane 
wave. However, if the incident wave also triggers dislocation motion, then the 
delaying effect is diminished and the acceleration is accentuated. 

Introduction 

Bilby and Eshelby [1] have noted the possible role of 
dislocations in fracture. Simlarly, Rice and Thomson [2], 
Tirosh and McClintock [3], Burns and Majumdar [4], and 
Thomson and Sinclair [5] have related fracture initiation to 
dislocation nucleation and assembly near an existing crack. 

In elasticity theory, the stress intensity factor is a key 
parameter in characterizing fracture initiation. Moreover, if 
the fracture process is dynamic, the motion of the dislocations 
should be considered in applying mechanisms such as those in 
[2-5]. This paper, therefore, attempts to gain insight into the 
role of dislocations in dynamic fracture by (1) studying the 
effects of a moving screw dislocation on the dynamic stress 
intensity factor generated for a stationary crack and (2) 
applying the information gained to the problem of stress wave 
diffraction at the crack edge. 

Because engineering and geological materials are often 
assemblies of crystalline grains that may contain local 
distortions, dislocation paths in a small region such as around 
a crack edge may not be rectilinear. Therefore, the study 
considers a screw dislocation that moves from equilibrium 
along a continuous, piecewise-smooth path. Its speed is 
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subsonic and nonuniform, although the Johnston-Gilman [6] 
observations that inpath acceleration effects may be negligible 
should be noted. The dislocation is of unit strength, the crack 
is semi-infinite, and, as a first step, the cracked material is 
isotropic, homogeneous, linearly elastic, and unbounded. The 
dislocation is allowed to travel to the crack surface, but is 
assumed to arrest upon arrival. The dynamic stress intensity 
factor is derived and examined for dependence on dislocation 
position, orientation, and speed. 

The study results are then applied to the problem of a screw 
dislocation near a crack edge at which antiplane shear wave 
diffraction occurs. The diffraction-dislocation interaction in 
the crack edge stress field is examined for its fracture 
initiation implications. Both the stationary dislocation and a 
dislocation which, triggered by the wave pattern, moves to the 
crack edge are considered. 

The basic problem is analyzed beginning in the next section. 
The dislocation is represented by an equivalent body force 
distribution, following [7]. The existence of a characteristic 
length implies a Wiener-Hopf problem of a nonstandard type. 
It is advantageous, therefore, to obtain the exact solution by 
means of the superposition scheme outlined in the following 
section. This scheme was also used in [8] for the calculation of 
the dislocation motion-induced portion of the intensity factor 
when the path is strictly rectilinear. 

Basic Problem Formulation 

Consider the unbounded elastic plane containing the crack 
and screw dislocation shown in Fig. \{d). In terms of the 
Cartesian coordinates (x,y) the crack surface is defined by 
y = 0, x<0. It is convenient to define the dislocation as the cut 
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y=Y(x ) 

(a ) (b) (c) 
Fig. 1 (a) Initial crack-screw dislocation configuration; (b) wave 
pattern for14, |<ir/2; and (c) wave pattern for|^ |>7r/2 

N=0, S<0 where (5, N) are tangential and normal coor­
dinates along the dislocation path y = Y(x). As seen in Fig. 
1(a), the Cartesian coordinates (x,y) are centered at the 
dislocation edge so that the (x,S) and (j^A^-directions, 
respectively, coincide there. If 4> is the path slope at the 
dislocation edge w.r.t. the crack plane and (d,\p) are the plane 
polar coordinates of the dislocation edge w.r.t. the crack edge 
then 

x = efcosO—A'cos</> — ysincj), y = cfeinfi—xsin^ +ycos.4>, 

fl=<£-^ (1) 

We first examine continuous, piecewise-smooth, single-valued 
path functions Y. Therefore, IF'I is finite, where ( ) ' 
denotes argument differentiation, while the path-length 

= (V[i 
Jo 

+ (Y')2]du (2) 

has a single-valued inverse x=X(S). The single-valuedness 
restriction will eventually be relaxed. For s<0, where 
s = cx{time) and c is the shear wave speed, the dislocation and 
crack are in equilibrium. For s>0 the dislocation moves along 
the path y=Y(x) and is located at N = 0, S=D(s). Here 
D(s) is continuous, where D(0) = 0, 0 < D < 1 , 0 ) = d( )/ds, 
and the last inequality assures a subsonic speed. If the 
dislocation reaches the crack surface at some s = / 0 > 0 , we 
require that D(s) = 0,D(s) = D(t0) for a\\s>t0. This motion 
generates a cylindrical shear wave. As seen in Fig. 1(b), if 
I \p I < 7r/2 this wave will first reach the crack edge and there 

generate a diffracted shear wave. As seen in Fig. 1(c), if 
I ]/• I > 7r/2 the wave is first reflected by the crack surface itself. 

The equations governing the motion are 

v 2 vH =w, Ty=Q (y = 0, x<0), w=wQ(s<0) (3) 

b = fiH[D(s)-S]8'(N) (4) 

the antiplane displacement, w0 is its 
equilibrium value, n is the shear modulus, v2 is the Laplacian 
operator, and ( ) ,„=d( )/du. The quantity b is the body 
force equivalent of the screw dislocation of unit strength while 
H and 6 are the Heaviside and Dirac functions. It is con­
venient to introduce the superposition 

Ty = W,y, 

where w(x,y,s) is 

lwh+-(b-

w=wb + wc + w0 

-b0)=w„, b0=,JH-S)8'(N), 

wb=0($<0) 

where b0 is the initial dislocation equivalent. 
(3)-(6), then, wc must satisfy the equations 

(6) 

In view of 

v2wc = wc, Tyc=-Tyb(y = 0,x<0), wc=0 (5<0) (7) 

Equations (6) are the relations governing the displacement wb 

due to a body force b — b0 applied in an unbounded, un-
cracked elastic plane while (7) are those for a displacement wc 

generated by the sudden imposition of tractions - ryb along a 
crack ^ = 0, x<0. This latter field will contain the information 
about the dynamic stress intensity factor. The general solution 
for wb is given in the next section. 

General Solution for Dislocation 

In view of the dependence of b — b0 and the invariance of 
v 2 , it is convenient to seek the function wb(x,y,s). The 

Laplace transform over s, the Fourier transform over x and its 
inverse are given by, see Sneddon [9] 

gL = \~g(s)e-i»ds; 8B = \OO g(x)e-">«*dx, 

g( x)= — 
2TT Jr 

gBeipq*dq (8A-C) 

respectively, where p is real, positive, and large enough to 
insure convergence of (8a), q is, in general, complex, and Y is 
the inversion integral path. Application of (8a,b) to (6) in view 
of appropriate radiation conditions yields 

1 
bjy' p2a2wb=-(b0-b), a = ̂ J(l + q2) (9) 

where ( ) = ( ) B L and a is defined in the 9-plane cut along 
Re(q) =0 , \Im(q) I > 1 , such that Re (a) >0 . It can be shown 
that the solution to (9) which is bounded for \y\ — 00 is, in 
view of (4) and (6), 

i oo (jX Q 

oD-^r[sgn(Y-y)-i~Y'] 
dS 

Sg-pV + iqX + atY-y^tfi dX 1 
(10a,b) 

dS V [ l + ( y ' ) 2 ] 
where it is understood that Y=Y(X), X=X(D), and 
D=D(t). Substitution of (10) in (8c) gives 

dX 
(5) 4irwb Ico 

0 ^ 
dS 

"'\ [sgn(.Y-y)-i—Y') 
Jr a 

t,pliqix-X)-a\Y-y\] dqdt (11) 

where T can be taken along the Re(q)-axis. By following the 
work of deHoop [10], the Cauchy theorem is used to alter the 
integration path to the <?-plane contour along which the 
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* X 
Fig. 2 Instantaneous crack-screw dislocation configuration 

imaginary part of the p-factor vanishes while the real part is 
negative. Then, it is readily shown that (11) becomes 

f °° . , f" ne~p" 1 dr , 
2-KWbL=\ De~p'\ -fj^,——,~-^-dndt (12) 

r = J[(x-X)2 + (y-Y)2], 

dr _ 1 dX 

~d~N~~r dS 

V(/7 2 - r 2 ) r dN 

\y-Y+Y'(x-X)] (13) 

where dr/dN is the normal derivative of the distance r along 
the dislocation edge path. The inverse Laplace transform 
follows by inspection as 

["» DH(r-r) T dr 
2irwb=\ ,, ) _,{ --z^-dt, r=s-t (14) 

V ^ - r 2 ) r dN 

By recognizing a first integral w.r.t. s, equation (14) can be 
rewritten as 

wb=W, 2-KW--

so that, from (4) 

")V(r2 , 1 dr 
-r2) dt 

r dN 
(15) 

(16) Tyb = (J.G, G = W,y 

In light of (1), W can be viewed as a function of (</>,Q) and it 
can be shown that along y = 0 

1 dW, 

X d</> 
The relationships (13) and (15)—(17) prove convenient in the 
next section. 

G(x,s)- • ( * , 0 ) (17) 

Diffracted Stress Ahead of Crack 

The problem (7) was also considered by Brock [8]. By 
following schemes by Kostrov [11] and Achenbach [12], the 
stress Tyc for^ = 0, x>0, s>d was found to be 

1 f( 
V (£>»?) i: 
« » - * ( 

7rV(r/ - 0 

d / d+s/2£cos\ls 

rvb{i,,u) du 
U) • 17 —H 

V2£ + fifcosi/< •), M=s -x, V2ri = i 

(18) 

(19) 

where V2£>o', ?;>£. Here (£,)?) are characteristic coor­
dinates, u is an integration variable representing 77-
dependence, and »; = L(£) defines in the £r/-plane the shear 
wave front radiating from the equilibrium dislocation edge 
position. In view of (16), (17), (19), and the fact that G 
vanishes along the wave front, equation (18) can be rewritten 
as 

:(«.»?) = l^T)i\LGl^u-&'T2iu+&] 

V(€-«) 
17 — U 

du (x>Q,s>d) (20) 

Dynamic Stress Intensity Factor 

By introducing (1), (13), (15), and (17) with y = 0 and the 
variable change V2z = £ — w while noting that the integration 
order in the z/-plane can be interchanged, equation (20) can be 
rewritten as 

27T2 

Tyc (X,S) --
- 1 a J> V* ds 

•z V ( Z - z ) 1 

dX , d , 
-— V 2 ^ V ( T + t / ) 
dS d(j> 

(C-BY')dzdt 
Jo (x + z)~Jz r2 

B = dcosQ + zsin<l>-X, C = dsintt + zcos<l> - Y 

Z = 
1 T2-R2 

, R=J(l/2 + V2) 
2 T+U 

= J[d2+X2 + Y2-2d(Xcosti+ Ksinfi)] 

(21) 

(22) 

(23) 

U=dcos\p-Xcos(f>- Ysin0, V=dsm\l/-Xsm<j>+Ycos<l> (24) 

where t* = s — R(t*). The restrictions on (D,D, Y) imply that 
/*=0 for s = d and dt*/ds>0, 0<t*<s for s>d. Figure 2 
illustrates that (x,y) = (£/, V) and /? are, respectively, the in­
stantaneous dislocation edge position and instantaneous 
distance between the crack and dislocation edges. Thus, 
R(0) = d. 

The z-integrand behaves as 0(z - 2) for Izl —00, has branch 
points at (0,Z), simple poles at -U±i \V\ (r2 =0), and a first-
order singularity on the branch cut at -x(x>0). These 
observations allow use of the Cauchy residue theorem to 
perform the z-integration. The </> and ^-differentiations can 
then readily be carried out and it can be shown that for x—0, 
s>d 

1 Kc(t*) 
-/-{X'S)~2V(xd) 

(25) 

*KAt*) = 
-D 

1 \RJ 

dx . m . e 
sm(co - 0)sin — 

dS 2 1 -Z>cos(co-

h\'' D^(IY I«)dt{s>d) (26) 
Id J0 dS \R/ 2d. 

I(t) =cos(d>- —J + Y'sm(d> 
30\ 

~2~) 
(27) 

tan0 = 
V 

~U~ 
t a n a = y (101 <TT, lal <ir/2) (28) 

Figure 2 shows that (R,d) are the plane polar coordinates of 
the instantaneous dislocation edge position w.r.t. the crack 
edge, a is its instantaneous slope w.r.t. the initial dislocation 
plane, and -co is the instantaneous slope w.r.t. the crack 
plane. Thus, 6(0) = \p and o(0) = <j>. Again it is understood that 
Y= Y{X), X=X(D), while (D,D) are functions of /. Upon 
introduction of the trajectory length integration variable 

eX[DU)\ 
^l[\+{Y'f]du 

J 0 

(29) 

in view of (2), (106), and the restrictions on Yit can be shown 
that 
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1 . dX 
— D 
2d dS '(I) ' '«>-£K4)-T] 

- ! K I ) ~ T ] 
Then, equation (26) assumes the form 

(30) 

irKc(t*) = cos -<D cos 

D Ai)** co - 0)sin • 
l -Z)cos(w-e) ' \R/""^ ''"" 2 

An alternative form can be obtained by noting that 

dR . „ dR 

(s>d) (31) 

sin(co - 6) --
dN 

cos(co - 6) = • 
rfS 

(32) 

The form of A1,, is independent of (29) so that, as indicated 
earlier, the single-valuedness restriction on the trajectory 
function Y can be dropped and the slope angle a can take on 
values lal<7r. Equation (31) appropriately reduces to the 
results in [8] for rectilinear motion (usO), 

In view of (5), the dynamic stress intensity factor K for the 
problem is obtained by superposing Kc on the equilibrium 
intensity factor K0. It is readily shown [4] that irK0 is the 
negative of the first term in (31) so that 

•wK(t*)=~-J 

cos — + Dcos 
d 2 (-4) 
R l - I ) c o s ( « - 0 ) 

(33) 

Equation (33) is convenient for computational purposes. In 
the following analysis, however, alternative forms prove to be 
useful. 

General Observations on K 

Equation (33) shows that the dynamic stress intensity factor 
depends explicitly on the instantaneous dislocation position 
(R,6), orientation («), and speed 0). In Fig. 2 the angle /3 
between the radial (R) and tangential (S) directions is defined 

|3 =7r + (co-0)sgn(0) (0<|3<7r) (34) 

It should be noted that /3, unlike the angles (0, i/s </>, a), is 
measured w.r.t. instantaneous directions and thus, for 
convenience, has no positive or negative sense in the xy-plane. 
In view of (31) and (34), equation (33) becomes 

irK(t*)= - V 

cos — + Dcos ( 
d 2 H4I) 

l+R 
(35) 

where D sin/3 and R = D cosfi are, respectively, the dislocation 
velocity components in the directions perpendicular and 
parallel to the /^-direction. Equation (35) can itself be 
rewritten as 

xtf(/*) = > / | ( -
0 DsmP . 

cos — + - — ; - sin 
2 l+R 

(36) 

which shows that the intensity factor has two competing (of 
opposite sign) components. The first component depends on 
the dislocation position, while explicit orientation and speed 
dependence is coupled with positional dependence in the 
second component. Both components vary inversely with the 
distance between the dislocation and crack edge. However, 
while the first component varies directly with the angle 
between the distance line and the crack surface, variation of 
the second component is inverse. Thus, these components 
vanish, respectively, on the crack surface and directly ahead 
of the crack edge. The second component also vanishes when 
the dislocation moves directly toward or away from the crack 
edge (|8 = 0,7r). These observations imply that the intensity 
factor is finite except perhaps when the dislocation is at the 
crack edge (R = 0) and may vanish for various combinations 
of dislocation position, orientation, and speed. 

Figure 1 shows that the dislocation at some ta>0 will 
radiate a shear wave that travels the distance R(ta) to sub­
sequently reach the crack edge at sa = ta +R(ta). Similarly, 
the dislocation at some tb > ta will radiate a shear wave that 
reaches the crack edge at sb = tb+R(tb). If tb = ta + e, 
0<e<<d, then from (23) 
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sb-stt=tb-ta+R(tb)-R(ta)~[l+RVa)]e, 

R=~ -£- [X-dcosQ + Y'(Y-rfsinfl)] (37) 

The condition D < 1 and (106) guarantee that \R I < 1, and the 
left-hand side of (37) is therefore positive. Thus, the order in 
which signals giving rise to K leave the dislocation is 
preserved, on their arrival at the crack edge. 

With this in mind, we now consider dislocation motion 
discontinuities: Suppose that the dislocation speed undergoes 
a sudden change at t = t0. Since dt*/ds>0, 0<t* <s, we have 
t* = t0 at some subsequent instant s0 = t0+R(t0). Since D is 
finite and the path is continuous, the first intensity factor 
component will be continuous at sa. However, the second will 
instantaneously change unless (3= TT/2 and 0 = 0 at t0, i.e., the 
dislocation was crossing directly ahead of the crack edge at 
right angles to the crack plane. 

A related phenomenon occurs when the dislocation arrests 
or starts moving at t0. The intensity factor will suffer a 
discontinuity as s0 unless at t0 (3 = ir/2 and 8 = 0 or D vanishes 
continuously. If arrest occurs, only the first component 
remains and gives K the constant value 

rf=-V——cos-^ (s>sa) (38) 

Thus, once the dislocation arrest signal reaches the crack 
edge, the intensity factor assumes a new equilibrium value. 
Since 8(t0) = ± -K, the intensity factor vanishes for s>s0 when 
arrest is at any crack surface point except the edge. More 
generally, comparison of (36) and (38) shows that the first 
intensity factor component is essentially a static contribution. 
The second is a correction for dislocation motion not directly 
toward or away from the crack edge. 

Dislocation motion discontinuities can also occur due to the 
path itself, which is required to be continuous but only 
piecewise smooth. If at some t = t0 the dislocation reaches a 
corner, equations (33) and (35) show that unless D vanishes 
continuously there, an intensity factor discontinuity will 
subsequently be manifested at s0 through the parameters (a, 

ftci). 
In summary, then, discontinuities in dislocation speed and 

path slope cause discontinuities in the dynamic stress intensity 

factor. However, appropriate behavior by either quantity can 
also remove the discontinuity effect due to the other. 

Dynamic Overshoot 

Because two components compete during dislocation 
motion, the signal received at the crack edge from a given 
dislocation position triggers in the dynamic analysis an in­
tensity factor that will either have a smaller magnitude than 
the static value or be of opposite sign. Only when 

Dsin/3 

l+R 
>2cot (39) 

will the latter instance produce a larger magnitude. Thus, 
unless (39) is satisfied, dynamic overshoot in the sense that the 
dynamic stress intensity factor at some instant exceeds its 
initial equilibrium value occurs due to the change in 
dislocation position, e.g., the dislocation moves closer to the 
crack edge. 

Numerical Illustrations 

To illustrate the effect of the implicit orientation parameter 
a, we consider the dislocation motion defined by (D,a) 
constant. The parameter K is plotted in Fig. 3(a) versus a for 
1̂  = 45 deg, 0 = 0 deg, .D = 0.5, and various values of s/d> 1.0. 
The discontinuities for a = - 45 deg indicate dislocation arrest 
at the crack edge, which occurs when s/d = 2.0. The other 
discontinuities and the constant behavior show the 
aforementioned effects of dislocation arrest at other crack 
surface locations. In general, the Jf-variation with a decreases 
as s/d becomes large. As implied earlier K temporarily 
vanishes at several values of a. Figure 3(b) presents a A"-plot 
for the same situation, except that now D = 0.2 and crack edge 
arrest occurs for a= - 4 5 deg when s/d =5.0. The ob­
servations made for Fig. 3(a) are apparently again valid. The 
decrease in A'-variation with a, however, seems to occur more 
slowly. 

In view of the behavior near and away from the value a = 
- 4 5 deg, Fig. 3 shows the inverse variation of the dynamic 
stress intensity factor magnitude with the distance between the 
dislocaton and crack edge. This behavior is more clearly 
illustrated in Fig. 4(a), where K is plotted versus s/d> 1.0 for 
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Fig. 4 (a) K versus s/d, ^ = 45 deg; and (b)K versus s/d, <fr = \l>-
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D = 0.2, a = Odeg, ^ = 45 deg and tf> = (35, 40, 50, 55 deg). The 
intensity factor magnitude is seen to grow continuously until 
the dislocation nears its point of minimum distance to the 
crack edge. When the dislocation passes in front of the crack 
edge (0 = 50, 55 deg), the magnitude decreases asymptotically 
to zero. For the crack surface arrest cases (0 = 35, 40 deg) the 
intensity factor changes sign and then instantaneously 
vanishes when the arrest signals reach the crack edge. 

As a third illustration, K is plotted in Fig. 4(b) versus 
s/d>1.0 for I) = 0.2, a = 0 deg and various values of \j/ that 
define rectilinear paths which intersect the crack surface at the 
crack edge (cj>=\p~). Because ;6~7r, the intensity factor 
motion component is negligible, and Fig. 4(b) shows the 
aforementioned characteristic that the static component 
varies inversely with the angle to the crack surface. 

Application to Dynamic Fracture 

Dynamic brittle fracture initiates at an existing crack under 
rapid loading conditions, such as stress wave diffraction at the 
crack edge [12]. If there are no other external stress fields, the 
crack in an ideal, homogeneous, isotropic solid is often 
treated as completely at rest prior to the stress wave arrival. In 
a real material, however, if a screw dislocation of strength h is 
located in equilibrium as in Fig. \(a), and intensity factor k0, 
where [4] 

will exist. An antiplane shear wave that subsequently (s' =0) 
diffracts at the crack edge will generate an additional intensity 
factor kd. For the plane step-stress wave of magnitude a in 
Fig. 5, it can be shown [13] that 

dislocation force does not allow equilibrium dislocations to 
exist very near the crack edge [4], then \d/h\ > > 1 . On the 
other hand, we require that \a/fi\ < <1 in the elastic range; 
e.g., Ia//xl —0.0075 for a hot-rolled low carbon steel at yield. 
The ratio of trigonometric terms can take on any value 
between 0 and oo. Equation (41) shows, therefore, that the 
dislocation stress field can concieyably govern (\g\ <1) the 
crack edge for a finite period. If a/h>0, then diffraction 
merely intensifies the existing (dislocation) stress field. If 
a/h<0, however, diffraction initially relaxes the crack edge 
stress field and subsequently reverses its sign. That is, the 
dislocation temporarily shields the crack edge from the wave 
diffraction effects, and so postpones the onset of a stress level 
critical for fracture. A discussion of this shielding concept has 
been presented for static situations in [4, 5]. 

If the wave diffraction process also triggers dislocation 
motion, the results of previous sections would modify (41) to 
give 

a d 4(l+*)V(l-sin*) 

H h e • / 
cos-—- +Z>cosl /3 + 

V^V^- (s'>0)(42) 
\ d d 

s' + sc = t*+R(t*)>d (43) 

k0 

4V(1 - sin$) 

Here \sc I is the interval between the arrival of the plane wave 
at the crack edge and dislocation motion initiation. The force 
on an equilibrium dislocation such as in Fig. 1(a) varies in­
versely with d and always points to the crack edge [4], 
Therefore, if we ignore effects such as grain distortion or the 
plane wave itself and assume that the dislocation moves 
directly to the crack edge, previous analysis shows that the 
governance ratio g reduces to 

•V- (s'>0) (41) d *V(1-
h 

sin$) 

d d 
(s'>0) (44) 

cos-
The dislocation strength is on the order of the atomic spacing 
in the cracked material. If it is argued that linear elasticity 
breaks down very near the dislocation or that the large 

The g-behavior versus s'/d for both stationary and moving 
dislocations is shown in Fig. 5 for various combinations of 
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(^.t//). It is assumed that dislocation motion initiates on 
arrival of the wave pattern and proceeds at a constant speed 
I) = 0.2. The discontinuities in Fig. 5 indicate the motion 
signal arrivals and the broken lines, the g-curves if no motion 
had occurred. The dislocation lies in the crack shadow when 
i / / -$>i r /2 . Then, the diffracted cylindrical wave (see Figs. 
1(b) and (c)) reaches the dislocation before the plane wave. If 
it is assumed that this wavefront has the same triggering 
effect, then sc=-d and g = 0 for s'/d<1.0. The ( * , ^ ) -
values chosen in Fig. 5 do not fall into this category. 

Figure 5 shows that the stationary dislocation initially 
governs (\g I < 1) the crack edge stress field. After a finite time 
that varies directly with \ad/'\ih I the wave diffraction governs 
(Igl >1) indefinitely, and to an ever-increasing degree. When 
dislocation motion occurs, however, the initial dislocation 
governance period may be increased while the wave dif­
fraction governance interval is now finite, and may vanish 
entirely if \adl\sh\ is large enough. Moreover, the degree of 
wave diffraction governance is lower than for the stationary 
dislocation at the same instant. In Fig. 5, the time intervals are 
on the order of the shear wave travel time d between the 
equilibrium dislocation and crack edge. 

Figure 5 thus confirms the stationary dislocation ob­
servations. Because the dislocation-induced intensity factor 
itself increases with s' (inversely with R), Fig. 5 shows that 
these observations must be modified for the moving 
dislocation: For a/h>0, the stress intensification process is 
accelerated, while for a/h<0, the relaxation process might 
not occur ( l g l < l ) or will be briefer. Thus, a stress level 
critical for fracture will always be achieved sooner if the 
dislocation moves to the crack edge. 

Since the time intervals arising here are on the order of 
shear wave travel times between the crack and equilibrium 
dislocation, the delay/acceleration effects for a single 
dislocation might not be readily detectable experimentally. 
However, a dislocation array might by superposition give 
measurable time intervals. On the other hand, the number of 
dislocations per grain has been estimated to be on the order of 
1010, which implies an unreasonably large k0 total. However, 
this implication would follow from the assumption that h for 
each dislocation in the array is of the same sign. Finally, it 
should be noted that the results obtained here are for a 
dislocation existing initially in equilibrium. Wave excitation 
of the dislocation source itself involves the solution to the 
problem of the instantaneously appearing dislocation. This is 
related but not identical to the problem defined by (3) and (4). 

Brief Summary 

This paper first studied the dynamic stress intensity factor 
generated for a stationary crack by the motion of a screw 
dislocation of unit strength from an equilibrium position. The 
intensity factor was found to have two components of op­
posite sign. The first component depended on the in­
stantaneous dislocation position. The second component also 
depended on the instantaneous dislocation speed and 
orientation, but vanished for the important case of a 
dislocation moving directly toward the crack edge. Discon­
tinuities in the dislocation speed or a nonsmooth path were 
found to cause discontinuities in the intensity factor. 
However, appropriate behavior by either could remove the 
discontinuity effect due to the other. It was also found that 
dislocation arrest caused the intensity factor to in­

stantaneously attain a new equilibrium value which, on the 
crack surface, vanishes. 

More generally, the study showed that screw dislocation 
motion from rest near an otherwise undisturbed crack edge 
does not necessarily intensify or relax the stress field there. 
Stress field response depends on the dislocation path and 
speed, and how they affect the dislocation position in par­
ticular, the distance between the crack edge, and dislocation. 

The study results were then used to consider a screw 
dislocation near a crack edge at which plane step-stress an-
tiplane shear wave diffraction occurs. In terms of the com­
bined intensity factor, it was found that, depending on the 
relation between the wave stress and the slip direction, a 
stationary screw dislocation can either accelerate or delay the 
onset of the stress level critical for crack edge fracture. If the 
wave pattern, however, also triggers dislocation motion into 
the crack edge, the delaying effect is diminished and the 
acceleration process accentuated. For a single dislocation, the 
time intervals involved are apparently on the order of the 
shear wave travel time between the equilibrium dislocation 
and the crack edge. The dimensionless quantity odlyh, the 
dislocation path angle \j/, and wavefront angle $ are key 
parameters in determining these time intervals. 

The results of this paper will form the basis for further 
studies of dynamic fracture in the presence of dislocations. In 
particular, future work will utilize more fully the path effect 
results obtained here; attempts to model the effects of crack 
edge and multiple dislocation interaction on the dislocation 
path in view of the dislocation force concept will be made. It 
is hoped, however, that the present results themselves will 
allow insight into this area. 
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The Determination of the 
Elastodynamic Fields of an 
Ellipsoidal Inhomogeneity 
Elastic fields of a single ellipsoidal inhomogeneity embedded in an infinite elastic 
matrix subjected to plane time-harmonic waves are studied by employing the 
concept of eigenstrain and the extended version of Eshelby's method of equivalent 
inclusion. Using the dynamic version of the Betti-Rayleigh reciprocal theorem, an 
integral representation of the displacement field, due to the presence of 
inhomogeneity, is given in terms of the eigenstrains. Two types of eigenstrains arise 
in the elastodynamic case. Expanding the eigenstrains and applied strains in the 
polynomial form in the position vector f and satisfying the equivalence conditions 
at every point, the governing simultaneous algebraic equations for the unknown 
coefficients in the eigenstrain expansion are derived. Elastodynamic field outside an 
ellipsoidal inhomogeneity in a linear elastic isotropic medium is given as an 
example. The angular and frequency dependence of the induced displacement field, 
which is in fact the scattered displacement field, the differential and the total cross 
sections are formally given in series expansion form for the case of uniformly 
distributed eigenstrains. 

Introduction 
The elastodynamic fields in the region outside a single 

ellipsoidal inhomogeneity (scatterer) embedded in an infinite 
medium are of fundamental importance in nondestructive 
evaluation (NDE). A comprehensive discussion of ap­
plications of elastic wave theory in NDE can be found in 
references [1-3]. This problem has been attacked by a variety 
of methods: the direct volume integral formulation [4, 5]; the 
matched asymtotic expansions [6]; the surface integral for­
mulation [7]; and the polarization approach [8]. These 
solutions are appropriate at very long wavelength or very low 
frequency range, ka < < 1, where k is the wave number and 
"a" is a typical geometric dimension of the scatterer. 

It appears that Mai and Knopoff [4] were first in presenting 
a direct volume integral formulation where they gave the 
scattered displacements in terms of volume integrals involving 
the displacements and strains inside the scatterer. Since these 
fields are not known, successive approximations were ob­
tained by using the incident wave field [9], or by using the 
static displacement field for a spherical scatterer [4], and for 
an ellipsoidal scatterer [10]. The latter approach greatly 
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enhances the validity of the solution toward a higher 
dimensionless wave number, say ka of value near unity. 
Special cases wtihin the ellipsoidal system such as the cases of 
spheroids, cylinders, flat cracks, etc., can be easily studied. 
Due to the use of the static solution as a first approximation, 
the frequency structure of the solution is somehow limited 
and cannot easily be extended to medium frequency ranges, 
say, 1 <ka <10. 

Using the equivalent inclusion method, Eshelby [11-13] 
studied the static elastic fields "inside" and "outside" an 
ellipsoidal inclusion or inhomogeneity embedded in an in­
finite isotropic elastic medium under applied tension. All 
through this paper, an "inhomogeneity" is referred to as a 

(a) (b) 

Fig. 1 (a) The inhomogeneity problem and (b) the inclusion problem 
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region of different elastic moduli and density compared with 
its surrounding medium and an "inclusion" is referred to as a 
region with the same elastic moduli and density as its 
surrounding medium but include in it a distribution of 
eigenstrains. Eigenstrains are strains that are not derived from 
mechanical loading. As examples we note that thermal strains 
and also the swelling strains due to the presence of moisture 
are special types of eigenstrains. 

The method of equivalent inclusion is a method where the 
inhomogeneity is replaced by an inclusion such that solutions 
for the two problems are exactly the same. The basic concept 
is sketched in Fig. 1. Wheeler and Mura [14] first developed 
but did not apply a complete eigenstrain formulation to the 
dynamic case. They studied the dispersion of waves in fiber-
reinforced and laminated composites. Since no treatment was 
given to the mismatch in mass density, their results are ap­
propriate for the case such is absent. Subsequently, Fu 
presented a complete eigenstrain formulation to study the 
interaction problem [15] and the scattering problem [16]. 

The purpose of this study is to extend the method of 
equivalent inclusion to fully develop the equivalence con­
ditions and to present a method for complete determination of 
the eigenstrains and/or their derivatives as appropriate. The 
equivalence conditions and the solutions to the elastodynamic 
fields, exterior to an inhomogeneity, in terms of eigenstrains 
and/or their derivatives are first developed. Agreement with 
other approaches is then easily seen. The formulation is 
general and both the inhomogeneity and the host medium can 
be anisotropic. The problem of an ellipsoidal inhomogeneity 
embedded in a linear elastic isotropic whole space subjected to 
plane time-harmonic wave is studied and the differential and 
total cross sections for a uniformly distributed eigenstrain are 
detailed and shown. 

Equivalence Conditions 

In this section, we develop the equivalence conditions by 
requiring that the displacement and stress fields obtained in 
the inclusion problem be identical to those for the 
inhomogeneity problem, Figs. 1(a) and 1(b). 

The Inhomogeneity Problem (Problem I). Consider the 
problem of a single inhomogeneity occupying the region Q in 
the infinitely extended region D-Q subjected to applied in­
cident wave field « j " , Fig. 1. Let the elastic moduli and the 
mass density be denoted by C[jU and p ' for the 
inhomogeneity, and by Cijkl and p for the host medium, 
respectively. 

The governing equations for the displacement field are: 

Cjkrs uriSk + ACjkrsurtSk=pUj + Ap iij in D (1) 

in which we used 

®jk ~ ^jkrs Ur,s » &^jkrs ^r,s 

Ap 
(. p -p 

= f° ^Cjkrs — 

-c •jkrs 

in 
in 

in 
in 

D-
Q 

D-
Q 

- 0 

- Q 

(2) 

(3) 

(4) 

Let the superscripts (i) and (m) denote fields associated with 
the "incident" wave, and the "mismatch' in mass density and 
elastic moduli, respectively. It is clear that 

uj = u}<)+u}m) (5) 

as in the absence of mismatch, ujm) disappears, and the total 
field is identical to the incident field. 

The boundary conditions are that (1) the displacements and 
tractions at the intersection of the regions fi and D-Q must be 
continuous, and (2) the characteristics of outgoing wave field 
and that the stresses die out at infinity must be observed. 

The Inclusion Problem (Problem II). Consider next an 
infinite elastic solid of homogeneous moduli CyW and density 
p with distributed eigenstrains, denoted by ej , in a region Q, 
such that Q is identical in shape and size to that in Problem /, 
and 

« - ( 
0 in D-Q 
efj in Q 

The total strain field is 

e« = (ur,s + us%r)/2 = e% + e* 

where 

Gjk — ^jkrs €rs 

(6) 

(7) 

(8) 

Using equations (6) and (7) in the equations of motion, we 
easily obtain the governing equations for the total 
displacement field as follows: 

Cjkrs ur,sk =P uj + Cjkrs €rs,k l n D (9) 

It is clear from equation (9) that 

uj = ujl)+uj (10) 

where uj is the displacement field due to the presence of e,* 
and it disappears when ej vanish. The only boundary con­
ditions are those regular conditions at infinity and the 
radiation condition. 

Equivalence Conditions. For a complete equivalence 
between Problem I and Problem 77, we require that the 
displacement and stress fields in the two problems be iden­
tical. Hence, for equivalence in stress field, we require, from 
equations (2), (7), and (8), 

(.Cjkrs ur,s + ^Cjkrs Ur,s ) / = ( Cjkrs (ur,s ~~ ers) ) / / ( 1 1 ) 

For equivalence in displacement fields we require that the 
equations (1) and (9) be identical, hence 

(Ap Uj - ACjkrs Wr>s/t ) / = ( Cjkrs e*rs,k)ll (12) 

It is clear that equations (11) and (12) are automatically 
satisfied in the region D-Q by observing the definitions given 
in equations (3), (4), and (6). It is convenient to split the right-
hand side of equations (12) into two parts such that 

Cjkrs e'rP) = - ACjkrs "r,sk (13«) 

Cjkrs e'& =AP"y (136) 
Employing equations (11)-(13) and equations (5) and (10) we 
obtain the equivalence conditions as: 

AC jkrs 
i(m){f (f,t)+Cjkrs e;i1)(f,0 = -AC,v jkrs tyj (r,t), in 0 

(14a) 

Ap «,<»> (i,t) -Cj^s e;$ (f,t) = - A p «/'•> (f,t) in Q 

(146) 

These conditions can be used to determine the eigenstrain 
distribution that is necessary for the equivalence of Problems 
I and II provided that we can write ur

m) in terms of the 
eigenstrains. One such method is given in [17]. It is of interest 
to note that equations (14a) are identical in form as the 
equivalence conditions in the static case and that only in 
equations (\4b) they'th components of CjkrS e'$ a r e needed 
for determining u)m). Further discussion on the determination 
of the eigenstrains will follow in the next few sections. 

The Elastodynamic Fields Associated With an 
Inhomogeneity 

Instead of finding the solution to the physical problem 
stated we seek the solution to the equivalent inclusion 
problem. The governing equations are equations (6)-(9). Let 
the incident wave field be plane time harmonic then the time-
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X c i d e n t 
wave 

Fig. 2 An ellipsoidal inhomogeneity under incident wave 

harmonic displacement and eigenstrain fields can be written 
as: 

uj'"> (f,0 = M)"') ( f )exp(- /wO 

e*s(,r,t)=e*s(r)exp(-it1it) 

where to is the frequency of the incident wave field and /•/ = 
- 1 . Using the dynamic version of the Betti-Rayleigh 
reciprocal theorem and suppressing the time dependence we 
obtain the displacement field as: 

" m ( r ' ) = 4!> ( r ' ) - i n Cjkrs gjm(i,i')t%,k(i) dV (15) 

or, upon employing Gauss' theorem, 

« m ( f ' ) = Kil') ( r ' ) + JJJ Cjkrs gJm,k(r,r')e*Ar) dV (16) 

where g>„(f,f') is the spatial part of the solution to the 
associated Green's function problem for equation (9). Note 
that the use of the Green's function preserves the charac­
teristics of an outward propagating wave and satisfies the 
boundary condition on stress at infinity. Since there are two 
types of eigenstrains, we write the displacements as 

u,„ ( f ' ) = w<!» (f ' ) -1II gJm (f , r ' ) Cjkl, £ ;$(f) dV 
a 

tt\gjmrtfJ')Cjknf-'V<j)dV (17) 

where equations (6), (15), and (16) are used. It is clear that 
only they'th component of Cjkrs e*$ are needed to determine 
the displacements. We can therefore view this as a vector 
quantity, say irf, where 

*7=CA„ e;$ (18) 

Substituting equation (18) in equation (17) we obtain the 
solution form given as equation (2.19) in reference [8, p. 291], 
for the time-harmonic case. If the equations (14) are sub­
stituted in equation (17), we find the solution form equation 
(12) in reference [4, p. 379], or equation (2.25) in reference [5, 
p. 2806]. 

The stress field that has arisen from the presence of 
mismatch or equivalently by the presence of eigenstrains can 
be obtained by using Hooke's law and equations (5), (10), and 
(17)as: 

1 
T(m) (f')= ~ ^pqitm j j jhW (f.f) 

c 

+ gjn,,„' (f,f'-)]ir;(f) dV 

J 5 J (SJm,k'„' +gjn,k'm')CJkrs e* ( l )(f) dV (19) 

Quantities of interest such as the differential cross section 
dP(w)/dQ defined as: [18, 5] 

*/>(«) ,.__ < r 2 / / ^ «f> 

rffi 
= lim 

</°> 
can be obtained in terms of the eigenstrains via equations 
(17)-(20), where 7° is the incident power, 

P--•rij a\ .!/) »;.!') 
V 

<f(t) > denotes time averaging of a function 

<fU)>• 
l rT 

and /,, «, are direction cosines for f and n, respectively. The 
differential dQ is the differentia] element of a solid angle. The 
total cross section is simply 

'«H« dP(u) 
dQ ' 

dU (21) 

In what follows we give examples for the scattering of an 
isotropic smooth inhomogeneity in a linear isotropic infinite 
medium subjected to plane time-harmonic incident wave 
field. 

Linear Elastic Isotropic Medium 

For such a medium the spatial part of the Green's function 

(22) 

Airpw2 

+ [(exp i(3R) /R - (exp iaR) /R] ,,„, ) 

where 
2 2 

R=\r-r'\, a2=—, = -^-7~, (32 = 
vL

2 X + 2/i 

11\ 

o>2 

Vf 

po) 

and X, /x, vL, and vT are the Lame's constants, longitudinal 
wave speed, and transverse wave speed, respectively. Before 
we substitute equation (22) in equation (17), we expand the 
unknown quantities associated with the eigenstrains in form 
of a polynomial as [17, 19]: 

Tr*(r)=Aj+Ajk xk+Ajkl xk x, + ... (23) 

e]}l)(*)=Bu+Bijk xk+BiJkl xk x, + ... (24) 

where Aj, Ajk By, B,jk, ... are constants. Substituting 
equations (22)-(24) with vf defined by equation (18), we 
obtain 

,(»') (f) = «„,(f) - « " (f) =fmj(f)Aj+fmJk{T)Ajk + ... 

(r)Bjj+ Fmijk (i)Bjjk + ... 

where 

4irpu2 f,„j (f) = - /32 4> dmj + i/s„y - 4>„nj 

4irpco2 fmjk (f) = - /32 4>k bmJ + \pk,mJ - 4>k,mj 

4-wpu2 FmU(r)= -[\a2 ty,m bu+2ii 01 0„-5„v-

mij J 

47rpo)2 F,m(i) = - [X a2!/-*,,„ 5ij+2n fi2<j>kJ 5mj 

~ 2M ^k.mij + 2/X <t>k,mij] 

and 
<j>(f) = \ti(expil3R)/RdV' 

f! 

«*( ') = III** (expil3R)/RdV' 

(25A) 

(25b) 

(25c) 

(25a0 

(25c) 

(26a) 

(26ft) 
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Fig. 3 Scattering cross section as a function of ka: aluminum sphere 
in germanium 

</>«...* (r) = Hi x'k x',...x's (exp if3R)/R dV 
si 

Mr) = \\\(expiotR)/RdV 
a 

tk(i) = \\\x'k{™vi<xR)/RdV 
a 

iki...s(f) = JJS x'k x',...x's (exp i<xR)/R dV 
a 

(26c) 

(26rf) 

(26e) 

(26./) 

The $- and ^-integrals given in equations (26) are the 
volume integrals associated with the inhomogeneous 
Helmholtz equation. They can be carried out for an ellip­
soidal region by expanding (exp ikR)/R in Taylor series 
expansions with respect to f, for /•>/•' and with respect to r 
for /•</•'. Here A: can be either a or /3. Details are given in 
reference [20]. This type of expansion for the integrand is 
particularly useful in determining the coefficients of a 
"polynomial" distribution of irj and ej/1'. 

To determine the coefficients Aj, Ajk, ..., Bjk, BJkh ..., we 
substitute equations (18) and (23)-(25) in equations (14) and 
note that we are dealing with time-harmonic displacements. 
Since the ir* and e'i}!) are given in terms of polynomials we 
expand the ujm) (f), u{

r^(r), and uj^'J (r) in Taylor series 
expansions with respect to the coordinate origin, by matching 
the coefficients of terms to the same power of xf, xh x,Xj, ..., 
we obtain a set of infinite number of algebraic equations for 
Aj, AJk, ... Bjk, BjM, ... The scattering cross sections are 
given in terms of these coefficients by way of equations (17), 
(19), and (20). 

Examples 

Uniformly Distributed Eigenstrains. Let the region fi be 
an ellipsoidal region of 2ax, 2a2, and 2«3 along the x, y, and z-
axis, respectively, Fig. 2. We first expand the integrals and 
their derivatives in Taylor series for /•</•' and obtain the 
Taylor series for ujm) (f) from equations (25). Substituting 
this series for u}'"> (f) and its derivatives in equations (14) 
with equations (23) and (24), and the Taylor series for u}'] (f), 
we obtain the governing algebraic equations for Aj, AJk, ..., 
By, Bijk, ... by comparing the order in the power series i.e., 
xf, xh XjXj, etc. To save space these equations are not shown 
here. Once these coefficients are determined, we go back to 
equations (25) and find the scattered displacement field, 
which is uf (f) when /•—co. By using formulas given in [20] 
the scattered displacement field is given in terms of a triple 
sum. 

In what follows we consider the case for a plane time-
harmonic wave propagating in the + z-direction, i.e. 

H!" ( r ,0 =u0 exp i(az-o>t) (27) 

For a given (ka) enough terms must be taken in determining 
the coefficients ^4's and B's in equations (23) and (24) from 

[/] [A] + [F] {B\ = [H\ 
mXm mX\ mXm mX\ mX\ 

[d] {A} + [D] IB} = [E] 
mXm mX\ mXm mX\ mX\ 

where [/] and [F] are defined by the Taylor expansion of the/-
and F-functions at r = 0, and [d] and [D] are the average of the 
symmetric part of [f] and [F|. The right-hand side are ob­
tained from the Taylor series expansion for uj:) and e\p, 
respectively. 

Using equations (12) and (17) in [20] and equation (25), we 
find that, for the lowest order of ej/1' and ir/or 

^jkrsErs,l > i . e . , 
keeping only the constant terms in equations (23) and (24) at a 
distance far away from the ellipsoid: 

«<f)(r,0=«r'(r,0 --(4irpu)2)~ 

» " '^l r(-l)"4va1a2a3 a[ak
2a'^'-'<ll

ll
k
2ir

l~k (n/2)\ 

,h,2 to iki.2 L (« + 3)(n+ 1)«!(//2)!(Ar/2)!(«-/- Ar)/2! 

• [ 6 ~ — [ - a2(ia)"lmljAj - \iaHio<)»l„AjBkj 

-2^a\ia)"lJkljBkj] 

exp ifir 
{pilJj-t^Aj-WFlkBi 

+ 2iuplJkljBKi]mn] exp ( - i « 0 (28) 

where the repeated subscripts must be summed from 1 to 3. 
Note that BkJ is nondimensional and is homogeneous in (a«0) 
and Aj is of dimension (Ap»o2»u0). The first term in the 
expression, i.e., « = 0, gives the following: 

M,i?' (f) exp iar 
3 a.r (aaxfu0 

G2,(9,« 
exp ifir 

3 /3r 
#2 , (9 ,0 (29a) 

where (r, 6, </>) are spherical coordinates and 

G% (8,<t>)= -(a2a3/ata[)Um'JAJ(Ap/p) 

+ (1 - 2aV/32)/„, B*j + 2lmlklj Btj (a2/(32)] (296) 

H°m (6,<t>) = (a2a,/axa,){(H/af(lmlj - &mj)Af(Ap/p) 

- 2(/3/ayik B*km + 2(&/a)2lJkljB*kj} (29c) 
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By using equations (20), (27), and (28) we obtain the dif­
ferential scattering cross section, after manipulation, as 

dP(u) 

dQ 
= ^(6,4,) + (o/ /S) a3 (6VM (30) 

where 

a2 op(e,4>) = (aai)
6G0

m(e,ct>) Gl(d,<t>)(C„.C„.) 

P2 as(fl,0) = (aai)6 • /&(*,*) H°m(6,4>) (D„.D„.) 

C„ = 

y y ny' (-i)" (aai)" (a2/ai)
k (a3/alr-l-ki[lk2ir'-k (n/2)\ 

„=o /=o k=o,i (« + 3)(« + l)«!(//2)!(*/2)!(/2-/-A:)/2! 

f"7 „ - , (-i)"(Paiy(a2/alr-'-klill2kh"-l-k(n/2y.(a3/al)
k 

£ £ E 
n = 0 / = 0 k = 0,2 

(n + 3)(n + l)nl(I/2)\(k/2)\(n-l-k)/2l 

The super bar here denotes complex conjugate. The total 
differential cross section can be easily obtained as 

P(co)/a,2 = ( « a,)4jG°(fl,0)G°(fl,*)C ( IC I I.dO 

+ {a/p)\aaiy\HlH%DnDn.dQ (31) 

. 4 . 8 1.2 

A L P H A A l 

1.6 

Fig. 5 G(0,i/>) versus «a1 for different ratios of a2/a-| and a3la^: 
tungston in titanium, <j> = 0, 9 = 0, G-G = G m G m 

in which 

A}=Aj/(Apu2 u0) 

B*kj=-Bkj/(ictu0) 

(29d) 

(29e) 

In Fig. 3 1 , a comparison of the total cross section as a 
function of dimensionless wave number with exact solution 
for a spherical inhomogeneity is displayed. For an aluminum 
sphere embedded in a gemanium matrix the agreement is 
found to be within 5 percent, ka<2. The comparison does 
depend on the material systems involved. In Figs. 4-82 , 
results related to the scattered displacement field are shown. 
The frequency responses of the fields are contained in the 

1 A computer program that provides the output for exact solution originally 
given in [18] was kindly given to L. S. Fu by J. E. Gubernatis. Plotted by Y. C. 
Sheu. 

2Plotted by Y.P .Hsu . 
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Fig. 8 Polar plots for the differential cross section 

coefficients Aj, Bkj, C„, and D„. The series expansion for C„ 
or D„ converges very fast and is shown in Fig. 4. In Figs. 5 
and 6 the absolute value of the reduced scattering amplitudes 
are displayed for different aspect ratios and material systems. 

Polar plots for the scattering amplitudes [21] and differential 
cross sections are sampled and displayed in Fig. 7 and Fig. 8, 
respectively. Numerical results were obtained by using the 
AMDAHL 470 computing system and peripheral equipment. 

Discussion and Conclusion 

The determination of the elastodynamic fields of an ellip­
soidal inhomogeneity is studied in detail via the eigenstrain 
approach. A complete formulation and a treatment of both 
types of eigenstrains for equivalence between the in­
homogeneity problem and the inclusion problem are given. 
This approach is shown to be mathematically identical to 
other approaches such as the direct volume integral for­
mulation, references [4, 5,8]. There are several advantages in 
using this approach: (1) the radiation condition for outgoing 
waves and the continuity conditions at the interface between 
the inhomogeneity and the matrix are automatically satisfied; 
(2) the frequency response of the field quantities are clearly 
identified; and (3) the solution for specialized geometry of the 
inhomogeneity, such as sphere, cylinder, disk, prolate, and 
oblate spheroids, etc., can be obtained by simply evaluating 
the associated integrals [20]. 

From the comparison with exact solution for a spherical 
inhomogeneity, the case of uniformly distributed eigenstrains 
gives accuracy within a few percent up to dimensionless wave 
number around two. Numerical results for an ellipsoidal 
inhomogeneity indicate similar trends as that given in [6] for 
very low dimensionless wave number, ka<<\, i.e., the 
reduced scattering amplitude tends to be proportional to the 
volume of the inhomogeneity. 

As the dimensionless wave number ka increases, it is ex­
pected that the solution due to uniformly distributed eigen­
strains becomes less accurate. It was observed, during the 
study for a spherical inhomogeneity that the total cross 
section vanishes at ka approximately equals to four. This 
suggests that there exists a frequency structure in the coef­
ficients of the eigenstrain distributions, i.e., a certain 
distribution pattern may be predominant at a certain 
frequency range. Since the mismatch in mass density does not 
give rise to any eigenstrain in the static case, it appears that 
this solution should give better frequency representation than 
any other ones that use the static solution as a first ap­
proximation. 
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Transient Response of an Elastic 
Medium to Torsional Loads on a 
Cylindrical Cavity 
The transient response of an elastic medium to torsional line loads acting as a step 
function in time on the surface of an infinite cylindrical bore is obtained. The 
solution is seen to be composed of a superposition of space-harmonic applied 
tractions. Integral representations of the resulting displacement and stress fields are 
derived and numerical results are presented. The behavior in the vicinity im­
mediately behind the outward propagating S-wave fronts is studied and analytic 
expressions for the resulting singularities and jumps across the fronts are given. 
These solutions may be used as the Green's functions for more general spatial 
loading systems. The response is compared with the known static solution to 
determine the relative contribution of the transient effect. 

1 Introduction 

In the present investigation, we consider the transient 
response of an axisymmetric, circular, torsional line load 
applied to the surface of a cylindrical cavity as a step function 
in time. The prescribed torsional load corresponds, for 
example, to forces exerted on a bore hole as encountered in oil 
prospecting and drilling. It is also an approximate 
representation of frictional line forces which are due to 
twisting of a relatively rigid shaft situated with a tight fit 
within a hollow cylinder whose ratio of outer to inner radius is 
very large. The solutions obtained are the Green's functions in 
space from which the response to more general spatial loading 
patterns can be obtained. The application of a step function in 
time permits the determination of the response to forces with 
more general time dependencies by means of Duhamel in­
tegrals. Moreover, the analytic solutions presented in the 
following can be considered as limiting and check cases for 
numerical solutions to more complex loadings. The solution 
to the present problem also establishes regions in which the 
transient effects predominate in the response. Knowledge of 
the approximate delineation of such regions for the loading 
case considered can aid in predicting the corresponding region 
for the more significant but considerably more difficult case 
of transient radial pressures. 

The response of a medium to applied tractions on the 
surface of a cylindrical bore has been the subject of several 
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investigations. Tranter [1] first studied the effect of static 
radial pressure loadings over a finite segment of the bore 
surface. Jordan [2] later investigated the corresponding 
dynamic problem assuming an applied traction with a step 
load in time. The response to a moving pressure line load was 
given in [3] and a similar study for a torsional line load ap­
pears in [4]. The static response of applied tractions acting on 
a bore surface, including that of a torsional line loading, is 
given in [5]. Previous dynamic solutions for cylindrical edge 
loading conditions either usually omitted transient effects 
(e.g. the moving load problems [3, 4] were presented as 
steady-state solutions in a moving coordinate system attached 
to the traveling load) or were limited to plane-strain loading 
conditions. In this class, we cite, among others, the solutions 
of Selberg [6] and Miklowitz [7] who obtained the transient 
solutions to related plane-strain problems using integral 
transform techniques, and more recently the plane-strain 
solution given in [8] and derived using the method of 
characteristics. 

Transform techniques, discussed extensively by Miklowitz 
[9] in the context of wave propagation problems, and which 
are particularly appropriate in obtaining transient solutions, 
are used. Integral representations of the displacement and 
stress field are obtained. In addition, analytic expressions for 
the behavior in the vicinity behind the wave fronts and for 
jumps across the wave fronts are derived. The response to the 
line load is observed to consist of a shear wave with an out­
ward propagating toroidal wave front whose centerline lies on 
the circle of load application. The displacements at the front 
are seen to vanish. However, the stresses exhibit an infinite 
jump at the front, resulting in a singular stress behavior. The 
solution for large times is observed to approach the static 
solution previously derived. Numerical results for the 
displacement and stresses are presented and comparisons are 
made with the static solution. 
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Fig. 1 Geometry of problem 

2 General Formulation 

Consider a linear isotropic elastic medium containing a 
cylindrical cavity of radius r=a with a coordinate system 
(r,d,z) as shown in Fig. 1(a), to which there corresponds a 
nondimensional coordinate system p = r/a, 6, £=z/a. A line 
torque 7 is suddenly applied to the cylindrical surface p= 1 at 
z = 0 such that the stresses on the boundary are 

2ira2 Ht)H(t) 

a„ = a„ = 0 

p = l (1) 

where 5(f) is the Dirac-delta function and H{t) is the step 
function in time t. 

The medium is defined by the Lame constants X and /x and 
density pD with cs = V (ix/pD) being the propagation velocity 
of shear waves. Introducing a nondimensional time coor­
dinate r=cst/a, the equations of motion define a 
displacement field u = v(p,^r)ee where v, the circumferential 
displacement component, satisfies 

Pv_ 1 V d2V 
(2) 

dv 
P dp p 1 a p " - a r 1 

The stresses in the medium, obtained from the linear elastic 
stress-strain relations, are then given by 

/i ( dv 
ffrt=«V .dp p/ 

(a) 

H dv 

a~dj 

= 0. 

(b) 

(c) 

(3) 

The last two boundary conditions of equation (1) are thus 
identically satisfied. Expressing the Dirac-delta function by 
means of its integral representation 

IT J 
5(f) = - \ cos af da, 

IT Jo 
the remaining boundary condition may be written as 

dv 

Tp 
TH(r) 

2^2av, 0 
cos af da. 

(4) 

(5) 

Hence, equation (2) must be solved subject to the boundary 
condition of equation (5). It is recognized from equation (5) 
that the total solution is obtained as a superposition of 
solutions due to dynamic space-harmonic boundary stresses 
(Fig. 1(b)) 

cos af (6) ore 2wa2 

having wave length L, and represented by the aspect ratio 
T = L/a = 2ir/a. 

Therefore we first proceed with the solution to such space-
harmonic applied boundary stresses and determine the 
response to the line torque in a subsequent section. 

3 Response to Space-Harmonic Applied Torsional 
Loads 

(A) General Inversion. The response is obtained from 

-«-/2<^<0 

-w/4<ljr <y/4 

-ff/4<^<ir/4 

0 < ^ < v/Z 

id 

-ia 

/9»Re r 

- TT/Z < * < W 2 

-r/Z<f<v/Z 

Fig. 2 Complex splane: arguments of parameter /5 

Im(s) 

Re » 

C'C 
Fig. 3 Deformed integration contour (s-plane) 

equation (2) subjected to the boundary condition, equation 
(6). Applying the Laplace transform 

ioo 

0 

f(s)=£[f(r)]=\n f{T)e-"ds 

and letting 

V(P,{,S) = 4>(P,S) cos af, 

we obtain the transform equation 

d24> 1 di 
~ - (a2+s2) + 

1 
0 = 0 

(7) 

(8) 

(9) 
dp2 p dp L p 

while, applying the transformation to equation (3), the 
boundary condition on 4>(p,s) becomes 

dj> 4> 

dp p 
(10) 

P = I 2TT fxas 

Solutions of equation (9) that decay as p—oo are 

^(p,s)=A(s)KiWp) 

where 

$=(s2 + a2)1'2 

and where K„ is the modified Bessel function of the second 
kind of order n. Upon substituting in the boundary condition, 
equation (10), the undetermined constant A(s) is obtained, 
from which 

(11) 

(12) 

T Kx (M 
v(P, i,s) = — n rj, / o l COSaf. (13) 

2-wan s$ K2{$) 

The resulting transformed stresses, by equations (3) and (13), 
are then 

T K2 (j3p) 
ore(P.i>s)= z—l^TT^r-cosaf 

af)z(P,{,S)' 

2«r2 sK2(@) 

T aK,(M 
2wa2 spK2 (j8) 

sinaf. 

(14a) 

(146) 
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The displacement and stress components, in non-
dimensional form, are now obtained by inversion using the 
standard Bromwich integral 

ImW 

ixav coSaf 

a2 are 

i J 7 

c o s a f n + ' 
4-7T / J 7-'' 

7 +/a 

tf*r2 (0) 

#2(ft>) 

- e"ds 

sK2(p) 

a2az6 sinaf f 
(P,£,T)=~ 

T+"» «*:, (|8pj 

eSTds 

rds. 

(15a) 

(15ft) 

(15c) 
T """"" 4irzi i •,->«• s@K2(P) 

The preceding integrals may be evalutated by contour in­
tegration upon continuation into the complex s-plane. As a 
result of the multivalued nature of the K„ functions, branch 
cuts emanating from branch points at /3 = 0, i.e., at s = ±ia, 
must be chosen. In addition, simple poles exist at 5 = 0 and 
poles, defined by the roots of K2((3)=0 are expected. 
However, upon choosing branch cuts extending from the 
branch points s= ±i& to ±/°°, respectively (as shown in Fig. 
2), these latter poles are seen to be nonexistent. Thus, if /? as 
defined in equation (12) is represented by P = Re"1', it is ob­
served that for the choice of branch cuts, - w/2 <\j/< ir/2, the 
Re{l3} > 0 for all values of s in the complex plane. (Ranges of 
\j/ in the various regions of the complex plane are shown in 
Fig. 2.) Moreover, since the zeros of A',, (/3) exist only in the 
region Re{(3) <0[ 11,12], it follows that with these specified 
branch cuts, no poles will occur in the integrands of equations 
(15) due to a vanishing K2(/3). Consequently, the only 
remaining pole of the integrands of equations (15) occurs at 
s = 0. The Bromwich integrals of these equations, evaluated 
by residue theory upon deforming the contour to the left of 
the complex plane (Fig. 3), may be then written as 

7( ) =2iri Res{ ( +It fl( + /p( )+Ic (16) 

where 

' < ) - i ; f(p,s)esr ds represents the desired 
Bromwich integral, 

>B( ) + 1 , + | + I , represents the branch 
c JD J F J F i n t e g r a i c o n t r ibution, 

Res{) represents the residue at s = 0, and Ip() and Ic{ ) 

represent, respectively, the branch point contributions, and 
the contribution along the large circular arcs as R — oo. In the 
foregoing (v) denotes the displacement and (rd) and (dz) 
denote the stress component quantities are and aez, respec­
tively. 

The residues of equations (15) at s = 0, upon noting that 
(3 = a, are readily given by: 

ResM = - * i («P) 
CLK2(CL) 

Res (re) — 
K2 (ap) 

Resize) = 

K2(a) 

KMP) 
(17) 

K2(a) 

while the branch integrals, evaluated along .ET^and E'F' and 
along CD and C'D' by setting 5 = ± / £ , respectively (£>0, 
real), become 

G{ (v,p) 
J a 

'B(rS) 

hm = 4 ' 

Jc £D(ri) 

<xGi(t],p) 

cos £rd£ 

cos %Td% 

S CO 

a hD(n) 
cos £«/£ 

(18a) 

(186) 

(18c) 

Re (s> 

Fig. 4 Deformed integration path for wave front solution 
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Wov« Front 
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Fig. 5 Cylindrical wave front 
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Wov* Front 
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Fig. 6 Toroidal wave front 

G„ UP) =J„ (VP) YI M - Yn (VP)J2 (V), n = 1,2 (19a) 

D(ri)=4(r,) + Yl(ri) (\9b) 

and 

i\ = V ( £ 2 - a 2 ) , real. (20) 

In the foregoing, the complex conjugate character of the K„ 
functions and the standard relationships between K„ (/'£) and 
/„ (£ ) and Yn(%) have been used [13]. Considerable sim­
plification of the expressions for the response at the boundary 
p= 1 is achieved by use of the Wronskian relations [14]. The 
contributions Ip and Ic at the branch points s = ± ia and along 
the large circular arcs are found to vanish by use of the small 
and large circle lemma and by expressing the Kn functions by 
their appropriate asymptotic expansions. Again, details are 
given in [14]. 

Finally then, the response to the space-harmonic applied 
tractions are expressed as: 

\MV cosaf 
— {p,$,u,r) = ——RHW 

a2are _ cosaf 
~~T~ 2ir 

a2az6 _ sinaf 

~Y~ ~ ~2^ 

R HirO) 

R H(6z) 

where 

where 
RHn=Res{ ) + — 7B( ) 

Ziri 

(21a) 

(216) 

(21c) 

(22) 
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(B) Behavior at the Wave Front and Long-Time 
Behavior. Although the inversions of the expressions of 
equation (15) have been formally obtained for all points 
throughout the medium for all r > 0 , a numerical integration 
is still required due to the form of the branch integrals. 
However, at the wave front, the behavior can be obtained in 
closed form. 

To this end, we first deform the Bromwich path of in­
tegration to the path C ( + ) lying in the quadrants Re{s] > 0 
with ^ —c», as shown in Fig. 4. Retaining the first term of the 
asymptotic expansion for K„ (z), 

K„ (z) • -J(sM 1 + 
zl •} (23) 

the inversion for the displacement integral, equation (15a), 
becomes 

1 

2TT; 

* i ( g p ) 
sBK2(6) 

e"ds 
2m J < .( + ) 

-x)eSTds 
(24) 

s(s2+a2)'A 

Now, it is recognized that the integrand appearing in the last 
integral contains no singularities for Re{s]>0. Con­
sequently, the Cauchy theorem may be applied, i.e., we may 
consider the value along the Bromwich integration path. 
Using [15, 5.6, No. 24] ' , and the convolution theorem, we 
obtain 

Ki (fr>) 

"> s8K2(8) 

•J0lalr?-(p-l)2]"}dt,. 

2iri Jt 
eSTds ~ p~ ' S o * 1 ' - •1)1 

Thus, the integral is seen to vanish for r < p ~ l , i.e. 
points ahead of the wave front (Fig. 5). For r > p - l 
displacement in the vicinity of the wave front becomes 

(25) 

for 
, the 

cosaf .. 

27T 

/o fah 2 - (p - l ) 2 ] , / 2 ) f i ? r , (26) 

Denoting the radial coordinate at the wave front as p = pf, and 
noting that at the wave front T=py - 1, it foliows that 

lMv(p,$,e) cosaf 
P »<• (27) 

T 2TT 

where e = p/ — p< < 1 represents the distance measured from 
the wave front. Thus v(pf) = Q, i.e., the displacement at the 
wave front vanishes. In addition, since e is a measure of the 
distance from the wave front, we observe that the 
displacement varies linearly in the neighborhood of the wave 
front. 

The stress components in the vicinity of the wave front are 
obtained similarly. Using [15, 5.6, No. 23], the stress ar6 is 
given as 

a2arg cosat ., C 
^ (P> £ r) = - — ^ p - * Z / [ T - ( p - 1)] - c* (p - 1) 

1 2TT V. 

•'>/-> 7 , [ a h 2 - ( p - l ) 2 ] 

Noting that 
JP- I W-(p-\?\ 

/) (ax) 
Lim — — - = « / 2 , 
x - 0 X 

(28) 

(29) 

the stress in the vicinity of the wave front becomes 

Reference [15], given here and in the following, denotes reference, section 

a2orS(p,i;,e) cosoff 
p-Vl{\-Vi(p-\)a2e] (30a) 

e. (306) 

T 2TT 

Similarly, one obtains for the stress azt 

a2aez{p>M _ asinaf 
T 2TT ' 

Thus it is observed that at the wave front (e = 0) there exists a 
jump in the stress ar9 given by 

*la*l=^P,-*. (3D 
a' 

T' 
The long-time solution throughout the medium, as T—OO, 

obtained from the final-value theorem [16] is seen to coincide 
with the residues as given by equations (17).2 It is of interest 
to observe that for the case of a wave length L — oo (i.e., 
a = 0), the long-time solution degenerates to 

T T 
v(p) = ~- , arg(p) = -—j-j . <7te(p)=0 (32) 

which corresponds to the static solution of a uniform tor­
sional load T applied at the cavity boundary p = 1. 

4 Response to Line Torsional Loads 

(A) General Inversion. It was observed in Section 2 that 
the response to a concentrated torque at f=0, which we 
denote by Rc{ ) (P,^,T), can be obtained from the super­
position of the response to the space harmonic loads. Thus 

where RH{ ) is a function that represents the space-harmonic 
response. Here, again, (v), (dr), and (dz) denote the various 
displacement and stress responses, respectively; coscvf is 
associated with v and dr, while sinaf is associated with ffe. 
Using the appropriate expression for RH( , given by equation 
(22), the line torque responses are written as 

RCi Ap,i.r) = 

(33a) 

>7T2 JO 
Res{ j + 

2« '«( ) 
fcosa 
(_sina f) da. (33&)3 

In principle, then, the response for all points throughout the 
medium can be evaluated. However, because of the com­
plexity of the integrands, the required integrals cannot be 
determined analytically and the general response is therefore 
obtained by means of a numerical integration scheme. 

(B) Behavior at the Wave Front and Long-Term 
Behavior. Although the desired response, in general, cannot 
be written in closed form, analytic expressions for the 
behavior in the vicinity of the wave front and long-time 
solutions may be derived. To this end, we note first that the 
complete expression for the displacement is given by 

w = zi[°°(_L[ M e l 
T 2ir2 Jo \2mJBr SpK2{$) 

which upon interchanging the integration processes, yields 

o^y = _ J _ _ L [ e^f r -A- , ( |Sp) 
T 

- l [ » / l r A.csp) \ 
= ; r ^ I \ ir~- „„ ,„ e ds 1 cosaf da (34a) 

2?r2 Jo \2m hr s$K2(B) / 
h upon interchanging the i 
_ 1 1 f e " f f A-.QSp) "J _ — ~̂~7 ~^~~. \ — M „r^ ,„ coscvf da\ ds. (34o) 

2TT2 2mJBr s U o BKAB) J 

no. and equation no., as appear in Erdelyi, et al. 

We note that the transient effect appears only in the branch integrals; indeed 
from equations (18), we observe that the time parameter rappears only in these 
expressions. 

The first portion of equation (336), consisting of the integral of the residue 
term, is seen to yield the static solution, while the latter yields the transient 
effect. See preceding footnote. 
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Fig. 7 Spatial distribution for displacement: space harmonic loading 
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Fig. 8 Spatial distribution for stress arf space harmonic loading 

Proceeding as in the preceding section, we deform the path 
of integration for s>>\ to the curve C( + ) (Fig. 4) and, 
retaining the first term of the asymptotic expansion of K„, 
equation (23), obtain 

2y/i cosaftfa fife. 

a^v p~" 

1 
* 2m Jc ( + ) s LJo (s2 + a2) 

From [15, 1.4, No. 27], the inner integral is found to be 
r - o o g - ^ + a V ' i p - " 

Jo {s2 + a2y/l 

)c< + > s L j o •«] 

-cosafda = K0{sh), p>\ 

(35) 

(36) 

whereh = [{p-1)2 + f]l/2.4 Hence 

2TT2 l 2 « J c < + » 
^ o ( ^ ) e " 

fib (37) 

Again, it is recognized that no singularities appear in the 
foregoing expression for Re[s] >0 . Invoking the Cauchy 

Clearly, h represents a semicircle of radius h whose center is located at 
(p= 1, £=0) (Fig. 6). This is recognized precisely as the wave front of waves 
traveling in time T from the applied load. The semicircle of radius h thus ap­
pears as the locus of points of the wave front that intersects a longitudinal cross 
section of the cavity passing through the z-axis. The three-dimensional 
character of the wave front is hence described as the outer half of a torus whose 
center is at p = 0, with a mean radius p = 1 and with a varying core radius h (7). 

Journal of Applied Mechanics JUNE 1983, Vol. 50/401 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



theorem, the preceding integral is seen to be equivalent to the 
integration along the Bromwich path. Noting that [15, 5.15, 
No. 9], 

£ -
K0(sh) 

] - cosh-1 (r/h)H(T-h), (38) 

and proceeding as in the previous cases, we finally obtain the 
behavior for the displacement near the wave front as 

V2 1 _,A dflV 
( f t f - O - - (39) 

T " " * ' " 2TT2 {pfhf)
v' 

where r=hj represents the wave front and where l=hj — h 
denotes the distance behind this front. Thus, the displacement 
exhibits no jump at the wave front and is seen to vary with the 
square root of the distance away from the front. 

The stress behavior in the vicinity of the front is similarly 
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determined. The stresses are seen to vanish ahead of the 
circular wave front; behind the front, for r>h, the stress 
components are given by 

and 
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Fig. 9 Stress time history: space harmonic loading 

Here it is observed that, at the circular wave front, the stress 
components become singular as the inverse of the square root 
of the distance behind the front. 

The long-time solution through the medium, as r— oo, 
obtained again from the final value theorem, is found to be 
identical to the corresponding static solution given in [5]. 

5 Numerical Solution and Results 

The general response of the medium to the space-harmonic 
load requires a numerical evaluation of the branch integrals 
appearing in equations (18) while the general response to the 
line loads, represented by the integrals of equation (336) must 
also be determined numerically. Details of the numerical 
integration procedures used to evaluate the integrals are given 
in [14], where it is shown that a portion of the solution may be 
expressed in terms of the sine integral function. Similar 
numerical integration schemes for evaluation of infinite 
integrals have been used in [5]. Responses are presented for 
points along the radial line of symmetry, f = 0, in the form of 
space distributions for discrete times and time histories for 
prescribed points along the line. 

(A) Space-Harmonic Applied Loading. Numerical 
results for this case are shown in Figs. 7-9 where typical 
results are presented for the case T = LI a = 6. Results for other 
moderate values of V were found to exhibit similar behavior 
and consequently are not reproduced here. 

In Figs. 7 and 8, the spatial distribution along the radial line 
f = 0 is given at several discrete times, T = 1.0, 2.0, and 3.0 for 
the circumferential displacement and nonvanishing shear 
stress art. From Fig. 7, it is observed that the displacement 
|y | reaches a maximum along the bore surface p=\ and 

2.0 p 

Fig. 10 Spatial distribution for displacement: line loading 
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Fig. 11 Spatial distribution for stress arf. line loading 

vanishes, as expected, at the wave front. It is of interest to 
note that the spatial distribution of the displacements deviates 
increasingly from a linear variation with increasing time T. 
This may be attributed to the fact that for small T the inertial 
forces have insufficient time to react to the applied loadings. 

From the spatial variation for the stress arg shown in Fig. 8, 
it is observed that at all times, a peak is reached at the wave 
front; this peak represents the jump at the wave front. The 
locus of these jumps, given by the simple analytic expression 
of equation (31) is shown in the figure by means of a broken 
line.5 The static (long-time) response, obtained from [5] is 
also shown in Figs. 7 and 8. It is observed that at r=3.0, the 
response at points more than two radial distances behind the 
wave front approaches the static solution. Thus the transient 
effect, as expected, is mainly confined to the region near the 
wave front. 

Time histories for the stress arS at points p = 1.0, 2.0, and 
3.0 are presented in Fig. 9 for time values 0 < T S 8 . The curves 
are seen to first exhibit an initial jump at the wave front 
undergoing oscillatory behavior about the static solution. 
Values of these jumps, as given by equation (31), are observed 
to be independent of T for points along the radial line f = 0. 

(B) Line Loading. As has been previously noted, the 
primary interest in the solutions for the line load resides in the 
transient response. Consequently, results for this case are 
presented here for early times, T< 1.0, i.e., for T=0.5 and 1.0. 

The spatial distribution of the displacement is given in Fig. 
10. It is observed that the displacement \v I is infinite at p= 1, 
the point of the load application, and decays to zero at the 
wave front. The singular behavior at p = 1 is a consequence of 
the nature of a point load representation by means of the 
Dirac-delta function as was the case in previous studies [4, 5]. 
(Numerical results in this region were not obtainable to the 
desired accuracy and are therefore shown as broken lines.) 
The static (long-time) solution is also shown, and it is ob­
served that the transient solution in the region sufficiently 

This provides an effective check on the accuracy of the numerical in­
tegration scheme which was used to obtain the general response. 

behind the wave front follows the same monotonic spatial 
distribution pattern. 

The are shear stress variation is shown in Fig. 11 for the 
same time values. Again, at the boundary p= 1 the stresses are 
singular. In the region near the wave front, too, the stresses 
are singular [cf equation (40a)] and accurate results could not 
be obtained numerically. (As before, results in the foregoing 
two regions are therefore shown as broken lines.) Comparison 
with the static solution [5] shows, as in the case of the 
displacements, that the dynamic stresses, while always larger 
than the static stress, approach the latter at distances suf­
ficiently far from the wave front. Thus, the transient effect is 
predominant only in the region in the immediate vicinity 
behind the wave front. 

6 Conclusions 

From the derived analytic expressions, it is observed, for 
the case of the space-harmonic loading, that the displacement 
and shear stresses, in the vicinity of the outgoing cylindrical S-
front, decay as p~1/2. While, for this case, the displacement v 
and stress a6z vanish at the wave front, there exists a jump in 
ar6 across this wave front whose strength also decays as p~in. 

For the case of the line load, the displacement along the 
outward propagating toroidal S-front vanishes, while the 
stresses become singular as Lim e~1/z, where e represents 

the perpendicular distance from the toroidal wave front. In 
the vicinity behind the wave front, 0 < e < < 1, away from the 
singularity, we may also conclude from the derived ex­
pressions that the decay in the stresses, for a given value of f is 
0(p_1). However, along the boundary p= 1, the displacement 
and shear stresses aez decay as 0(f~1/2). Thus the decay in 
these quantities is observed to be stronger as the wave 
penetrates the medium compared to the decay with the 
distance from the point of load application along the surface 
of the cavity. 

Finally, from the numerical results presented, we may also 
conclude, upon comparing with the long-time static response, 
that the transient effects are confined mainly to the region 
immediately behind the wave front. 
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Reflection Coefficient for Plane 
Waves in a Fluid Incident on a 
Layered Elastic Half-Space 
The reflection coefficient is derived for an isotropic, homogeneous elastic layer of 
arbitrary thickness that is perfectly bonded to such an elastic half-space of a dif­
ferent material for the case when plane waves are incident from an inviscid fluid 
onto the layered solid. The derived function is studied analytically by considering 
several limiting cases of geometry and materials to recover previously known 
results. Approximate reflection coefficents are then derived using various plate 
models for the layer to obtain simpler expressions that are useful for small values of 
ad, where a is the wave number and d is the layer thickness. Numerical results based 
on all the models for the propagation of interface waves localized near the fluid-
solid boundary are obtained and compared. These results are also compared with 
some previously published experimental measurements. 

1 Introduction 

There are many industrial products and processes that 
employ structures containing a thin layer of one solid 
deposited on, or somehow otherwise adhering to, a different 
solid. One approach to testing the uniformity of quality of the 
bond of such layers is by the use of ultrasonic methods. It has 
been suggested by Maxfield [16] that nonspecularly reflected 
finite width beam profiles, which can occur in a water bath at 
critical angles of incidence, may provide a means for detecting 
variations in layer thickness or bond integrity. 

This nonspecular reflection phenomenon, known as the 
Goos-Hanchen [17] effect in optics, was predicted, 
demonstrated, and partially explained by Schoh [4] for 
ultrasonic beams incident from a liquid onto a homogeneous 
solid at a critical angle of incidence. The phenomenon was 
first analyzed correctly, in this context, by Bertoni and Tamir 
[7]. The analogous problem for the case of a thin elastic plate 
immersed in a liquid was the topic of the doctoral thesis of 
Pitts [3]. The main results of this work were also presented in 
the paper by Pitts et al. [5]. The problem of nonspecular 
reflection of a bounded ultrasonic beam incident from a 
liquid onto a layered elastic half-space was recently con­
sidered by Nayfeh et al. [13]. 

The method of computation of the reflected beam profile, 
given the incident beam, is essentially the same for all the 
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cases mentioned, and it was presented by Bertoni and Tamir 
[7]. It amounts to the evaluation of a Fourier integral of the 
product of the reflection coefficient times the incident beam 
profile at the interface. The zeros and poles of the reflection 
coefficient, which are closest to the real axis in a complex 
wave-number plane, determine the primary effect of the 
reflection coefficient. Therefore, a prerequisite for studying 
reflected beam profiles is the derivation of the reflection 
coefficient and the determination of the location of its poles 
and zeros. These poles and zeros also determine the 
propagation characteristics of the interface waves (analogous 
to Rayleigh waves or Stoneley waves). 

In an effort to obtain the reflection coefficient for an elastic 
half-space with a different elastic layer, Nayfeh et al. [13] 
assumed the layer was relatively thin (compared to 
wavelength). They derived an approximate thin layer model 
from which they obtained a reflection coefficient, which they 
also used to predict the dependence of the phase velocity of 
the propagating surface wave on u>d, where co is the frequency 
and d is the layer thickness. They compared their theoretical 
phase velocity with their own experimental results and found 
that the agreement was not very good. After our paper was 
submitted two papers by Chimenti et al. [18] and Chimenti 
and Nayfeh [19] were brought to our attention. In reference 
[18] the problem of reference [13] is reconsidered by use of the 
exact theory for the layer. The dispersion curve was obtained 
for the same materials (with some differences in material 
parameters), and it was found to agree much better with 
experimental results than the corresponding approximate 
curve of reference [13]. Reference [19] is similar to reference 
[18], but different materials were considered. 

In this paper we derive the exact reflection coefficient for 
the liquid-solid layer-solid structure for a layer of arbitrary 
thickness. We also derive some approximate expressions for 
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the reflection coefficient using various plate theories for the 
layer. In Section 2 the exact reflection coefficient for this 
structure is derived. Its complicated functional form is studied 
in Section 3, where several limiting cases are considered to 
produce previously known results. In Section 4 the reflection 
coefficient is linearized in ad, where a is the wave number, to 
obtain an approximation that is valid for small values of ad. 
Also reflection coefficients are derived there in which the 
layer is first considered as a classical (Kirchhoff) plate and 
then as a Cosserat plate. Finally, Nayfeh's et al. [13] thin 
layer model is used. Section 5 presents numerical results for 
the dependence of the surface wave speeds on u>d as predicted 
by the exact reflection coefficient as well as the various ap­
proximate expressions. These theoretical results are also 
compared with the experimental results presented in reference 
[13]. Finally, Section 6 presents a brief discussion and some 
conclusions. 

2 Derivation of Exact Reflection Coefficient 

We consider the layered structure composed of an isotropic 
elastic layer of thickness d perfectly bonded at its face z = 0 
to an isotropic elastic half-space and in contact at its face z = 
d with an inviscid fluid (see Fig. 1). The material parameters 
for the layer are p,c,b; those for the solid half-space (sub­
strate) are ps,cs,bs; and those for the fluid half-space are 
PL,CL, where p,c, and b denote density, longitudinal wave 
speed, and shear wave speed, respectively. The elastic wave 
speeds are related to the Lame constants, X and /i, by 

pc2 = \+2n, pb2 
--I*. (1) 

We consider the plane strain problem of a harmonic plane 
wave with wave potential <j>£ in the liquid incident on the 
liquid-layer interface at z = d at the angle 6L measured from 
the normal to the interface. Associated with this wave is a 
reflected longitudinal wave in the liquid with wave potential 
0£, a set of longitudinal and shear waves in the layer with 
potentials 4>',\p' incident on the surface z = d, a set of 
longitudinal and shear waves in the layer with potentials 
4>",\p" incident on the interface z = 0, and a set of 
longitudinal and shear waves that are transmitted into the 
substrate with potentials <t>s,fs- Adopting the notation of 
Brekhovskikh [1], we represent the waves in the three media 
as follows: 

in the liquid, 

(2) 

<j)={4>'elaz + <t>" e~
,az)en"x-'"'\ 

\j/= (ip'e'®z + \j/" e~'l3z)e'iax~w'), 

in the layer, and 

</>s = <j>Ze-iaszen°x~'"l), i/'s = is e_"3sJe"<a'-'J" 

in the substrate, where 

& - .,2 . 

a2=k2~a2, a2
L=k2

L-a2, a
2=k2

s-a
2, 

P2 = K2-a2, P2S = K2
S-O

2 

(3) 

(4) 

(5) 

and 

a=ksin d = kL sin 6L = ks sin 6S = K sin 7 = KS sin ys. (6) 

Thus k,kL, and ks represent longitudinal wave numbers for 
wave vectors making acute angles 6,6L, and 6S with the 
normal to the interfaces, and K,KS represent shear wave 
numbers for shear waves with angles 7,75. It will also be 
convenient to adopt the following abbreviated notation for 
certain trigonometric functions, 

S9 = sin 6, Q0 = cos 6, 3e 

If we used the identity 

= tan0, et„=cot6. 

/* 
,\k2+2a2 = (32-a2, (7) 

equation (6.4) of reference [1] can be used to write the plane 
components of velocity and traction amplitudes at the 
boundary z = 0 of the substrate in terms of </>£ and ^5 as 
follows 

f5(0) -
vs

z(0) 

Zf(0) 

zs
xm 

la 

-iois 

-insu 

J2nsu~lasa 

or, in obvious matrix notation 

HPl °2) 

ia 

i2nso>~loPs 

(8) 

fs(0) = B (9) 

Likewise, equation (6.6) of reference [1] can be used to ex­
press the velocity-traction matrix f (d) at z = d of the layer in 
terms of the velocity-traction matrix f(0) at z = 0 of the layer 
as follows 

(10) Hd) 

e matrix 

«n a 12 

«21 «22 

«31 fl32 

/Xtf4, 2/W742 

=Af(0), 

a 13 

«23 

«33 

2^043 

(2/*)-'a14 

(2li.)-
1a2A 

(2/*) -1a34 

aM 

(11) 

and the elements au are given on p. 64 of reference [1]. The 
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particular elements «<,• that will be needed here are also 
recorded in equation (Al) of the Appendix. 

The condition of perfect bond at the interface z = 0 
requires continuity of velocity and traction there and it can be 
written in our notation as 

f(0) = fi(0) 

Equations (9), (10), and (12) yield 

where 

f(d)=AB 
f<t>s 

C=AB. 

(12) 

(13) 

(14) 

This expresses the velocity-traction matrix f(d) on the layer at 
z = d in terms of the two wave potentials in the substrate. The 
four wave potentials in the layer have therefore been 
eliminated. The conditions to be satisfied at the liquid-solid 
interface, z = d, are continuity of normal velocity and 
normal traction and vanishing shearing traction. Setting 
\p' ,\p", and ix equal to zero in equation (6.3) of reference [1] 
we obtain for the normal velocity and traction on the fluid at z 
= d 

vL
z (d) 

\Lk2
Lo)~ 

-<*L ieipL<t>'L 

In view of equations (13) and (15), the just-mentioned fluid-
layer interface conditions at z= d yield 

ci 14>s + Cii Vs = iaL e
iPL 4>'L-iaLe~ ipL <j>[, 

c^<j>s+c^s=-i^Lkl^{eipL4>'L-i\Lklw-'ie~ipL^l, 

c4i4>S +cA1fs' = 0. (16) 

We next divide by </>£ to obtain three inhomogeneous linear 
equations for determining the three unknown ratios of 
potentials; (j>[/<j>[, the reflection coefficient; <f>s/</>[, the 
longitudinal transmission coefficient; and \ps/4>L< the shear 
transmission coefficient. Our interest here is in the reflection 
coefficient which can be expressed as 

A, -Zg, A2 
RLss = *L/*Z = e-i2PL L (17) 

A3 + Z 6 L A2 

in which we have used the following identities and definitions 

PL=aLd, --^=eg \L=pLc2
L, kL=m/cL, 

X/Aco ' =pLcL, Z„L = 
PLCL 

e 
(18) 

>L 

and where A,-, / = 2,3, are defined by 

A/ = c/1c42-C4iC,-2, / = 2,3. (19) 

Using the definitions of A, B, and C in equations (8), (9), (11), 
and (14) we obtain for A, 

(w//iS)A,-=(w//*s) (a2 + usps)2ii(aaa4l -anaA2) 

+ Ps ( 0 | + CT2)2/x(a/304i -a/i«43) 

+ [2asfe<7-ff(i3s-y)][(«;i«44-a(4«4i) 

+ 2/t( f l /2f l43-f l /3f l42)] 

+ a s (/3| + 02)(a/2o44 - ai4aA2) 

+ (Hs/a)[Ws - o2)2 +4asPsa
2](aBaM -tf/4ff43), 

i' = 2,3. (20) 

In the Appendix, the required expressions for a^ are 
recalled from reference [1] and the indicated minors of A in 
equation (20) are listed. After substitution of these ex­
pressions into equation (20) we obtain for the reflection 
coefficient RLSS defined in equation (17) 

RLSS = <t>[/<l>L=e-,2PLN/D, (21) 

where 

= {2/-2sMs27e^(i ~ePeQ) + ( e ^ + ^ s 2 ^ ) Ojao p°e 

-(±)i(zeL/ze)(e
2
2yeP§,Q 

+ r S 2 0 § 2 7 S P © Q ) )Z«Z7(1 + 3a s 3 7 s ) 

+ !'(C27<2pSQ+r S28S27SpCg 

- ( ± ) ( Z , / / Z , ) S / > S G ] Z T Z , S 

+ (-[s47(e27-/-23 ( )s29)(i-epeQ) 

+ 2(r2 

+ ( ± ) i2 ( ^ ) ( - | ^ ) (r2S29ZPQQ 

— 3TC27CpSg) JZ 7Z 7 S (S>2ys ~3ss'®2ys ) 

+ l ' (C 2 7 SpG e +/• S 2 S S 2 T C P S Q ) 

(15) +(±)(zeL/ze)ePee)z (,z7 

+ ( [4s2
7e27 + (e^7+4s7)ePee 

— (3739C2T+/• S2eS27)SPSg] 
-(±)i(Z9 i/z ( ))(Spee + 393,epSe))z7sz9sAs 

in which 

r = b/c, Ze=pc/ee --pb/ey 

(22) 

(23) 

and As is the Rayleigh function for the substrate, which can 
be written in the notation used here as 

As — &2fS+rsS2esS 2TS ' 
(24) 

The structure of the reflection coefficient as given by 
equations (21)-(24) requires some discussion. First we note 
that the entire effect of the liquid is revealed in equation (17) 
through the phase term e~apL and the impedance Zfl£ . In the 
limit of vanishing impedance ZSL the expressions for N and D 
both become A3 which can be obtained from equation (22) by 
setting ZgL equal to zero. The expression A3 represents the 
determinant, which, when set to zero, defines the dispersion 
relation for surface waves in a layered half-space as studied, 
for example, by Farnell and Adler [2]. (More will be said 
about this later.) The expressions for TV and D in equation (22) 
have five sets of terms in braces. The liquid impedance Z6L 

appears once in each of these braces right after the ( ± ) sign. 
The effect of the substrate is represented by terms with 
subscript " S " that multiply each of these braces on their 
right-hand sides. These terms are seen to be algebraically quite 
simple when compared to the terms that represent the effect of 
the layer, which do not carry a subscript. A thorough 
discussion of the various limiting expressions for RLSs is 
presented in the next section. 

3 Limiting Cases 

Because of the complexity of the reflection coefficient, and 
since, to the authors' knowledge, it has not been obtained 
before, it is instructive to study its limiting forms to verify its 
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correctness and also to better understand its structure. For 
simplicity of reference and in keeping with notation used by 
Pitts [3] and others, we have denoted the reflection coefficient 
for the structure considered here by Riss, i-e-> the liquid-
solid layer-solid case. In the limit when the substrate becomes 
a different liquid we can obtain RL'SL" , which is also given in 
Brekhovskikh [1]. In the further limit when the two liquids 
become the same we should recover RLSL as derived first by 
Schoch [4], and studied subsequently by Brekhovskikh [1], 
Pitts [3], Pitts et al. [5], Fiorito et al. [6], and others. 

In the limit d — 0 or in the limit when the solid layer has the 
same properties as the substrate we should recover RLS, the 
liquid-solid case, which has also been extensively studied by 
Bertoni and Tamir [7], Pitts [3], and others. We should also 
recover this result in the limit when the layer becomes the 
same as the liquid. In the limit rf-oowe should recover again 
RLS, but we should also recover the Stoneley wave deter­
minant ASTONELEV for interface waves propagating parallel to 
the interface of two joined elastic half-spaces. 

As mentioned at the end of the preceeding section, when the 
liquid vanishes the reflection coefficient is no longer 
meaningful but we should recover an expression Ass for 
surface wave propagation in a layered half-space having one 
solid layer of finite thickness d attached to a different elastic 
half-space substrate. This has been previously studied by 
Farnell and Adler [2] and others. 

After realizing that all the foregoing limiting cases must 
result from RLss, one should not be surprised at its algebraic 
complexity as given in equations (21) and (22). The process of 
exacting the forementioned limits strongly suggests that a less 
complex form for RLSS cannot be obtained. 

(A) The Limit: Solid Substrate Becomes a Liquid. In this 
limit the shear waves in the substrate vanish. This limit is 
affected in equation (22) by setting 

bs=0, 7 s = 0 , Z T S =0, 3 7 s=0, Z,S=Z,L. (25) 

so that equation (22) becomes 

= [2r S2o§2TC27(l — ©pCg) 

+ (e4
2y+r4 

-(±)i(zgL,/ze)(e
2

2yeP§,Q 

+ r S2B&2ySpGg) )Z e Z 7 

sPee) 
— ( ±)(Z,jL / /2,e)SsPS>Q )%1%BL„ . (26) 

where ZBL, and Z6L„ denote the impedances of the upper 
and lower liquids, respectively. The reflection coefficient 
RL'SL" is obtained from equation (21) with TV and D deter­
mined by equation (26). 

In the further limit in which the two liquids become the 
same we obtain from equation (26) by setting 

(27) Z » Z . " -%«L' -%<>L 

the result 

N=2r2s,2es,2le
2

2y(i-ePeQ) 

§20§27 — 

(Z9L/Z9)2]SPSe, 

z>=Af+2(z9L/ze)
2SpSQ + /2(z9L/ze)(ei7ePs s 

+ /-2S2,S2TSPee). (28) 
Since Schoch [4] was the first to consider the liquid-solid 

layer-liquid case we try to compare equation (28) with his 
results. He did not explicitly solve for the reflection coef­

ficient but he did give the transmission coefficient. The 
denominator in his expression, equation (13) of reference [4], 
should be the same as D in equation (28). To make the 
comparison we note the correspondence in notation 

(8,a,l3,5,ehch0Ch = (eL,e,y,~^)h • (29) 
\ 2 2 / here 

With this the two denominators are found to be identical. 
Using the same notation as Schoch [4], Fiorito et al. [6] gave 
the reflection coefficient in their equations (l)-(5). Com­
paring equation (28) with their results, we find complete 
agreement in their reflection coefficient and the ratio N/D. 
Thus, in view of equation (21), it appears that our reflection 
coefficient for the liquid-solid layer-liquid case differs from 
that given in reference [6] by the factor e~'2PL which would 
alter the phase but not the amplitude of RLSL- We note that 
the limit considered here provides a check on only the first 
two terms of N and D given in equation (22). 

(B) The Limit: Layer of Zero Thickness. In the limit 
rf-Owe obtain 

p=o, Q=O, sP=o, s e = o, eP = \, e e = i, (30) 

so equation (22) yields 

- (±)Z„L z7s - (4s2e2T + e2
2y +4S7)Z7sz,sAS pi) 

and hence equation (21) reduces to 

R, *Rrs — -
A s - ( Z 9 i / Z e s ) 

(32) 
AS + ( Z , L / Z , S ) 

which agrees with previous authors. This provides a check on 
parts of the last two terms of equation (22). 

(C) The Limit: Solid Plate Becomes a Liquid. We first 
consider the case for which the liquid half-space is identified 
by L' and the solid layer becomes a liquid identified by L ". 
This limit is obtained from equation (22) by setting 

b = 0, 7 = 0, Z T = 0 , Ze = Z 
»L" •-daL» (33) 

so that becomes 

— l'SpL» ±(ZflL/ /ZflL» )CpL" )ZeL» 

+ \-&PL„ =Fi(ZgL,/ZeL„)SPL,: )Z , s Aj . (34) 

Therefore the reflection coefficient for the liquid-liquid-solid 
case is 

RL'L"s=e-i2pL' N/D, (35) 

with N and D given by equation (34). This is evidently a new 
result. 

In the further limit when the two liquids become the same, 
equation (34) yields 

(?) 
so that 

= [ iSPL ±QPL )ZeL + [- &PL TiS,pL )Z„s As (36) 

N _ A s - ( Z e L / Z 8 s ) 
--e'LrL- (37) 

D A s + ( Z 9 / / Z e , ) 

By using this result in equation (21) we recover equation (32). 
This analysis indicates that the e~'2PL phase factor in equation 
(21) is due to the fact that the liquid-solid layer interface is 
located at z = d. It vanishes when the interface is located at 
z = 0. 

(D) The Limit: Layer of Very Large Thickness. Here we 
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consider the limit d — oo. The technique used is similar to that 
in Pitts [3]. First we divide both N and D in equations (21) and 
(22) by SpS e . Then we consider complex wave numbers so 
that 

P=ad=(aR+ia,)d, Q = &d= (0R +i/3,)d, (38) 

and in the limit d — oo 

Qtp^-i, eto-'-i, 0, - 0 . 

With these results equation (22) yields the limiting result 

- | A - (±)(Z0L/Z9)} 
"STONELEY 

(39) 

(40) 

where 

ASTONELEY - Z 9 Z 7 A(l + 3 7 s 3 e s ) + Z T Z 9 s 

— 2Z7 (S 2 T — 3eC27 )Z 7 5 (S2TS — 3flsC2TS) 

+ Z 8 Z 7 s = ( l + 3 e 3 7 ) Z 9 s Z 7 s A s . (41) 

Since ASTONELEY occurs in both N and D it can be canceled 
from the reflection coefficient, which from equation (21) 
becomes as d — oo 

Ri.ss-e' 
"Z9i /Z„ 

A A + Z„, /Z„ / ' 
(42) 

Disregarding for the moment the fact that the limit of the 
phase factor e~'2pL does not exist as d — oo, we obtain RLS for 
the liquid-solid with the interface at z = d. If this interface 
were at z = 0 the phase factor would not appear. This 
reflection coefficient is relevant to the limit d — oo when one 
focuses on the liquid-solid interface where there is an incident 
wave. If instead we focus on the solid-solid interface the term 
ASTONELEY is relevant. Its zeros determine the interface wave 
dispersion relation for Stoneley waves, as can be verified by 
comparing it to the Stoneley equation (see Ewing et al. [8]). 
Also notice that if the liquid vanishes both TV and D in 
equation (40) become AASTONELEY. The Rayleigh function A 
determines the surface waves and AST0NELEY determines the 
interface waves. This limit provides a good check on the 
reflection coefficient in equation (21) and (22) since terms in 
all of the five braces in equation (22) contribute to equation 
(40). 

(E) The Limit: Vanishing Liquid. First we observe from 
equation (32), which gives the reflection coefficient for the 
liquid-solid case, that in the limit when the liquid vanishes, so 
that Ze vanishes, the reflection coefficient becomes unity as 
the numerator and denominator both approach A, the 
Rayleigh function for the solid. In a similar manner when Z$L 

— 0 in the reflection coefficient of the liquid-solid layer-solid 
case given by equations (21) and (22) we find that N and D 
again become identical functions. This function determines 
surface waves in a solid layer on a solid half-space and is given 
by Ass where 

AsS = {2/-2s29s27e^7(i-ePe(?) 

+ (e^+r4S^Si7)SPS (; |Z f lZ7(l + 39s.37v) 

+ '(C27CPS|2 +r S29S27Spee)Z7Z(,s 

-[§,4l(e2y-r
23eS2l))(\-ePeQ) 

+ 2 ( r 2 S M S 2 7 - 3 e e i 7 ) S p S e ] Z 7 Z 7 s ( S 2 7 s - 3 e s e 2 7 i . ) 

+ i(Q2ySpQQ+r S20S2 7CpSe)Z9Z7 s 

-[4s2e27 + (el7+4s4
7)ePeG 

-3 7 3 ( , e l T +r 2 S 2 9 S 2 7 )S l .S 0 ]2 ; T S Z g s A s . 

The problem of surface waves on a layered half-space was 
studied extensively by Farnell and Adler [2]. They did not 
obtain a function corresponding to ASs in equation (43) except 
in the form of a 6 x 6 determinant (equation (18) of reference 
[2]), which they studied numerically. To the authors' 
knowledge, the function given in equation (43) has not been 
explicitly obtained previously. A final observation in con­
nection with the layered half-space result in equation (43) is 
that in the limit d — oo, A5s becomes the same as the ex­
pression in equation (40) but with Z e set equal to zero. 
Therefore, Ass becomes in this limit the product of the 
Rayleigh function A for the layer and the Stoneley function 
ASTONELEY for the solid-solid interface. 

(F) The Limit: Solid Layer Same as Substrate. If the solid 
layer is the same as the solid substrate we again have the 
liquid-solid case with the interface at z = d. Algebraically this 
is the most complicated of the special cases considered, but it 
is the best check on equation (22) because all terms are in­
volved. To carry out this analysis, we simply drop the sub­
script " S " from the half-space terms in equation (22). After 
considerable algebra we obtain 

(Z) (AZflZ7 T Z ( i Z 7 ) [SpS e — QPQQ 

+ / ( § P e e + e P s 0 ) ] 

= - ( A T Z ( £ / Z , ) Z s Z T r ' v + 0 

so that the reflection coefficient in equation (21) becomes 
A - Z „ L / Z 9 v 

RLS=e-apL\ 
A + Z„L/Z„ 

(44) 

(45) 

4 Reflection Coefficients for Some Thin Layer Models 

Because of the complexity of the reflection coefficient 
presented in equations (21) and (22), and since for some 
applications the layer thickness d is much less than the 
wavelengths of interest, we present in this section several 
approximate reflection coefficients. First we linearize N and 
D in equation (22) to obtain their 0(d) approximations, and 
then we obtain the 0(d) approximation for RLSS given in 
equation (21). We then consider various plate models for the 
thin layer. In particular, we derive the reflection coefficients 
for the cases where the layer is modeled as a classical 
Kirchhoff plate and a first-order Cosserat plate. (The com­
plete development of Cosserat plate theory is contained in 
Naghdi [9]. Also included there is a thorough discussion of 
the relationship of this plate theory to the Reissner [10], 
Mindlin [11], and the classical (Kirchhoff [12]) plate theories.) 
We also examine a different approximate reflection coef­
ficient derived by Nayfeh et al. [13] that is based on their thin 
layer assumptions. We compare analytically the various 
approximate reflection coefficients with the 0(d) ap­
proximation of RLSs- In the next section numerical results 
based on all of these approximations are compared with 
numerical results based on RL$s-

(A) Thin Layer Approximation of RLSs- The layer 
thickness d is represented in N and D, given in equation (22), 
entirely through P and Q, which are defined in the Appendix 
as 

p=ctd, Q = /3d. (46) 

(43) 

Using the series expansions for SP , S e , QP, QQ and sim­
plifying the results through various identities, we obtain from 
equation (21) in the limit of small ad 
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RLss=RLs->(od)eteLRLS + i{od)(N'/D') + 0(v2d2), (47) 

where RLS is the liquid-solid reflection coefficient defined in 
equation (32) and N' ,D' are given by 

J«s 
Z^Zg 

Z 7 S Z » S 
(1+3 , S 3 T S ) ]}±{(fitl 

Z«, 
+ 3 „ ) ^ A S 

-2(r2s,20etg-e2y) 
Z„ 

(S 2 T S - 3 9 s e 2 T S ) J . (48) 

(B) Reflection Coefficient for Classical (Kirchhoff) Plate. 
Plate theories are two-dimensional models of a three-
dimensional layer. Mathematically, the plate equations are 
two-dimensional, but the layer thickness enters through 
various moduli in the theory. For many applications the 
thickness of the layer can otherwise be ignored. However, 
when the plate model is used as part of a layered medium the 
continuity conditions imposed at the faces of the plate must 
also take into account the face locations that are determined 
by the thickness. The equations for a classical (Kirchhoff) 
plate with tractions on the faces can be found, for example, in 
Naghdi [9] and they can be written as 

Cu xx — pdii = — <j.+v + a,x 

and 

Bw , •°zz + Y (oitj + Ovcx)-

(49) 

(50) 

Equation (49) is the extensional equation, C is the extension 
modulus, u is the extensional (in-plane) displacement, sub­
scripted x's after a comma denote partial differentiation, and 
Gzx'Vzx denote the face shears on the positive and negative 
faces of the plate, respectively. Equation (50) is the bending 
equation, B is the flexure modulus, w is the flexural (trans­
verse) displacement and azz,azz denote the face normal 
stresses. The moduli C and B are defined in terms of Young's 
modulus E and Poisson's ratio v by 

C=Ed/(l-vz), B=Cd2 /12. 

The appropriate interface conditions are 

<7,+r=0, 

(51) 

= uf.(0), w = uL
z(d)=us

z(Q), (52) 

: = <4(0), ff+=<4(rf), <r« = 4 ( 0 ) . (53) 

Recalling that the x,t dependence of the waves is e'<-ax~i"') and 
using equations (52) and (53), we obtain from equations (49) 
and (50), after noting that us = i\s/w 

/co-'ar?(0) = Zf(0), 

iu-lBvs
z(0)+ l-ad^-^Cvs

x{Q) = ZL
z(d) -Zf(0) , 

where 

C=pdoi2 Ecfd 
B= 

Ed3 a4 

-pdoi2 

(54) 

(55) 

(56) 
12(1 -v2) 

The second of equations (52) together with equations (54) and 
(55) provide, with use of equations (8) and (15), the following 
equations for determining the reflection and transmission 
coefficients: 

aLeipL<j,'L+as<t>'i-o^ = aLe-ipL<t>[, 

(2/*s as a - iaC) cj>S + ins (Pi ~ o2).- iBs C] tftf = 0, 

X L k \e i P L«l - [ j« s ( j8 i -o 2 ) + iasB- - tPdcj 4>'i 

+ [2M sB sa+iuB + - adBsc] K =-\Lk\e~lp<-4>l• (57) 

The solution of this system yields 
4>'L .,„ A u - o ) Z 9 Ai3 

RKSS = -ZL- = e - ' 2 P L — L-
4>L A,, +0)ZgLAl3 

(58) 

where 

An =^22^33 +di2d2i, A13 =asd2i +ad22, 

d22 =2^saS(j~ iaC, d2i= fisiPs-o2)- 'ft; C, 

d32 = u.s(l3
2
s-o

2) + iasB--o2dC, 

d33=2fisi3sa+hB+ - adBsC. (59) 

Using the plate wave results 

pw = Ekp, kp = o>/cP, cP=4¥Tp, E=E/(\-u2) (60) 

so that 

Ed3 

C=Edap, B= -Edk2
P+ a\ 

12 

we can write the 0(d) approximation of Rfcss m the form 

RK
LSs = RLs-i(od)eteLRLS + i(ad)N/D + Q{a2d2), 

where 

z„ 

(61) 

(62) 

( ^ ) - < ^ 

el 
r z e „ ze ze -|-) 

(63) 

and where RLS is defined in equation (32). 

( O Reflection Coefficient for Cosserat Plate. The theory 
of a Cosserat plate is contained in Naghdi [9]. The application 
of this plate theory to layered composites is presented in 
Green and Naghdi [14]. This theory includes effects of 
transverse shear deformation, transverse normal defor­
mation, as well as rotatory inertia. None of these effects are 
included in the Kirchhoff plate theory. In the context used 
here for plane strain, there are two displacement-type 
equations for extension in the extensional variables u and 5, 
where u is the in-plane displacement and 5 is the thickness 
change. Likewise, there are two equations for flexure in the 
flexural variables w and 4>, where w is the transverse 
displacement and <t> is the rotation. (We let x,z replace xx ,x3 in 
reference [14]; also u,b replace «i,<53 and w,4> replace «3,<5i.) 
The equations appropriate to a plate with face loadings, as 
obtained from reference [9], are 

Extension: 

vC ( 1 - 2 . ) . (l-2i>) , + _^ 
Cu,rx+ o.x-— —pdu= - — r r ( ° « ff«)> 

1 (1 - vY (1-v)2 

v B 20 (l-v)B 20 
Bo v-v 5 — —— 

•** 7 ( l - 2 e ) a ' 7 (l-2y)a' u . 

20 a ' 

7(1 -v) 
pd5 = 

<(6d 

7(1 -v) 
(°zz +°zz)> (64) 
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Flexure: 

B<t>,xx -
5 ^ 

~6~ 
(4> + WtX)-pda'<j>=- — (o++o^), 

d 

T 

{ W,xx + <t>,x)~ f>dw = - ( <7« - <*«). (65) 

where C and B are defined in equation (51) and a' = d2/\2. 
The interface conditions for the problem at hand are 

u-=us
x(0), w+=uL

z(d), w-=uf (0 ) , 

< 4 = 0 , a-=ofx(0), a+=<4(rf ) , CTzz = 4 ( 0 ) , (66) 

where (see also reference [14] for interface conditions for 
Cosserat plates used in layered composites) 

d 
u =u—— 

2 

Next assume the harmonic wave solution 

u = uei(°x-""\ S = Sen<"c~'"), 

w+ =w+ — 5, w =w—— S. (67) 

„ i (mr-cjO </> = 0e' ; ' (<«•-cj l ) (68) 

Substitute these expressions into equations (64) and (65) and 
obtain, after use of the last four of equation (66) 

and 

enU + e^S^d-'hiZUO), 

enu + e22b = h2[ZL
z{d) +Zf(0)], 

fnW+f]2j> = ktZ
sAO), 

f2lw+f224> = d-lk2[ZL
z{d)-Zl(Q)}, 

(69) 

(70) 

in which 

_ 2 ~ , , (I-2") , / • va 

en = - < r C + — -yp^/ti, el2 = i 
(1 - vy 

20 , 
e22 = -=-« 

1 pa)2 

1 — C jU 

10 

- C ' a V 

.20 

7~( l -2v) 

20 / 1 

1-v 

•aC, 

C, 

JO / 1 - v \ 

7 \ l - 2 v ) / 
(71) 

7 ( l - c ) ^ ' 
C =Clyd\ 

and 

/ „ = -10;(7, fi2=-10~d2(azC'-Pu2/^), kl = -(,/n, 

f2\=ix~xpu2--<jl, f22=i-a, k2=-jx-x. (72) 
o o 

Upon solving equations (69) and (70) and substituting the 
solution into the first two, as well as the second minus the 
third, of the continuity conditions in equation (66), we obtain, 
with the use of equation (67) 

dus
x(0) "] 

rfuf(0) 

K£(d)-K?(0)J 

' n hi '13 

'21 '22 '23 

'31 '32 '33 

Zs
x(0) 

ZL
z(d) 

ZsA0) 

\ , (73) 

where 

e22^i , (Ph^k e21hi d'hik\ (hi\- ?02lh.t = \ rf/11^2 

2A, 

rf/22^1 rfe2i/ii 

*/ • & 
• ( = F ) 

/ i 2 ^ 2 ^ 1 1 ^ 2 

*/ 2A„ 

/ i i = 
e 2 i ^ i 

'I?. — '13 — 
deuh2 (74) 

A A 
in which 

Ae=ene21-e2lel2, A / = / 1 1 / 2 2 - / 2 1 / 1 2 . (75) 

Finally, use u = r'v/co and equations (8) and (15) in equations 
(73) to obtain 

" G11 

G 2 i 

G3, +iaL 

G\2 Gn 

G22 G23 

G32 G33 

= e-/pi</.i' < 

rt 

< 

<. 

r 

iPL<t>i 1 

4>s 

W ^ 

>• 

-G„ 

— G 2 i 

G31 +/az. 

(76) 

where G,-,, / = 1,2,3 are listed in equation (A3). The solution 
of this system yields for the reflection coefficient 

KLSS- T ^ — e 

where 

M=- [GuMu-G2lM2l+GnMn], 
Pi" 

Mn = G22Gn -G23G32, Mix =G 1 2 G 3 3 - G 1 3 G 3 2 , 

M 3 1 =G 1 2 G 2 3 -G1}G22. 

(77) 

(78) 

(79) 

(D) Reflection Coefficient for Thin Layer Approximation 
of Nayfeh et al. [13]. In an investigation of the same problem 
as that of interest here Nayfeh et al. [13] derived an ap­
proximate model for the case of a thin layer. They did not use 
an existing plate theory but, instead, they made assumptions 
based on intuitive arguments for thin layers. In the notation 
and coordinates used here their equations (25) and (26) appear 

and 

d( X+2/i)w„ - pdii = 0^(0), 

-dtiwtXX + pdw=a^z(0) - 4 ( 0 ) . 

(80) 

(81) 

These two equations should be compared with equations (49) 
and (50) of the Kirchhoff plate theory. Given that a^ = 0 in 
equation (49), it agrees with equation (80) except the extension 
modulus C is replaced by (\ + 2fx)d. This means that 
longitudinal waves will propagate in the layer at the 
longitudinal wave speed of an infinite medium (K + 2fi/p)]/2, 
rather than the plate wave speed (C/pd)W2. Equation (81) 
differs from equation (50) in two respects. The face shear 
gradients a^^ are missing in equation (81) and Bwxxxx of 
equation (50) is replaced by - ytdw xx in equation (81). This 
means that equation (81) predicts flexural waves in the layer 
propagate at the shear wave speed of an infinite medium, 
(fx/p)in, rather than at the dispersive flexural wave speed, 
(•£712(1 - v2)py/2od, predicted by equation (50). Also observe 
that (JZZL(0) appears in equation (81) in place of o£, (d). This 
difference will lead to a difference in phase in the reflection 
coefficient. 

The continuity conditions in reference [13] were given as 
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(there is evidently a misprint) in equation (24) of reference 
[13] in setting u0 = uf) 

u = us
x(0), w = «f(0) = «£(0), (82) 

which are different from equation (52) in that u^(0) replaces 
uL

z(d). 
We can obtain the reflection coefficient for the layer model 

represented by equations (80)-(82) from the Kirchhoff result 
in equations (58) and (59) by setting 

PL=0, C=pdu2-(\ + 2ii)02d, B = ixda1-pdw2, (83) 

and deleting the C terms from the third of equation (57). Then 
we obtain 

A,', -coZ s , A,', 

4>l A,', + uZ$L A13 ' 

where 

All = ^22^33 + ^32^23 . A,'3 = aSG?23 + <^22. 

di2 =2fisaS(j~ iaC, d^ = /xs (/3| - o2) - ifis C, 

d'-ii = Ms (0s - a2) + iasB, d^ =2fisffsa+iaB. 

Using the results 

po>2=(X + 2/i)A:2=/xK2 

so that 

C=(A + 2^)rfa2, B=-iidfi2, 

we can write the 0(d) approximation of R^ss >n the form 

Rlss=RLS + i{od)N/D+0{a2d2), 

(84) 

(85) 

(86) 

(87) 

(88) 

where 

'N 
= -et. 

e2\ Ze 

4zZ 
'-'L 

7S •>es 

(1+3,S3TS) ]]• 
(89) 

and where RLS is defined in equation (32). (There is evidently 
a misprint in equations (30) and/or (31) of reference [13] as 
the reflection coefficient defined there does not reduce to RLS 

when the thickness h is set equal to zero.) Equations (84), (88), 
and (89) should be compared to equations (58), (62), and (63) 
of the Krichhof f plate result. 

5 Poles of Reflection Coefficient-Interface Wave 
Speeds 

A study of the zeros and poles of the reflection coefficient 
RLSS given in equations (21)-(24) will be presented in a 
subsequent paper, reference [15], in which the reflection 
coefficient is shown graphically as a function of incidence 
angle for many different material combinations. Here we 
limit the numerical computations to those necessary for a 
comparison of RLSS with the approximate model reflection 
coefficients RLSS,RLSS> and R%ss derived in the preceding 
section. To also compare with experimental results in 
reference [13] we compute the. liquid-layer interface phase 
velocity Cj as a function of q = du/bs. The procedure for 
these computations is essentially as follows. The existence of 
the propagating wave is associated with a pole of RLSS in a 
complex ff-plane. This pole is determined by a zero of D given 
in equation (22). If a* denotes this zero, so that 

D(a*) = 0, 

then the interface phase velocity Cj is given by 

(90) 

0 --du/bs ) 
Fig. 2 Liquid-solid interface wave speed for water-copper-stainless 
steel as a function of q for the exact theory and several approximate 
models for the layer. Experimental points are from Nayfeh et al. [13]. 
Material parameters used: (densities, kg/m3; velocities, km/sec) water-
copper-stainless steel. pL = "1,01. = 1.49, p = 8.93, c = 4.76,0 = 2.2, 
PS = 7-9, c s = 5.69, bs = 3.13. 
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Fig. 3 Same as Fig. 2 except for scale 

c, = u/Re(o*). (91) 

First we choose the material parameters pL,cLp,c,b,ps,cs, and 
bs and then choose the layer thickness d and the wave 
frequency co. D(a) is then computed at points along a closed 
circuit in the a-plane. Using the principle of the argument in 
complex function theory we can determine from this com­
putation the number of zeros minus the number of poles of 
D(o) contained within the circuit. By systematically sub­
dividing the circuit into smaller ones and repeating the 
calculations, we locate the zero, a*, corresponding to the 
lowest Rayleigh mode. (This zero lies on the real axis when 
ZgL in D vanishes.) The phase velocity is calculated according 
to equation (91) and plotted as a function of q = doi/bs. 

Figure 2 shows c, based on RLSS as a function of q for the 
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materials considered in reference [13], which are water, 
copper layer, and stainless steel substrate. Also shown are the 
corresponding approximate C/ based on (/) the 0(d) ap­
proximation of RLSS (this curve is designated R^ss) given in 
equation (47); (/;') the Krichhoff plate reflection coefficient 
Riss in equation (58); (Hi) Cosserat plate reflection coefficient 
RLSS given in equation (77); and (iv) thin layer model result of 
Nayfeh et al. [13] in equation (84). Figure 3 presents the same 
curves on an expanded scale for better comparison near q = 
0. 

The values of c, at q = 0 for all of the models agree with 
the Rayleigh velocity for the substrate. As q becomes large the 
exact result approaches the Rayleigh velocity for a half-space 
of the layer material. The 0(d) approximate curve cf is in 
good agreement with the exact result for 0 < q < 1, then 
deviates seriously from c, for q > 1. The Cosserat plate 
result, cf, is also a good approximation in 0 < q < 1 and 
indeed is the best approximation considered over the entire 
range of q. The result based on the Kirchhoff plate is a poor 
approximation for all q > 0.2, and Nayfeh et al. [13] thin 
layer approximation is the least accurate approximation 
considered. It is the only one of the approximate curves with 
the incorrect slopes at q = 0 as seen in Fig. 3. It should be 
noted that our calculation of the cf curve is not entirely in 
agreement with the corresponding curve in Fig. 4 of reference 
[13]. The latter shows the cf curve has almost zero slope for 0 
< q < 0.5. For larger values of q the curve presented there 
appears to agree with our cf curve in Fig. 2. 

The experimental results presented in Fig. 4 of reference 
[13] have also been plotted in our Fig. 2. Here we see that the 
exact curve parallels the experimental results, but the latter 
appear to be displaced about 10 to 15 percent above. There is 
no obvious explanation for this discrepancy. In reference [18] 
the dispersion curve based on the exact theory is presented 
along with experimental results, again for a copper layer on a 
stainless steel substrate. There the theoretical and ex­
perimental curves are in close agreement. The shear wave 
speed used for copper in the theoretical calculation in 
reference [18] was 2.32 km/sec rather than the value 2.2 
km/sec used in reference [13]. We recalculated the exact curve 
in Fig. 2 for the 2.32 value and obtained a result that is in 
agreement with reference [18]. The experimental results 
reported in reference [13] are somewhat different from those 
in reference [18], and the latter are in better agreement with 
exact theory. 

6 Summary and Conclusions 

In this paper we have derived the reflection coefficient for 
plane harmonic waves incident from a fluid onto a layered 
elastic solid half-space. The layer and substrate are considered 
to be different isotropic, homogeneous elastic solids and the 
fluid is inviscid. The layer thickness is arbitrary. The structure 
of this reflection coefficient is revealed, and its relation to 
several previously studied special cases is obtained, by con­
sidering the appropriate limits. The reflection coefficient is 
linearized for the case of thin layers. Also, approximate 
reflection coefficients are derived using various thin layer 
models. In particular, the layer is modeled as a classical 
Kirchhoff plate and a Cosserat plate. In addition a thin layer 
model presented in Nayfeh et al. [13] is examined. 

The poles of the reflection coefficients are obtained 
numerically and the resulting interface phase velocity curves 
(based on each model) as a function of q = o>d/bs are 
presented. It is found that none of the approximate results are 
reliable for q > 1. Only the linearized result based on the 
exact theory and the Cosserat plate result have the useful 
range 0 < q < 1. The Kirchhoff plate result provides a good 
approximation in the range 0 £ q < 0.2, but the Nayfeh et al. 

[13] model did not yield very useful results for any range of q 
> 0 for the particular materials considered. 

The procedure for obtaining the zeros of the various 
reflection coefficients was the same, i.e., no computational 
simplification was associated with the approximations except 
that fewer terms needed to be programmed and computed. It 
is therefore recommended that the exact reflection coefficient 
be used rather than any of the approximations whenever 
applications require the use of RLSS, provided computer time 
is not an overriding concern. 
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A P P E N D I X 

The expressions for a,j needed in equation (11) are given in 
reference [1], p. 64 as 
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in which P = ad, Q = ,&/, and where the notation has been T h e e x P r e s s i o n s Gu>{ = ! > 2 ' 3 i n e c l u a t i o n <7 6>a r e d e f i n e d ^ 
defined in Section 2. Using these results we obtain for the Gn =\Lk\li2> Gn = io-2lunsois<j+lniisU32

s-0
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minors of the matrix A listed in equation (20) the following: 
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\ 2 6 C„e 7 c 7 V J ' where/y are defined by equations (71), (72), and (74). 
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Equivalent Linearization for 
Continuous Dynamical Systems 
An approximate method is presented for determining the dynamical response of 
certain continuous nonlinear systems. In the proposed method, the system equation 
is linearized in the time domain prior to generation of a solution in the spatial 
domain. The approach is particularly suited to problems with complex boundary 
conditions which make selection of realistic global, spatial, domain comparison 
functions difficult. The approach is ideally suited to problems where discretization 
using finite elements is appropriate. The transverse response of a nonlinear rec­
tangular plate is examined by way of the application of the proposed method. 

Introduction 
Many continuous dynamical systems may be represented by 

partial differential equations of the form 

2D(w,x,/) a V«D(w,x) + cm(x)w + m(x)w-p(x,t) =0 (1) 

where w(x,t) is the dependent variable of the spatial coor­
dinates x and time t, D is a differential operator in the spatial 
domain, m(x) is a positive distributed mass, c is a damping 
coefficient, andp(x,0 is the distributed dynamical load. The 
statement of the problem is completed by the addition of 
appropriate boundary and initial conditions. An equation of 
the form of (1) may be used when there is a set of dependent 
variables w, by generalizing the notation so that 2D is a vector. 

Systems that are capable of being represented by equations 
of the form of (1) include most second-order systems, such as 
rods, strings, and membranes, and most fourth-order systems 
such as beam, plates, and some shells. The precise definition 
of the terms in equation (1) will change for each different 
physical problem, but the basic structure of the equation will 
remain the same. 

Usually, dynamical systems of the type described by 
equation (1) will be approximately linear for small amplitudes 
of response. However, for large amplitudes of response, the 
system will often exhibit important nonlinear effects. When 
the system is nonlinear, it will be assumed that D can be 
separated into a linear and a nonlinear component, as 

D(w,x)=D,(w,x)+D„/(w,x) (2) 

D, may contain both stiffness and damping-like terms. 
However, it will be assumed that the linear part of the 
operator contains only "classical" or Rayleigh-type damping 
terms, and that the damping terms in D„, are functions of w 
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and it spatial derivatives only. It will further be assumed that 
Dn/ is in some sense "small" with respect to D7 so that the 
deviation of the system from linearity is at most of first order 
in some parameter e < 1. The undamped, linearized system 
(D„i = 0) will be assumed to be both positive-definite and 
self-adjoint. 

Generally speaking, analytical techniques for treating the 
nonlinear problem are based on separation of the problem 
into a spatial problem (usually taken to be linear) and a 
temporal problem (usually containing the nonlinear effects). 
The spatial problem is usually first discretized by some 
technique such as modal decomposition, the Ritz-Galerkin 
method, or the finite element method, and the resulting 
nonlinear time domain problem is solved by such techniques 
as equivalent linearization, harmonic balance, perturbation, 
Galerkin's method, general asymptotic expansions, or 
numerical integration. 

This paper presents a new approach to the problem in which 
the system equation is linearized in the time domain before a 
solution is attempted in the spatial domain. This is ac­
complished by defining an "equivalent linear" analog for the 
system equation. The resulting linear problem may then be 
solved by any convenient technique. The approach is easily 
mechanized and is particularly suited to problems where 
complex boundary conditions or other complications make 
selection of realistic global, spatial, domain comparison 
functions difficult. The approach is ideally suited to problems 
where discretization of the continuum into finite elements is 
appropriate, since the system may be linearized on an element 
consistent basis prior to application of the finite-element 
solution algorithm. 

Formulation 
Let the nonlinear system under consideration be described 

by a partial differential equation of the form of equation (1) 
with appropriate boundary and initial or periodicity con­
ditions. According to the general equivalent linearization 
approach, an associated linear system is sought such that the 
"difference" between the two systems is minimized. Then, the 
solution of the associated linear system is taken as an ap­
proximation to the solution of the original problem. 

Journal of Applied Mechanics JUNE 1983, Vol. 50/415 

Copyright © 1983 by ASME
Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Associated Linear System. Let the associated linear system 
for the nonlinear system of equation (1) be 

2DB(w,x)r) = V'D ( ,(w,x) . 

+ cm (x) w + m (x) w—p(x,t) = 0 

(3) 

with the same boundary and initial conditions as specified for 
equation (1). w, m, and c are as defined for equation (1) and 
D„ is a linear operator which depends on a number of scalar 
parameter functions. In particular, let Da depend on the 
parameters a(x) and |3(x), where 

Da (w,x) =K„ (w,x,a(x)) +Ca (w,x,0(x)) (4) 

It will be assumed that the operator K„ contains only stiff­
ness-like terms and the operator Ca only damping-like terms, 
where 

Co(w,x,7)=K0(vv,x,7) (5) 

In other words, Ca is a Rayleigh-type damping operator. 
It is assumed that the solutions of the associated linear 

system (3) are members of some known class (3 of functions of 
x and /. A particular member of this class is identified once 
the parameters a and /3 are specified. For the method of 
equivalent linearization, these parameters are specified by 
requiring that some measure of the difference between 
equations (1) and (3) be minimized for all members of the 
class of solutions Q. 

Difference Definition. There are many possible definitions 
for the difference between the systems represented by 
equations (1) and (3). Herein, three possible differences will 
be considered. These differences do not depend on the par­
ticular form of the operator D which may be of either second 
or fourth order. Later, two additional difference definitions 
will be introduced which have meaning only for fourth-order 
systems. 

Let A(,) denote the system difference for definition /, where 
this quantity may be at most a vector. Then, the first dif­
ference will be defined as 

Diff. Dfn. 1: A(" =£>-£>„ (6) 

This is simply the difference between the two equations over 
the class of solutions of equation (3). 

The second difference will be defined as 

Diff. Dfn. 2: A(2> = V w ( D - D f l ) (7) 

If the boundary conditions are selected appropriately for the 
self-adjoint problem, it will be noted that when A(2) and A(1) 

are scalar, they are related as 

]A^dv=-]wA^dv (8) 

where the integral is carried out over the domain of the 
problem. Difference Definition 2 may therefore be thought of 
as a weighted equation difference. 

The third difference will be defined as 

Diff. Dfn. 3 : A ( 3 ) = D - D a (9) 

This vector difference is a type of integrated equation dif­
ference. 

As stated in the foregoing, A(1) is the straightforward 
equation difference usually employed in equivalent 
linearization. For cases considered herein, it will be a scalar. 
This difference will involve derivatives of the solution up to 
order n, the order of the system. The other two difference 
definitions will involve only derivatives of order up to n - 1. 
This feature makes the second two definitions more desirable 

since they demand lower-order continuity of shape functions 
thereby making their use more computationally efficient. 

For a second-order system, it may be shown that Difference 
Definition 2 corresponds to an energy difference and Dif­
ference Definition 3 corresponds to a "stress" difference. 
There is no analogous correspondence in the case of the 
fourth-order system. For the fourth-order system, a second 
integration by parts is required to obtain an energy difference 
from Difference Definition 2, and a similar integration of 
Difference Definition 3 gives a "moment" difference. These 
difference definitions will' be considered later in an example. 
The three difference definitions stated herein have been found 
to be adequate in application to a wide range of physical 
problems. 

Difference Measure. Consistent with the method of 
equivalent linearization, the difference A(,) is to be minimized 
for all members of the class of solutions Q of equation (3). 
Minimization of this difference on a point-by-point 
(collocation) basis will generally overconstrain the parameters 
a and /3. Hence, an average measure of the difference will be 
employed. 

Let Qtx represent an averaging operation over both the 
spatial and temporal variables of the problem. Then, the 
measure of the difference will be defined by 

a^llA") «2 = AveragetJIlA*''' \\2dv] (10) 
V' 

where the norm is taken to be either the simple scalar 
magnitude or the Euclidean norm, depending on the 
dimension of A ( , ) . The time average may take on different 
forms depending on the nature of the excitation and response 
processes. The averaging operation will be assumed to be time 
invariant, linear, and positive-definite, as defined in reference 
[1]. 

Minimization of the Difference. Minimization of the 
system difference measure may be accomplished in a number 
of ways. One approach would be to use variational calculus 
directly on ffi,x after substitution for A(" . This would lead to a 
set of associated Euler partial differential equations for a and 
(3 which could, it is hoped, be solved by some analytical or 
numerical technique. As an alternative, the linear system 
parameters may be discretized and the problem reduced to an 
ordinary minimization problem. This approach will be 
adopted herein. 

Let a and /3 be represented as 

M 

«(*) = E <Mx)a* 

M 

000= E** oo & (ii) 

where a^ and ft are constants to be determined, and <f>k is a 
locally defined set of linearly independent shape functions. 
Then, sufficient conditions for the minimization of 0Ltx will be 

dak 

9Q.,J A^W „ 
—1& = 0 (12) 

dft 
Implementation of the minimization defined by equation 

(12) will be facilitated if the difference A(,) is factored into 
component parts. For this purpose, let 

A<" =,<'> - L P («(*) ) -L#> (/3(x)) (13) 

where ?/, hK, and L c are defined according to the particular 
difference definition as 
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Diff. Dfn. 1:TJ= V»D„,; i ^ V - K , ; £ C =V-C„ 

Diff. Dfn. 2:ri=VfV'D„r, £,K=VW>Ka; £c=vW'Ca 

Diff. Dfn. 3:i/ = D„,; LA: = Ke; LC = C„ (14) 

Furthermore, let 

« = (&!,d2, . . . , a w ) ; /3 = 03,,ft,< • • -A, ) (15) 

Then, application of the minimization conditions (14) leads to 
a set of algebraic equations for <i and /3 of the form 

Aa + B/S = G 

Br<i + C/3 = H (16) 

where 

Xj/ = ao r(LK(^(x))-£K(^(x))) 

B</ = a„(L J f(0 ;(x)).£c(«7(x))) 

C„- = a t t (L c (0 , (x)) .£ c (^(x)) ) 

G,=a,v(^-LK(^(x))) ; JW,=a„(,.Lc(*,(x))) (17) 

It may be shown 

B = 0; for Diff. Dfns. Iand3 (18) 

Therefore, the system of equations for & and /3 are uncoupled 
for this case. By a judicious selection of the tj>it these 
equations may also be uncoupled for Difference Definition 2, 
but this will not generally be the case. 

Solution of the Associated Linear System. Once the 
parameters a and /? have been determined by the minimization 
condition, the associated linear system may be solved by any 
appropriate technique. Because closed-form solutions are 
seldom available for even linear problems with distributed 
parameters, resort will usually be made to some form of 
appropriate analysis. One of the most natural approaches is to 
expand w(x,f) in terms of a set of shape functions i/<, (x) as 

N 

W ( X , 0 = £ I M X ) K , ( 0 (19) 
; = i 

where u,-{t) are coefficient functions that depend only on 
time. The shape functions ^,-(x) may be defined globally, 
leading to a Ritz-Galerkin type solution, or locally, leading to 
a finite-element type solution. The latter approach is par­
ticularly attractive when the functions a and /3 have been 
discretized on a localized element basis. 

Discretization of the auxiliary equation leads to a problem 
statement of the form 

M i i (0+r i i (0+K u(0 =f (0 (20) 

which can be solved by any number of analytical or numerical 
techniques. It should be noted, however, that the coefficient 
matrices T and K in equation (20) will depend on a and # 
which, in turn, depend on the solution itself through 
equations (16). Hence, an iterative solution process will 
normally be required. In spite of this fact, the linearization 
scheme outlined in the foregoing will generally result in a 
considerable computational saving over straight numerical 
integration, particularly for problems of steady-state or 
stationary response. 

Properties of the Solution. Given the properties of the 
averaging operation (2^ and the Euclidean norm, it may be 
shown that the solution obtained from equations (12) 
represents a global minimum. Note, however, that this does 
not preclude the possibility of the existence of more than one 
set & and /S which minimizes &lx. 

Since the matrix B vanishes for Difference Definitions 1 
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and 3, the existence of unique solutions for & and /3 for this 
case will depend on the invertability of matrices A and C. It 
may be shown [1] that both A and C are positive definite for 
all difference definitions considered in the foregoing. Hence, 
solutions for & and $ using Difference Definitions 1 and 3 
always exist for nonzero displacements, and are unique. If the 
functions </>, selected for use with Difference Definition 2 
cause equations (16) to be uncoupled, solutions will likewise 
exist and be unique. However, it is not readily shown that 
solutions will exist or be unique for the general case of Dif­
ference Definition 2. 

Steady-State Harmonic Oscillation 
Let 

p(x,t)=h(x) cos cot (21) 

where u> is the excitation frequency. Furthermore, let the 
nonlinearity be symmetric so that the response is not biased. 
Then, the class of solutions of the associated linear system 
equation (3) is a family of harmonic functions and u, (t) may 
be represented as 

Uj(t)=aj cos cot + b, sin cot (22) 

Substituting from equation (22) into equation (20), and 
equating coefficients of sine and cosine terms, yields a set of 
algebraic equations for a, and bj of the form 

[ - co2M + K(a)]a + c»r(/3)b = f 

-cor(/3)a+[-aj2M + K(<i)]b = 0 (23) 

where 

a = (a1)fl2). . . ,aN)T; b= (6,, b2,. . . , bN) T (24) 

As indicated in equations (23), the matrices K and r depend 
explicitly on & and 0. The specific form of these matrices and 
the vector f will of course depend on the details of the 
discretization employed. 

Since the steady-state solution of the associated linear 
system is periodic with period T = 2-w/co, the time average for 
all time in equation (10) is merely the average over one cycle 
of oscillation. The elements of the matrices A, B, and C, and 
vectors G and H may be evaluated in terms of a and b from 
equations (17). As an example of the form of the resulting 
equations, consider the case for Difference Definition 3. Let 
{/and Vbe defined as 

N 

i=\ 

N 

V= D +,bi (25) 

Then 

Au = - \[Da (U,x,4>,) -Da (U,x,4>j) +Ba ( K,x,«,) 
CO J 

>Y>a(U,x,cj>j)}dv 

Gu=-\ [E.Do(t/,x,0/)+F.D(I(K,x>0, )]di; 
co Jo 

H^ir^J [E--Da(U,x,cl>i)-¥.Da(V,x,cl>i)]dv (26) 

where 
1 f2" 

E = E(U,V)= — D„, (<\l cos d+Vsmd,x) cos Odd 
•K JO 
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i r2"-
F = F( t / ,K)=— D„,(cU.cos0+Ksin0,x)sin0rf0 

ir Jo 

The form of the result is similar for Difference Definition 1, 
but is considerably more complex for Difference Definition 2 
containing integrals of products with cos 30 and sin 30. 

It should be noted that in solving for a and /3 only one 
matrix, A, need be computed and inverted. Thus, a saving of 
computation effort is realized for the steady-state analysis. 

Forced Oscillation. The approximate response w(\,t) will 
be given by the solution of equation (23) constrained by 
equations (16). A secant method might appear to be a logical 
procedure for solving these equations. That is, for a given 
value of w and an initial guess for a and b, & and /3 may be 
determined from (16). This approximation may then be used 
to obtain a next approximation for a and b in (23), and so on, 
until convergence is obtained. It has been found, however, 
that such an iterative scheme is unstable, especially for the 
case of small damping. 

Equations (23) and (16) together are nonlinear. Hence, the 
Newton-Raphson method can be used to obtain a nonlinear 
frequency response curve. In the case where a good initial 
guess is difficult to obtain, a hybrid technique such as the 
Levenberg/Marquardt method [2] may be used. 

Free Oscillation. In the case of conservative systems, the 
free harmonic response may be found from the homogeneous 
form of equation (23) 

[-co2M + K(a)]a = 0 (28) 

along with the constraint equation 

A« = G (29) 

Inclusion of the constraint introduces a dependence of the 
frequency on amplitude of response. To determine this 
dependence, an iterative scheme may be employed. 

For problems other than steady-state harmonic oscillation, 
a different form of time average must be employed. If the 
response process is random and assumed to be ergodic, the 
time average may be replaced by an ensemble average and the 
approach proceeds in a manner similar to standard stochastic 
equivalent linearization [3]. This particular subject will not be 
pursued in the present paper, but is discussed in reference [1]. 

Example—Nonlinear Plate 
A customary assumption employed in analysis of the 

vibration of thin plates governed by the Poisson-Kirchhoff 
theory is that the amplitude of response is small in com­
parison to the thickness of the plate. This assumption permits 
the use of a linear equation of motion. However, when the 
deflection is of the same order of magnitude as the thickness, 
the coupling that exists between the membrane and bending 
stresses can no longer be ignored. 

The nonlinear theory used in this example is based on the 
so-called Berger approximation to the coupled nonlinear Von 
Karman equations for static analysis. Berger's analysis, which 
originally appeared in reference [4], includes the effect of 
membrane stresses but neglects the strain energy due to the 
second invariant of the middle surface. Under these con­
ditions, the nonlinear equations of motion for the transverse 
displacements become uncoupled from those of the inplane 
displacements. The work presented in reference [5] extended 
the Berger approximation to the dynamic form of the 
equation of motion, and these equations are used in this 
example. 

The differential equation of motion for a harmonically 
excited nonlinear plate can be written in index notation as 

MyS<y6(D,w)-fi\\ wiywiydv\wM+cw 

+ pw=p(x)cosuit (33) 

where 

6D 

Mu =D(wAi +MV22) 

M12=M21 =D(1 -v)wA2 

M22=D(vwtU +wi22) 

w,7 = V T = 1 ' 2 (34> 

w = v/{x,t) is the transverse displacement of the plate, D is 
the flexural rigidity, v is Poisson's ratio, c is a mass 
proportional damping coefficient, p is the mass per unit area, 
A is the surface area of the plate, h is the plate thickness, p (x) 
is a distributed force/unit area, and u is the frequency of the 
harmonic excitation. The usual subscript convention is im­
plied. 

The nonlinearity in the equation of motion (33) lies in the 
second term. This term accounts for the coupling between the 
membrane and bending stresses of the deformed plate. In 
defining the linear associated system, this nonlinear term will 
be replaced by the divergence of the linear shear force, or 

Myiyyi(D,w) +My6tyS(a,w) + cw + pw=p(x)cosut (35) 

where the equation parameter a = a(x) is to be taken as the 
associated linear flexural rigidity. It is this parameter that will 
be adjusted in the equivalent linearization procedure. The 
nonlinearity of equation (33) is stiffness related and hence the 
associated linear damping parameter fi does not appear in 
equation (35). 

Solution to the associated linear equation (35) can readily 
be accomplished by the finite element method. If 
displacements w are written as in equation (19), the finite 
element equations become (20) with f (r) a harmonic function 
of time. One sufficient condition for the convergence of the 
finite element method is the continuity of the m-1 derivatives 
of the shape functions, where m is the highest order derivative 
of the strain energy integral, K. K contains up to two spatial 
derivatives; consequently the continuity requirement specifies 
the need for continuous first derivatives across element 
boundaries. The analysis presented herein uses a set of shape 
functions developed in reference [6] that were constructed 
from Hermite cubic functions, and hence satisfy the con­
tinuity requirement. Using these shape functions, the 
unknown parameters at each node are w, dw/dxlt dw/dx2, 
d2w/dxldx2 for a total of 16 degrees of freedom for 
quadrilateral elements. 

For the nonlinear plate, the shape functions $, will be 
constant across the domain of the finite-element shape 
functions. The terms D„, and D0 in equations (13) and (14) 
that comprise A and G in equation (16) therefore take the 
form 

(£>„,)y= -/*[ 1 w,yWiydv\w„ 

(Da)y=MyS>6 (36) 

In addition to the three difference definitions given in the 
body of the paper, it is instructive to consider two additional 
difference definitions for the case of the nonlinear plate 
problem. These will be defined as 

Diff. Dfn. 4: A(4) =My(,w,y6 - VipA (Wi7w 7)2 (37) 

Diff. Dfn. 5: A<5) =Myh + »[ \ w^w^dv]wbyf> (38) 
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Difference Definition 4 corresponds to a difference in energy 
density functions between the associated linear and nonlinear 
equations while Difference Definition 5, a matrix, 
corresponds to a moment difference. 

Typical results for the first nonlinear mode of vibration of a 
simply supported square plate are shown in Figs. 1 and 2 for 
two mesh sizes using Difference Definitions 1-5. The 
frequency of response has been normalized by the first 
natural frequency X! of the linear equations. Also shown are 
the results from a standard one-term Galerkin approximation 

and from direct numerical integration of the nonlinear 
spatially discretized equations. The Galerkin approximation 
was constructed using the lowest eigenfunction of the 
linearized problem while the numerical integration was 
performed with a fourth-order Runge-Kutta algorithm. 

It is clear from Figs. 1 and 2 that the choice of difference 
definition significantly affects the results. For the nine degree-
of-freedom finite element mesh in Fig. 1, the use of Dif­
ference Definition 3 and the Galerkin formulation produce 
the most satisfactory results in comparison with the numerical 
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Fig. 1 First mode-free response amplitude; simply supported square 
plate 
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Fig. 3 Forced response at simply supported square plate. Viscous 
damping of 3 percent. 
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integration solutions. Difference Definitions 1, 2, and 5 
predict a stiffer response while Difference Definition 4 
produces a significantly softer response than that obtained by 
numerical integration. For the more refined mesh in Fig. 2 
similar results are shown for all difference definitions except 
Difference Definition 1. It can be seen that Difference 
Definition 1 produces a totally nonphysical. result of the 
frequency of response being independent of amplitude. In­
spection of this difference definition shows that it contains 
fourth-order spatial derivatives of the displacements. 
Therefore, the norm of such a difference will be singular at 
the element boundaries for cubic shape functions. It is 
suspected that the use of higher-order shape functions for the 
displacements and for the flexural rigidity would enable 
Difference Definition 1 to perform better as the mesh is 
refined. This, of course, would be accomplished at the ex­
pense of computational efficiency. 

The forced response of a simply supported plate with in­
ternal damping is shown in Fig. 3 for Difference Definition 3. 
Shown are the equivalent linearization and one-term Galerkin 
response curves for a spatially constant loadp(x) = p0 with/? 
= 1 and 3 where 

A value of damping of 3 percent in the first mode of linear 
response is included. Again, Difference Definition 3 produces 
results very similar to the Galerkin formulation. 

Often the maximum or resonant amplitude of response for 
a given level of excitation is of more interest than the detailed 
nature of the response curve. Reference [1] discusses an ef­
ficient technique for obtaining lightly damped resonant 
response directly from the free-vibration response. 

Summary and Conclusions 

A method has been presented for analyzing dynamical 
systems governed by a class of nonlinear equations of motion. 
With this approach, the nonlinear continuous system is 
modeled by an associated continuous linear system equation 
containing stiffness and energy dissipation parameters that 
can be adjusted to minimize a difference measure. A number 
of specific difference measures have been considered. 

A nonlinear plate example demonstrates that the 
linearization approach is capable of providing useful 
solutions to such problems. Use of an integrated equation 
difference measure produces the best results for this example 

system. Results from the new method are quite similar to 
those obtained from a one-term Galerkin approximation. The 
close agreement with Galerkin's method is also observed for 
other second-order systems not considered herein. For some 
second-order systems, the integrated-equation difference 
measure approach gives identical results to Galerkin's method 
in the limit as the mesh is refined. 

It appears that the equivalent linearization approach holds 
promise for use in the dynamic analysis of continuous 
nonlinear systems. In most cases considered, the accuracy of 
the method can be made comparable to numerical integration 
while the computational saving is significant. Galerkin's 
method can readily be used on problems with simple bound­
aries. However, for complex boundary conditions, the 
selection of reasonable spatial comparison becomes difficult 
and the Galerkin formation is not easily implemented. On the 
other hand, the equivalent linearization procedure used in 
conjunction with the finite element method can easily handle 
complicated boundary conditions. By using local shape 
functions for the equivalent linear parameters, the method 
can readily be incorporated into existing finite element codes. 

Acknowledgments 

This investigation was sponsored by Grant No. PFR77-
23687 from the National Science Foundation. Any opinions, 
findings, and conclusions or recommendations expressed in 
this paper are those of the authors and do not necessarily 
reflect the views of the National Science Foundation. 

References 

1 Krousgrill, C. M., Jr., "A Linearization Technique for the Dynamic 
Response of Nonlinear Continua," Ph.D. Thesis, California Institute of 
Technology, Pasadena, Calif., 1980. 

2 Powell, M. J. D., "A Hybrid Method for Nonlinear Equations," in 
Numerical Methods for Nonlinear Algebraic Equations, Rabinowitz, P., ed., 
Gordon and Breach, 1970, pp. 87-114. 

3 Iwan, W. D., "Application of Nonlinear Analysis Techniques," in Ap­
plied Mechanics in Earthquake Engineering, W. D. Iwan, ed., ASME Sym­
posium, AMD Vol. 8, 1974, pp.135-161. 

4 Berger, H. M., "A New Approach to the Analysis of Large Deflection of 
Plates," ASME JOURNAL OF APPLIED MECHANICS, Vol. 22, 1955, pp. 465-472. 

5 Nash, W. A., and Modeer, J. R., "Certain Approximate Analysis of 
Nonlinear Behavior of Plates and Shallow Shells," Proceedings of the Sym­
posium on the Theory of Thin Elastic Shells, Delft, The Netherlands, Aug. 
1959. 

6 Bogner, F. K., Fox, R. L., and Schmidt, L. A., "The Generation of In-
terelement-Compatible Stiffness and Mass Matrices by the Use of Interpolation 
Formulae," Proceedings of the Conference on Matrix Methods in Structural 
Mechanics, Air Force Institute of Technology, Wright Patterson A.F. Base, 
Ohio, Oct. 1965. 

420/Vol. 50, JUNE 1983 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



M. P. Paidoussis 
Professor and Chairman. 

Mem. ASME 

K. N.EIBarbir 
Research Assistant. 

M. R. Genadry1 

Research Assistant. 

J.-P. Chaubernard2 

Research Assistant 

Department of Mechanical Engineering, 
McGill University, 

Montreal, Quebec, Canada 

Introduction 

Dynamics of a Cluster of Flexibly 
Interconnected Cylinders 
Parti: In Vacuum 
This paper presents an analytical model for the dynamics of a cluster of flexible 
cylinders, the extremities of which are structurally interconnected, e.g., through 
"end plates" or other kinds of structural connectors. These connectors are modeled 
by sets of translational and rotational springs, such that resistance to both in-plane 
and out-of-plane deformation of the connectors is fully taken into account. The 
dynamics of the system in vacuum is examined here, and especially the effect of 
varying the different spring stiffnesses on the system eigenfrequencies. This 
provides a reference base and the necessary analytical tools for the study of the 
system in axial flow, which is presented as Part 2 of this work. 

Arrays of cylinders subjected to flow are commonly found 
in many structures associated with power generation. Thus, 
they are an essential component of most types of heat ex­
changers, boilers, and steam generators, in the form of tube 
banks; also, in most nuclear reactors, they are present in the 
form of clusters of fuel rods; in electricity transmission they 
appear in the form of bundles of wire conductors; and so on. 

In all cases, the cylinders are neither totally unconnected to 
one another, nor are they supported by utterly rigid frames; 
rather, they are normally interconnected by flexible, and 
occasionally flimsy, structural elements. Thus in the case of 
nuclear fuel rods, the cylinders are sometimes supported at 
their extremities by thin "end plates," as shown, for example, 
in Fig. 1. Heat exchanger tubing is commonly supported at 
the ends by fairly rigid "tube sheets," but the cylinders are 
interconnected at intermediate points by relatively flexible 
baffle plates, lacing rods, or spacer bars [1]. Finally, high-
tension electrical wire conductors are separated by spacers, 
some designs of which are purposely made to be quite flexible. 

Although, in all cases, designers and researchers alike are 
aware that these relatively flexible connections between the 
cylinders imply a fair degree of structural coupling in cylinder 
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motions, it is only in the area of electrical conductor dynamics 
that this matter has been studied in detail, e.g., [2, 3]. One 
previous study exists for the effect of structural coupling in 
nuclear fuel rod bundles [4], and the matter is also beginning 
to find its way in the literature of heat-exchanger tube 
vibration [5, 6]. 

In the present paper, the dynamics of an array of cylinders 
is investigated, where the ends of the cylinders are in­
terconnected by slender beam-like elements, resembling but 
not necessarily modeling those of Fig. \{a,b). Rather than 
studying a specific type of intercylinder connector, the 
problem has been generalized as follows: the extremities of 
the cylinders are considered to be interconnected by sets of 
translational and rotational springs, modeling the resistance 
of the connectors to in-plane extension and bending and to 
out-of-plane flexure and torsion. The principal concern of 
this paper is to study the effect of stiffness of these springs on 
the dynamics of the system, as compared to various limiting 
cases representing, say, ideally clamped or ideally pinned 
ends. 

It is realized, of course, that this simplified model cannot 
deal with all possible kinds of intercylinder structural 
coupling. One such limitation is that these connectors exist 
only at cylinder extremities. However, generalization of the 
model to overcome such limitations is, in principle, not 
difficult. 

This paper, Part 1 of the study, examines the dynamics of 
the system in vacuum. Thus, in the absence of interstitial 
fluid, hydrodynamic coupling in cylinder motions, which 
might otherwise be present, is totally absent, and hence the 
effect of pure structural coupling may conveniently be 
studied. Part 2 of the study [7] examines the dynamics of the 
system in the presence of axial flow. 

The System Under Consideration 

The system consists of N identical uniform cylinders within 
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(b) (c) 
Fig. 1 (a) Typical fuel element "bundle" used in CANDU-type nuclear 
reactors; (b) end view of the plate to which the ends of the cylinders are 
attached, showing also the channel containing the coolant flow; and (c) 
idealized system showing intercylinder and cylinder-to-channel con­
nectors 

a rigid cylindrical container (to be referred to as the 
"channel"), which in Part 2 [7] of the study will be filled with 
fluid, but is here considered to be evacuated. When at rest, the 
cylinders are positioned so that their long axes lie parallel to 
the axis of the channel, which is defined as the x-axis. The 
ends of each cylinder are connected to those of its neighbors 
by beam-like connecting elements (henceforth to be simply 
referred to as "connectors"), and some of the outermost 
cylinders may similarly be connected to the rigid container, as 
shown in Fig. 1(c). 

Resistance of the connectors to deformation of all kinds 
will be modeled by sets of springs, assumed to be the same at 
both ends. Considering first in-plane deformation—i.e., in 
the plane of Fig. 1(c)—it may be seen in Fig. 2 that two kinds 
of springs may be defined: (a) translational springs resisting 
stretching (or compression) of the connectors along their long 
axis, of stiffness Ky and (b) springs resisting in-plane flexure 
of the connectors, of stiffness Kg. 

Of course, for general cylinder motions, the connectors will 
also deform out of plane. Their resistance to out-of-plane 
flexure and torsion will be modeled by rotational springs with 
spring constants C,y and C,y, respectively, as shown in Fig. 3. 
In general, torsional motions of individual cylinders about 
their long axes will also occur, because of differential rotation 
of the top and bottom of the cylinders; however, as the 
associated frequencies will be much higher than the flexural 
frequencies for slender cylinders, these motions will not be 
considered here.3 

By the same argument, longitudinal vibrations of individual cylinders are 
not considered. These are simplifying assumptions, not universally valid for all 
systems: e.g., if the cylinders are very stiff in comparison to the end supports. 

In the analysis, motions of the system will be such that the 
displacements vt (x,t), w, (x,t) of an arbitrary cylinder (Fig. 2) 
and the angles i>y, ,̂y (Fig. 3) are sufficiently small for the 
springs to be considered linear and for the cylinders to be 
modeled as Euler-Bernoulli beams. Moreover, all inertial and 
dissipative effects associated with the connectors, and hence 
with the springs, will be neglected. Internal dissipation in the 
cylinders, for the purposes of this study, is similarly ignored. 

To facilitate the general formulation of the problem, the 
equations of motion will be derived as if each cylinder were 
connected to all other cylinders, as well as to the channel. Of 
course, once the equations have been formulated, the more 
realistic model of Fig. 1(c) may be retrieved by setting to zero 
all spring constants associated with missing connectors. 

The Equations of Motion 

Recognizing that the interconnecting springs will affect 
only the boundary conditions, the equations of motion of the 
system are given by a set of beam equations 

dx* dt2 

„ ,d 4 W; d2W: 
= 0, EI—± +m—-^ =0, 

dt2 dx4 

»=1,2, ...N, (1) 
where EI is the flexural rigidity of each cylinder, and m its 
mass per unit length; Vf(x,t) and w,(x,t) are the lateral 
displacements of the /th cylinder in the y and z-directions, 
respectively, as shown in Fig. 2(c). 

Although it would appear from equations (1) that motions 
of each cylinder in each of the two directions are uncoupled, it 
is through the boundary conditions that coupling will 
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Fig. 2 (a) In-plane deformation of a connector, Involving in-plane 
stretching and bending; (b) definition of the springs of stiffnesses Ky 
and Kjj resisting stretching and bending, respectively; and (c) diagrams 
defining various quantities used in the analysis of in-plane deformation 
of the connector 

manifest itself, as will become obvious in the following 
section. 

The Boundary Conditions 

The boundary conditions may be obtained in a straight­
forward manner by a balance of forces and moments at the 
extremities of a typical cylinder, say cylinder /', in conjunction 
with motions of cylinder / itself and an adjacent cylinder j . 

Considering the force balance first, it is recognized that the 
cylinder will be subjected to forces of magnitude 

Fy=Ky(Ru-Ry) and Fy=KyARy, j*i, (2) 

due to the effect of the translational springs connecting 
cylinders i andy, where Ry, Ry, and ARy are defined in Fig. 2; 
the cylinder will also be subjected to forces 

F„ = # „ ( * „ - * ? , ) and F^K&ARfr (3) 

due to springs connecting cylinder / to the channel. These 
forces may be decomposed along the y and z-directions to give 

Fy=Ky(RiJ-Ru){smeyj + cos6yk), 

¥u =K'uARy { - cos6y + sinflyk), 

F„- =K„ (Ru -/??,){sin0,,j + cos0,vk), 

F,v ̂ K'jjMll, [ cos0,7j - sin0„k), 

(4) 

where j and k are unit vectors in the y and z-direction, 
respectively; By is defined in Fig. 2(c), and 0,v is similarly 
defined for cylinder-to-channel connections. 

The quantities Ry-Ry, ARy, etc., may be obtained with 
the aid of Fig. 2(c). For instance, it may easily be seen that 

RyCOS0y=RyCOS8y RyS'mdy =RuSm6y —Vj+ Vj, W, + Wj 

which yield 

Ru -Ry = cosffy ( - w, + wj) + sine?- ( - y, + Vj), (5) 
to first-order approximation. In a similar manner, it is found 
that 

ARy = sindy ( - Wj + Wj) - cosOy (-v, + Vj) 

RH-RU = - cos6fiwi - smefiVi.AR'i = sinflgw,- - cos0gy,. 

Substituting equations (5) and (6) into (4), forces balances 
at the two extremities of the cylinder, x = 0 and x = L, in the y-
direction yield, to first-order approximation, 

, i N 

(6) 

eEI 
dx' 

— '£Kusm2efi)[vl-(l-SfJ)vj) 

N 

J ] (K„ - Ky ) SmOyCOSdy I W; - (1 - 5J ) Wj } 
j=t 

;icos^1j{vi-(.\-5'j)vJ}=0, (7) 

where 5j is Kronecker's delta, and e = - l at x = 0 
and e= 1 at x = L; similarly, force balances in the z-direction 
yield 

eEI-
d3W: 

dxl D ^ c o s 2 0 g { w , - ( l - 5 ; ) w , ] 
y'=i 

£ (Ku -Ky)sin0£cos0g-1v, - ( 1 -6))Vj 

y = i 
r^sin20g(wr -(l-fiJ-)Wy}=0. (8) 

Considering next moment balances at the extremities of the 
/th cylinder, it is recognized (Fig. 4) that there will be 
moments 

3TC/1 = " Cy ( Vy + Vjj ) Ue.. + Vllr, 

^•n = -Cy{ny + iiji)ney> J*>> (9) 

due to the action of the rotational springs connecting cylinder 
/ to cylinder j , and 

9TC/2 = - Cavaix,.. + VlT, 9TC/2 = - C'uHjiJ&e.. (10) 

due to the action of the corresponding springs connecting 
cylinder / to the channel. The angles fi and v and the unit 
vectors ue, ue+Vlir are defined in Fig. 4. In the foregoing, 
applicationof2dl(1 movesM,P, toM,Q, and MJPJ to MJQJ; 

then, application of 9H/, results in the displacements from 
M,g, and M y g / t o , respectively, MtR; and MjRj. In this 
connection, it is realized that the latter operation actually puts 
Qi to R- rather than /?,-, and may actually also induce in-plane 
displacements. If these latter are neglected, it may be shown 
that R'i lies on the parabola given by the intersection of the 
plane (P/Q/S,) and the cone described by M,Q,- during the 
rotation about ue... Moreover, it may be shown that 

(S$n 2=(S~R,)2+ tan2
 H tan2 v-y (Affi,)2, 

so that the approximation R[~Ri holds up to fourth order of 
small quantities. 
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Connector 

/ ! 
Cylinder i 

(a) 

v.^ 

Cylinder j 
(b) 

(0 (d) 
Fig. 3 (a) Out-of-plane bending and (b) torsion of the connector; (c) 
and (d) definition of rotational springs resisting out-of-plane bending 
and torsion, respectively 

Cylinder j 

Cylinder Axes 
at Equilibrium 

Fig. 4 Diagram showing combined out-of-plane bending and torsion 
of the connector (as well as in-plane stretching) and defining the 
quantities used in the analysis of out-of-plane deformation of the 
connector 

Now, the evaluation of the angles v,j, /xu- requires exertion 
of some care. The derivations to be presented here will 
proceed without imposing the restriction, initially at least, 
that these angles be small. The procedure will be illustrated 
here for the former of the two. It may be seen in Fig. 4 that 

cos*,, = \M?PrMfat}/{ \MfP, I \M?Q, I)- (ID 
In terms of the coordinate system (i,u9..), where i is the unit 
vector in the x-direction, one may write 

M,P, = dx i and M*Qi = dxi+ffei, 

where 
PiQi=Bueti=SiRi, 

in which B is to be determined. To this end, it is noted that 

S*Ri'S*M,=0 

or 
(Bue..)• (Bug.. -dx\ + dv,} +dw,k)=0, 

where dv, and dw, represent the differential displacements of 
the cylinder in the distance dx, so that dVj/dx and d\Vj/dx are 
the slopes of the cylinder at its extremities. From the 
foregoing relationships, considering that ue.. is at an angle 0,y 
with k, one obtains 

B= -sindjjdVj-cosdjjdWj. 

Replacing these terms into equation (11) leads to 

cose/ -H to, . „ dw, „ ~)2^ - , /! 

sin0,y + — cos0l71 -Y) 
which, by series expansion, yields the first-order ap­
proximation: 

v<,=sm*„— + c o s 0 , — (12) 

Similarly, '/*tf- may be determined, and it is found that 
di)j dw. 

Hit = - cos0,7 —- + sin0,y —— . (13) 

Noting now that e/f = fy-+ 7r and that 0,7=0;/, the final 
formulation of the angles in equations (9) is as follows: 
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10 

A 

Within each band \, 
there are six eigenvalues 

10' 10 
-i 10 10" 

Fig. 5 Evolution of the three lowest groups of eigenvalues of the 
system shown, for large, constant, in-plane stiffnesses [kVl ~ 0(104), k[, 
~ 0(10 )] and varying c» and c/y, all of which are of the order of 
magnitude of c ^ (See Table 4.1) 

Fig. 6 Evolution of the three lowest groups of eigenvalues of the 
system shown, for small, constant, in-plane stiffnesses [fc,y, fcjy - 0 
(10 ~ )] and varying Cy, cy, all of which are of the order of magnitude of 
cu (See Table ,4.2) 

rd
2v; . ^ „ . , _ a 

eM-^T + E CU^<% TZ I v> ~ (1 - «j) vj 
y= i 3x 

y,y + vji = sine?- [ a (u,- - u,-) /dx) + cos0?y (3 (w, - w,-) /dx), 
(14) 

pu + Hji = - cos0° {d(Vj-Vj)/dx\+ sinfly} (3 (w,- - w ;) /dx) , 

with similar expressions for vu and JXU. 
Next, referring to Fig. 4 and recalling once more that ue 

and u„.. + '/2 7T are at angles 0,-,- and 0y + 'Air, respectively, one 
may write 

u9.. =sinf?,yj + cos0,yk, 
(15) 

Then, neglecting second-order terms in the moment ap­
proximation, equations (9) and (10) may be rewritten as 
follows: 

9TC/i = ~ Cu (v,j + vJt) (cosfl&j - s in^k) , 

3TCa = - Qi Videos®} - s in^k), 
(16) 

3TC/'i = - Q (/*,,- + /*,-,-) (sinflg-j + cos0g-k), 

311/, = - Q/x,v(sin^j + cosflgk), 

where the approximation du — d°j was once more introduced. 
Finally, the total bending moment in the foregoing must 

formally be equated to the resisting flexural bending moment 
exerted by cylinder ;', at either x = 0 or x = L, i.e., 

311,, + ma + 311/, + 311/, 

= e(£/O2w,./ax2)ix=0, /.j-£/(a2t; //ax2)i^0] ikj, (17) 
where e = - l or 1 accordingly as x = 0 or x = L. Hence, 
making use of equations (14)—(17), the remainder of the 
boundary conditions may be formulated as follows: 

Journal of Applied Mechanics 

+ E <CU ~ CU) sin0g-cos$ — (w, - (1 - Sfj) wj 
j = i dx 

+ D Q c o s 2 0£ — (v, - (1 - 5),) vj J = 0, 

,a 2w ; 

"a? 

y'=i 

/V 
e £ / ^ + E Qcos2e?. - (Wl - (i - « ; ) wj) 

y ' = i 

+ E (Q/ - C£) sinfl&cosflg. - (v, - (1 - S<) vj 

/V 

+ Ec;sin20°i. 
M " y3* 

Nondimensionalization 

w , - - ( l - 6 j ) w > ) = 0 . 

(18) 

The equations of motion and boundary conditions may be 
nondimensionalized by the introduction of the dimensionless 
quantities 

V, = — . i//v+ 
v,• , x C 

(19) 
L3 L3 _ L , _ Z. 

v=~p7 'J' j = ~RT j' C''~~EI 'i' C,'~ ~EI ''' 

Hence, the equations of motion may be written, in matrix 
form, as follows: 

W +1£ =0' {20) 
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where i/= (1/1,1/2, • • • >V2N)T is a 27V vector. Similarly, the 
boundary conditions may be written as follows: 

N 

y"=i 

~ £ (Ay-A(/)l»J/V+/-(l-8Jh/v+,-)=0, 

(21) 
N 

y = i 

- S (Ay—Atf)U/-O-«j)*?/}=0, 

and 
N 

e(a2ij,-/af2)+J]fl{,-o/a€)(ijI--(i-«J)i?7} 
y= i 

/v 

+ Erf<,(3/a£)hAM-/-(i-8;)i/w.t7)=o, 
(22) 

/v 

e(d2
VN+i/d?)+Y;bu(d/dZ)it,N+,-Q-#j)vN+j) 

+ X)r f , y (a /a^ ){ r , , - ( l -5 j ) r , y )=0 , 
J = l 

at J = 0 and J = 1, where e = - 1 and 1, respectively, for 
(=1,2, . . . ,N; in the preceding equations,/„, gy, etc., stand 
for 

fu=kusin2e°u, gu = kucos26°u, hu = kusme0
ucose°u, 

f'y = k'ys[n26%, glj=k!jcos280
ui h^k^smdlcosdy, 

ay =CyCos2el+c'ySm26y, by = CySin26y+c;jCos2dy, 

diJ=(Cy-c;j)smdyCosefj (23) 

and will be constants for a given system. 

Solution of the Equations of Motion 

The solution of the system equations is given by 
Oo 

I |« ,T)= E<M£)e"*T> (24) 

where 

4>k=Hl4>l, . . . ,4>T\T (25) 
and o)k are the system dimensionless eigenfrequencies. 
Moreover, in view of the form of equation (20), the eigen-
functions <t>'k will be 

4>'k = a'kcos\k % + b'ks'm\k I- + chcoshX/c £ + dksmh\k %, (26) 

where the constants a'k to d'k are to be determined, such that 
the 4>i satisfy the boundary conditions. Here the superscript / 
is associated with a specific cylinder and direction of motion, 
while the subscript k is associated with mode order. 

Substituting equation (26) into (21) and (22), a system of SN 
linear equations is obtained, not given here for brevity, which 
may be written as 

[F(\k)]{ai, . . . ,a\N\ b\, . . , MN\ 4 , . . . ,<$*; 

di,...,d2
k
N)T=lO}, 

from which, by setting 

det[F(X*)]=0, (27) 

the eigenvalues \k may be determined. Then, by evaluating 
the coefficients a'k to d'k, the corresponding eigenfunctions 
may be found. It is noted that eigenvalues and dimensionless 
eigenfrequencies are related as for a simple beam, i.e., 
o>k = \2

k. 

Although this part of the paper is presented in highly 
abridged form, the computational aspect of the problem 
proved not to be trivial, especially because groups of 
eigenvalues were often found to be numerically very closely 
spaced. Hence, great care and some ingenuity had to be 
exercised in solving equation (27) in order to determine all the 
\k to the requisite precision. 

It should finally be remarked that in Part 2, where flow will 
be imposed on the system, the eigenfunctions (26) will serve as 
suitable comparison functions in the Galerkin solution to be 
employed [7]. 

Calculations and Results 

The main aim of the calculations was the study of the 
dynamical characteristics of the system with varying 
dimensionless spring constants. Of special interest was the 
study of the evolution of system eigenfrequencies with 
changing spring constants, and their comparison to various 
limiting cases, where the cylinders become effectively un­
coupled: e.g., when all spring constants are sufficiently large 
to approach the ideally clamped boundary conditions. 

It was generally found that the eigenvalues are clustered in 
groups of 2N, corresponding to N cylinders and two in­
dependent lateral directions. Within each group, the (axial) 
mode of deformation of the cylinders is sensibly the same; the 
mode shapes differ from one another in terms of the relative 
motions of the cylinders, as may most easily be visualized in 
any given cross-sectional plane: i.e., the cylinders may all 
move together toward the center of the channel in one mode, 
while they move in other cross-sectional patterns in the other 
modes of the same mode group. Thus, in this respect, 
structural and hydrodynamic coupling have similar effects on 
the dynamics of the system—cf. [8,9]. 

All results to be presented here are for a geometrically 
symmetric system of three interconnected cylinders, each of 
which is also attached to the channel, shown diagram-
matically inset in Fig. 5. Mainly to minimize computational 
difficulties associated with the occurrence of repeated 
eigenvalues, but also to reflect more closely the real case (Fig. 
1), not all spring constants of a kind were taken to be equal, 
but merely of the same order of magnitude; thus, c2\/cu = 
8/5, c3l/cn = 1 , and so on, for the results of Fig. 5, where 
these ratios were chosen arbitrarily and are given in full in the 
Appendix. 

In the first set of calculations, ky and ky were kept constant 
and large [ky ~0(104), ^ ~ 0 ( 1 0 3 ) ] , while the out-of-plane 
stiffnesses were varied. The effect on the eigenvalues is shown 
in Fig. 5. (It is realized, of course, that this independent 
variation of some of the spring stiffnesses, while others are 
kept constant, is for analytical convenience and that it is not 
physically realistic.) The abscissa in Fig. 5 is cn, but, as may 
be seen in Table A.I, all the Cy and c'y are varied propor­
tionately to c n • Moreover, in the figure only the band of the 
lowest three groups of eigenvalues is shown; i.e., in each case 
the curves depict the evolution of the lowest and highest X 
within each mode group. 

It is seen that for very small Cy, c'y, the six first-mode 
eigenvalues are essentially coincident and equal to the 
classical value of -K for an ideally pinned-pinned cylinder. 
Similarly, the second and third-mode groups are clustered 
about 2ir and 3ir, respectively, but the eigenvalues are in-
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Fig. 7 Evolution of the three lowest groups of eigenvalues of the 
system shown, for fairly large constant cy,c(j [c,y, Cy - 0(102)] and 
variable kjj, all of which are of the order of magnitude of ku, and ky 
which are two orders of magnitude smaller, o: stiffnesses as given in 
Tabled."!; +: stiffnesses as given in Table 4.3. 

creasingly spread out for these higher mode groups; this is 
physically reasonable, as higher axial modal shapes imply 
larger end moments, so that even very weak out-of-plane 
springs do not have a negligible effect on the coupled 
dynamical behavior of the system. 

With increasing Cy, Cy, the band of each group of eigen­
values spreads out, which characterizes stronger intercylinder 
coupling—cf. [8]. For large enough Cy, c'y, the system 
eigenvalues approach those of an ideally clamped-clamped 
beam. Once more, those in the first-mode group are almost 
coincident, while the eigenvalues of the third-mode group are 
quite far apart, indicating that fairly strong coupling still 
exists in the higher modes. Here it should be remarked that, 
although all spring constants at this point are quite large, they 
are nevertheless not quite infinitely large. 

Similar results are shown in Fig. 6, where in-plane stiff­
nesses are now very low [ky and ky ~ 0(10~4)]. It is seen here 
that if the Cy, c'y are large, the eigenvalues approach those of a 
beam with ideally "sliding" end conditions [10], i.e., zero 
slope and no constraint to lateral movement. Hence, in ad­
dition to those shown, there is an additional group of six 
nearly null eigenvalues, lying essentially on the cn-axis, 
corresponding to rigid-body motions of the cylinders, parallel 
to the x-axis. They will further be discussed later. 

At the left-hand end of Fig. 6, all springs are very weak, 
and the three groups of eigenvalues approach those of a free-
free beam, namely 0, 4.73, and 7.85 [10]. The group of 
eigenvalues approaching zero is associated with the other six 
possible rigid-body modes of free-free beams, involving rigid-
body rotation about the cylinder midpoint; these clearly 
evolve from the corresponding mode shapes of a sliding-
sliding beam, which are half-sinusoids with a midspan node. 
(The formerly discussed parallel motion rigid-body modes are 
of course still there, with nearly null eigenvalues.) It is 
remarked that the first-mode eigenvalues shown are still 
somewhat away from zero at Cy-~0(10"2), but the 
progression to zero cannot but be very gradual, as c'y, Cy, ky, 
and k'y, although small, are still finite. Once more, it is noted 
that intermediate values of Cy, c'y give the broadest band of 
system eigenvalues for each mode group, i.e., they are 
associated with maximum coupling in cylinder motions. 

A more interesting set of results is shown in Fig. 7, where 

Cy, cy are fixed at fairly high values, while the ky are varied 
from ~0(10_1) to ~0(104), and the ky proportionately but 
two orders of magnitude smaller. Thus, Fig. 7 may be thought 
of as the continuation of Fig. 6, in the sense that it shows the 
evolution of the eigenvalues, with increasing in-plane spring 
stiffnesses from the state represented by the right-hand side of 
Fig. 6 to high ky and k'y. For small ky, ky, it is noted that, in 
addition to the eigenvalues clustered about ir and 2TT (those 
about 3ir are not shown), there now appears a new set lying 
between X=0.4 and 1.2 which were absent in Fig. 6. Noting 
that k'y and ky at the extreme left of Fig. 7 are, respectively, 
one and three orders of magnitude higher than those at the 
extreme right of Fig. 6; these "new" eigenvalues may be 
identified as the evolution of the set of null eigenvalues 
formerly lying on the abscissa. 

At the extreme right of Fig. 7, once more all the spring 
constants are high and, predictably, the eigenvalues tend to 
cluster around those of a clamped-clamped beam. The most 
interesting part of this figure, however, lies in the middle 
range of in-plane stiffnesses. Thus, whereas for lower ky the 
three groups of eigenvalues are quite distinct, for ky > 0(50) 
approximately, the first and second-mode groups become 
intertwined into a single group of 12 eigenvalues. Similarly, 
for ky > 0(5 x 102) all three groups of eigenvalues become 
interspersed. On the other hand, as the ky are further in­
creased the eigenvalues once more begin to separate into 
distinct mode packets: for ky - 0 ( 5 x 103) there is a clearly 
distinguishable first-mode group; for higher ky, the second 
and then the higher-mode groups, become once more distinct. 
This unusual evolutionary behavior of the system eigenvalues 
may be considered to be analogous to that of Fig. 5 where, for 
the middle range of Cy, the lowest two eigenvalue bands are 
widest; the results of Fig. 7 may be viewed as a case where the 
eigenvalue bands become so wide as to intersect one another. 

The results of Fig. 7, apart from their intrinsic interest, also 
explain the paradoxical behavior noted but not explained in 
the work of reference [4], where it had been found that the 
number of modes in particular mode groups varied with 
changing parameters. 

Conclusions 

The work presented here indicates that the eigenvalues and 
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hence the eigenfrequencies of the system display a very in­
tricate and interesting dependence on the kind and strength of 
intercylinder structural coupling. For intermediate ranges of 
stiffnesses of the springs modeling intercylinder connections, 
coupling effects are strong and the eigenfrequencies become 
widely separated; indeed the groups of 27V modes with distinct 
axial mode shapes may lose their cohesiveness and become 
suffused into larger groupings, as shown in Fig. 7. On the 
other hand, as the various spring stiffnesses become either 
vanishingly small or very large, then the modes become neatly 
grouped once more, and the eigenfrequencies become 
clustered about the values associated with the four idealized 
sets of boundary conditions: free-free, sliding-sliding, pinned-
pinned, and clamped-clamped. The eigenfunctions of the 
system, although discussed qualitatively here, will actually be 
presented in Part 2 of this study [7]. 

The main conclusions of this work, as well as the 
Acknowledgments, will also be presented in Part 2, after the 
behavior of the sytem in flowing fluid will have been discussed 
[7]. 
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A P P E N D I X 

Table A.\ The spring stiffnesses used in some of the calculations. For Fig. 5: 
A„=4.77xl04 , fc,',=1.13xl03, and c„ is variable. For Fig. 7: c„ =1.73xl02, 
k'n =2.36xlO~2AE11,and&,1 is variable. 

•J-
5cy/c„: 
5cy7c„: 

11 V * n : 
Uk'j/kU: 

1, 1 

5 
5 

11 
13 

1,2 

8 
9 
5 
6.3 

Table A.2 The spring stiffnesses used 
k'y = ky, and c n is still variable. 

i,j-
4cjj/cn: 

4c!j/cn: 

4ky/kn: 

Table A .3 The 
*:,',= 2.54 x 10 ~: 

'J-

1,1 
4 
5 
4 

1,2 

7 
8 
5 

1,3 2,2 

5 8 
6 9 
5 10 
6.3 12 

in the calculations of 

1,3 2,2 

4 7 
5 8 
4 5 

Fig. 6; 

spring stiffnesses used in some of the calculations of Fig. 
lkn, and kn is variable. 

1,1 1,2 1,3 2,2 

2,3 

5 
6 
5 
6.3 

*n = 

2,3 

4 
5 
4 

7;c„ 

2,3 

3,3 

5 
7 

10 
12 

= 3 .46x l0" 4 , 

3,3 

4 
5 
4 

= 1.73xl02 , 

3,3 

5 c„- /c i i : 5 8 5 8 5 5 

5c'jj/cn: 5 9 6 9 6 7 

I5kij/ku: 15 9 9 14 9 14 

\9kij/kii: 19 11 11 18 11 18 
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Dynamics of a Cluster of Flexibly 
Interconnected Cylinders 
Part 2: In Axial Flow 
In this paper the dynamical characteristics are discussed of a cluster of cylinders, the 
extremities of which are interconnected by beam-like connectors, modeled here by 
sets of linear springs as formulated in Part 1 of this study; resistance to both in-
plane and out-of-plane deformation of the connectors is taken into account. The 
cylinders are subjected to axial flow, and hydrodynamic coupling in cylinder 
motions is taken into account. The system eigenfrequencies and modal shapes are 
calculated for different conditions of structural and hydrodynamic coupling. The 
effect of increasing flow on the dynamics of the system is also studied, up to and 
beyond the threshold of fluid-elastic instabilities. 

Introduction 

Clusters of closely spaced cylinders subjected to nominally 
axial flow may be found in certain types of heat exchangers 
and nuclear reactors [1], Axial flow, in contrast to cross flow, 
usually induces rather small amplitude vibration of the 
cylinders, which would normally be considered negligible [2], 
were it not for the very tight spacing of the cylinders; hence, 
even small amplitude vibration may cause intercylinder 
impact, resulting in fretting wear of the cylinders and failure 
of the system. For sufficiently high flow velocities, axial flow 
may induce fluid-elastic instabilities [2, 3], namely divergence 
and flutter of the system, involving coupled motions of the 
cylinders, which are of considerable fundamental interest. 

Although hydrodynamic coupling has been taken into 
account when studying the dynamics of such systems, e.g., 
references [3, 4], intercylinder structural coupling has been 
ignored, despite the fact that the cylinders are often in­
terconnected by fairly flexible structural elements. In Part 1 
of this study [1] a mathematical model was formulated for 
taking into account these flexible connections. To this end, 
each connector, assumed to exist only at the cylinder ex­
tremities, was replaced by a set of translational and rotational 
springs modeling resistance to in-plane and out-of-plane 
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deformation of the connector. The effect of structural 
coupling on the dynamics of the system in vacuum was then 
examined [1]. Here, utilizing the same mathematical model 
for the connectors, the dynamics of the structurally coupled 
system is studied in axial flow. 

The Equations of Motion and Boundary Conditions 

The equations of motion of a cluster of cylinders in axial 
flow have been derived previously [4] and will, therefore, be 
given here directly, without repeating the derivation. For a 
system of N identical cylinders of flexural rigidity EI, cross-
sectional area A, diameter D, length L, and mass per unit 
length m, in fluid of density p, flowing with velocity U along 
the x-axis, i.e., parallel to the long axis of the cylinders, the 
equations of motion of an arbitrary cylinder, say the /th, in 
two mutually perpendicular lateral directions y and z, in­
volving displacements Vj(x,t) and w,(x,t), respectively, are 
given by 

"TF+"S(« 
Dh 

Dt2 

1 

+ /c, 

N 

D2vr 

+ TpDUCf £ U Dw/ Dvt 

"~~WJr0n~Dt } 

•"""X^'EKT^] 

[f +(1 -2v)pA}^- +w4^r =0, 

EI-
,d4Wi 

dx2 dt2 

AX^( DLwl D'vn 
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1 v i (" Dw, Dv, ~) 

- l - W . C / 0 t l , « , . , i [ ( i i - x ) ^ ] 

d2W: d2w-, 
•[T+(l-2v)pA]-^- +m^- = 0, 

25 

3x2 

i=l,2,...,N, 

dt2 

U) 
where D/Dt = {d/dt) + U(d/dx) is the convective derivative, 
Cj- is the fluid frictional coefficient, Dh the hydraulic diameter 
of the flow in the channel containing the cluster, t is the 
externally applied tension on the cylinders, if any, p is the 
mean pressurization in the channel, and v Poisson's ratio; K,Y, 
KII, ejh e'u are the elements of the virtual ("hydrodynamic") 
mass matrix, which defines the inviscid hydrodynamic 
coupling in cylinder motions, and uu, a'ih f,v, £/, are the 
corresponding elements of the viscous coupling matrix [4]. 

It is noted that equations (1) are a simplified version of 
those derived in reference [4], arrived at by neglecting internal 
dissipation in the cylinder, neglecting the effect of gravity 
(operative in vertical systems), assuming that the overall 
length of the cylinders between supports remains constant (no 
axial sliding), and by introducing some other minor sim­
plifications. Without implying that they are always all 
negligible, these effects will not be included, simply because 
their inclusion would not have appreciably added to the 
significance of the results to be presented here. 

It is remarked that in vacuum, where p = 0, p-0, if ad­
ditionally T=0, equations (1) reduce to simple Euler-
Bernoulli beam equations, retrieving those of Part 1. In still 
fluid, on the other hand, some of the terms survive, but it is 
noted that D/Dt is replaced by d/dt. 

The equations may be nondimensionahzed through the use 
of the following dimensionless terms: 

_ w i _ V> _ * _ f EI ] '/2 t 

Vi-—, VN+I- — , 6 - 7 - T - l m + DAi L2' 

10 

Fig. 1 The band of eigenfrequencies of the lowest mode group in 
vacuum (0 = 0) and in still fluid (0 = 0.1) as c,y and c(j are varied, 
proportionately to cu. Upper figure: the in-plane stiffnesses are large 
[k / /~0(104),k/y~0(102), vide Table AA of Part 1]; lower figure: the in-
plane stiffnesses are small [k/y, ft/; ~0 (10 - 4 ) , vide Table A.2 of Part 1]. 
Other system parameters: r = n = u = 0, G C = G H , = 1/4. 
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Fig. 2 The evolution of the six lowest eigenfrequencies with in­
creasing u, shown as an Argand diagram, for a three-cylinder system 
with low out-of-plane stiffnesses and high in-plane stiffnesses [c/;, 
c,J--0(10"1);/t / ;--0(104),)ty--0(102), as given in Table 4.1 of Part 1, 
with e n =1.73x10 1 ] . Other system parameters: 0 = 0.1, r = n = 0, 
«Cf = 0.25, h = 1.26, Gc = G„ = 1/4. 
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w + p.4 EI D EI 

c,= —Ct, h= — , u= -^— t/L. (2) 

Substitution into equation (1) yields a dimensionles set of 
equations, which may be written in matrix form as follows: 

d4v d2V d2r, d2
V 

I—r +E—-i + F ? ~ + C -

+ G — + H — + M ^ = 0 , (3) 
3£ 9T 3T2 W 

where 

C = 2/3,/!wM„, 

E = «2M„ - [r + (l - 2 r ) n + V4ecfu
2(\+h)]l, 

G= 1/2ec/«
2C„ + '/aecyw2/!!, F = '/2ec/«

2(l + A)I, (4) 

H='/2€C//3'/!wC„, M = /3M„ +(1-/3)1, 

i / = { f i . ' 7 2 . - - - . ' J 2 / v l r . 

and I, M„, and Cv are, respectively, the identity matrix, the 
virtual mass matrix, and viscous coupling matrix, all of order 
27V x IN, the latter two being of the form 

» ^ y — 

" tr,/] [ft]" 

If the cylinders are very far apart from one another and from 
the channel, then «,-,•-> 1, e„ — 1, and all off-diagonal terms of 
M„ tend to zero, reflecting weak coupling; otherwise all 
elements of M„ are generally nonzero, and K „ > 1 , e„>l -
Similar relationships hold for C„ [3,4]. 

The cylinders are connected to one another and to the 
channel by sets of springs, modeling the effect of the beam­
like connectors, as developed in Part 1 of this study. Thus, 
resistance to in-plane stretching of the connector between 
cylinders / andy is represented by a spring of stiffness Ku\ in-
plane bending is similarly modeled by a spring of stiffness Ky. 
Out-of-plane flexure and torsion are modeled by springs of 
stiffnesses Cy and Cy, respectively. The boundary conditions 
involving these springs have been derived in Part 1. It will be 
assumed that they are unaffected by fluid flow and will, 
therefore, hold for this analysis as well. The following 
nondimensional stiffness parameters 

k,J=KijI?/EI, k^Kp/EI, 

cu = CuL/EI, cu = C!jL/EI (6) 

are necessary to render the boundary conditions also 
dimensionless [1]. 

Finally, the degree of spatial "tightness" of the 
geometrically symmetric systems to be considered here may be 
characterized by the following two parameters: 

Gc. = (smallest intercylinder gap)/(cylinder radius), 

G„, = (smallest cylinder-to-channel gap)/(cylinder radius). 

Outline of the Method of Solution 

Equations (3) will be solved by Galerkin's method. Hence, 
the solutions will have the form 

e 
«K*.T)= E **(*)/>*(*), (8) 

i = l 

where 

•0J t = [*J,0| , . . . ,<$v)7 ' (9) 

are vectors of the comparison functions </>(, j being associated 

with a specific cylinder and direction of motion and k with the. 
order of the mode; pk ( T) are the associated generalized 
coordinates. The eigenfunctions of the system in vacuum 
which were determined in Part 1 satisfy the same boundary 
conditions as those applying to this problem, and may 
therefore serve as .a suitable set of comparison functions. 
Rewriting then (8) in matrix form, 

r/ = * p (10) 

where 

*=[</>i, </>2>"-><M' P={P\>P2,---,PQ}r; (11) 

then substituting into equation (3) and applying the 
procedures of Galerkin's method, one obtains 

0o*rM*^]P + 0o1*1C^+ H)*^]" 
r f ' r a4 d2 d2 a-) -) 

the comparison functions involve trigonometric and 
hyperbolic terms, and hence all the definite integrals in (12) 
may easily be evaluated, yielding an equation of the form 

Ap' + Bp + Lp = 0 . (13) 

It should be stressed that the comparison functions, and hence 
A, B, L also, are functionally dependent on the spring stiff­
nesses ky, k'jj, c,j, and c-j. Equation (13) may easily be 
transformed into a standard eigenvalue problem, from which 
the eigenvalues, and hence the eigenfrequencies, and the 
eigenvectors of the system may be determined numerically. 
For the sake of brevity the computational aspects of the 
problem will not be elaborated here. 

The Eigenfrequencies and Stability of the System 

In Part 1, calculations were conducted in which the in-plane 
springs were kept constant and out-of-plane springs were 
varied, or vice-versa, and the effect on the system eigenvalues 
studied. Some of the results, in vacuum, are reproduced in 
Fig. 1, where they are compared to those calculated here for 
the same system in still fluid. As described in Part 1 (vide also 
references [3, 4]) the eigenvalues, and hence the eigen­
frequencies shown in Fig. 1, occur in groups of six (27V) for 
this three-cylinder system (iV=3); the frequency band of only 
the lowest group is shown for the two cases in the figure. 

In the first case (upper part of Fig. 1), the in-plane stiff­
nesses are large [k0; ~0(104), k'u ~0(102)].3 As cu , and all the 
other c,j and c[j proportionately, become small, the eigen­
frequencies are seen to be clustered about the value of -?r2, 
which is the dimensionless eigenfrequency of the first mode of 
a beam with pinned ends. For the system in still fluid, 
however, the eigenfrequency band is far broader, and they are 
mostly lower than those in vacuum, as expected (cf. [3, 4]). At 
the other end of the scale, where Cy and c'y are large, the 
eigenfrequencies are in the neighborhood of those of a beam 
with clamped ends (u = 4.732). For intermediate Cy, c'y, the 
main effect of the presence of the fluid is to render the 
eigenfrequency band wider. 

Similar effects are noted in the case where the ky, ky are 
vanishingly small [ky, ky —0(10 ~4)]. In this case, if the Cy, and 
c'y are also small, the eigenfrequencies tend toward zero, 
approximating free-free boundary conditions, and if they are 
large they tend toward TT2, approximating sliding-sliding 
boundary conditions [1]. hence, the principal effects of the 

As discussed in Part 1, all stiffnesses of a kind (e.g., all Cy) were taken to be 
of the same order of magnitude, but not exactly equal. The exact values used 
are given in tabular form in the Appendix of Part 1 [1]. 
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Fig. 3 The loci of the lowest five of the six eigenfrequencies of Fig. 2 
whilst on the /m(oi)-axis, drawn here off the axis and separated from one 
another for clarity 

presence of hydrodynamic coupling in addition to structural 
coupling are (/) to render wider the frequency band within 
which the eigenfrequencies lie, and (ii) to maintain the 
separation between the eigenfrequencies even in the limiting 
cases at the extreme left and right of the figure. In connection 
with this last point, if only structural coupling is present, then 
the cylinders in the cluster behave almost as if they were in­
dependently supported—i.e., coupling effects become rather 
small. 

The effect of flow on the dynamics of the system is studied 
next. Figures 2 and 3 show the evolution of the eigen­
frequencies of the first-mode group, with increasing 
dimensionless flow velocity w, for a system with rather low 
out-of-plane stiffnesses but high in-plane stiffnesses. It is seen 
that two pairs of the eigenfrequencies are almost coincident, 
for any given u\ had all the spring stiffnesses of a kind been 
taken equal, then the system would have been completely 
symmetric and there would have been two repeated eigen­
frequencies (cf. [4]). 

Discussion of the results of Figs. 2 and 3 will be aided by the 
realization that for a given complex eigenfrequency, cô -, 

J/(£ , T) ocexp(/co, T) = exp[iRe (co,) r]exp [ - Im (co,) T] . 

Hence, Re{wj) corresponds to the dimensionless frequency of 
oscillation in that mode, which is related to the dimensional 
radian frequency, Qy, by w,- = {(pA + m)/EI] v'QjL2. 
Similarly, Im(oij), if positive, is related to damping, so that 
the damping ratio is fy = Im(u>j)/Re(uj); if Im(oij)<0, this 
corresponds to negative damping, or amplification, of 
motions in that mode. 

It is now seen in Fig. 2 that, with increasing flow, the Re(ui) 
are diminished, while the Im(u) become finite and positive, 
indicating the existence of flow-induced damping in all the 
modes. At sufficiently high u, Re(oi) vanishes and the locus 
bifurcates on the Im(oS)-axis, first for the lowest mode, and 
then successively for the others. The continuation of the loci 
on the 7w(co)-axis is shown diagrammatically and separately 

in Fig. 3. It is seen that the locus of one of the branches of the 
lowest mode eventually crosses the origin, at u—1.6, in­
dicating the onset of amplified motion; in this case, as 
Re(dS) = 0 at that point, this is the onset of divergence 
(buckling). The higher-mode loci behave in a similar manner. 
At u — 3.055, the two branches of the first mode coalesce and 
leave the Im (u))-axis; at this point Re (co) ̂  0 and Im (co) < 0, so 
that this point corresponds to the onset of oscillatory in­
stability, or flutter. Similar results may be obtained for the 
second-mode group, the eigenfrequencies of which, at small 
u, are clustered about 4-JT2. 

The results of Figs. 2 and 3 are similar to those previously 
found in references [3, 4] in the absence of structural 
coupling. This is not surprising, as the spring stiffnesses are 
such as to imply minimum structural coupling, the boundary 
conditions resembling those of cylinders with pinned-pinned 
ends. 

On the other hand, for another range of spring constants, 
where structural coupling is much more pronounced, the 
results become far less "regular," as shown in Fig. 4. (The in-
plane and out-of-plane stiffnesses in this case correspond to 
the middle range of the results shown in Fig. 7 of Part 1.) In 
this case the first and second-mode groups become in­
tertwined, and one may distinguish one grouping of three 
modes which, for low u, lie in the range 3 <Re (w) < 6, 
another grouping of six modes in the range 10.5 <Re(u>)< 14, 
both of which are shown in Fig. 4, and three other modes at 
higher Re(ui); the third-mode group remains distinct. The 
nature of these modes is rather perplexing, and will be 
discussed further when the eigenfunctions of the system are 
examined. 

Another interesting and unusual feature of the results of 
Fig. 4 is that the mode loci can no longer be considered to be 
one family of curves, all of which behave alike with increasing 
flow. Thus, buckling in the first mode does not occur first 
with increasing flow, to be followed by buckling in the 
second, third, et seq modes; instead buckling occurs first in 
the second mode. 

Comparing the flow velocities for the first onset of in­
stability, ucb, between Figs. 2 and 4, it is evident that they are 
dependent on the spring stiffnesses involved, which makes 
sense on physical grounds. The dependence of ucb on the out-
of-plane spring stiffnesses for a system with large in-plane 
stiffnesses is shown in Fig. 5. The two limiting cases of c^, 
c'u ~0(10 - 3 ) and ~0(103) compare well with those previously 
found [4] for the same system with (independently) ideally 
pinned and clamped ends, respectively. For intermediate 
values of the ctJ there is a smooth transition. The only 
noteworthy point that may be made here is that, so far as the 
values of ucb are concerned, c,-,, c,y<0(10_1) give sensibly the 
same results as for Cy=c,y=0, and for c,j, c,y>0(102) one 
obtains almost the results corresponding to c,y = c,y = oo. 

The Eigenfunctions of the System 

For a system of N independently supported (uncoupled) 
cylinders, one obtains 2N modes with basically the same axial 
modal shape, which corresponds to that of the first flexural 
mode of a beam with the same boundary conditions; these 
modes differ from one another in that the relative motions 
between the cylinders are distinctly different, i.e., they are 
associated with different "cross-sectional" modal patterns. 
Similarly, there is a group of 27V modes of second beam-mode 
axial modal shape, but with essentially the same cross-
sectional modal patterns as those of the first-mode group; and 
so on. Here we shall examine the case of structurally coupled 
cylinders. 

The modal shapes of a system with large in-plane stiffnesses 
and rather small out-of-plane stiffnesses are shown in Fig. 
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Fig. 4 The evolution of the nine lowest eigenfrequencies with in­
creasing u, shown as an Argand diagram for a system with quite low in-
plane stiffnesses and intermediate out-of-plane stiffnesses [fry -0(10), 
k)'j ~0(10_ 2) ,C| j ,Cy~0(102) , as given in Table A.3 of Part 1, with 
fr-11 =6.50]. Other system parameters: (3 = 0.1, r = n = 0, ec f=0.25, 
/! = 1.26, G C = G W = 1/4. 

Fig. 5 The variation of the lowest dimensionless flow velocity, uc j , , for 
the onset of buckling for a system with large in-plane stiffnesses and 
variable out-of-plane stiffnesses. All the system parameters are the 
same as in Fig. 2. 

6—for basically the system of Fig. 2, with w = 0.5. In Fig. 6(a) 
are shown the six distinctive cross-sectional modal patterns, 
which remain essentially the same for the first and second-
mode groups, the animated axial mode shapes of which are 
shown in Figs. 6(5) and 6(c), respectively. These latter, in view 
of the spring stiffnesses involved, resemble those of a pinned-
pinned beam. 

Several points should be made. First, the cross-sectional 
modal patterns of Fig. 6(a) are closely similar to, and ordered 
in the same sequence as those of an ideally pinned-pinned 
system (cf. Fig. 3 of reference [4]). However, the angles 
between the vectors are not identical. Thus, for the ideally 
pinned system, the third-mode "implosion-explosion" 
pattern involves exactly equal vectors, disposed to one 
another at 120 deg; similarly, the sixth-mode pattern involves 
pure rotary motion about the center of the channel. In the 

case of Fig. 6(a), on the other hand, these ideal patterns are 
almost, but not quite, reproduced. This is so, simply because 
the spring stiffnesses c,2, c13, c23 are not equal, nor cu, c22, 
and c33 (and similarly for the c,y); hence, the system is not 
truly symmetric, albeit geometrically symmetric. 

A second point of interest is that there is no true node at the 
midpoint of the cylinder in Fig. 6(c). This is a well-known 
flow-induced phenomenon, associated with traveling wave 
components in the vibrations of the cylinders. Such effects 
become more pronounced with increasing flow.4 

We turn next to the study of modal shapes of the system of 
Fig. 4, where the first and second-mode groups of eigen­
frequencies are not separated, but rather appear to form a 
single group of 12 modes—vide also the eigenvalues in the 
middle range of Fig. 7 of Part 1 and the discussion pertaining 
thereto. The modal shape characteristics of the lowest 12 
modes of this system are shown in Figs. 7 and 8. Here, unlike 
Fig. 6, the axial mode shape of Fig. 1(b) is associated with 
only the first three modes, while that of Fig. 7(c) with the next 
three; similarly, Fig. %(b) is associated with modes 7, 8, and 9, 
while Fig. 8(c) with modes 10 to 12. Hence, this is an 
"unusual" system in many ways, deserving special attention. 

Two important observations may be made. First, within 
each of Figs. 7 and 8, the upper three cross-sectional modal 
patterns are the same as the lower three. Second, the axial 
modal shapes of Figs. 1(b) and 8(£>) are essentially similar, as 
are those of Figs. 7(c) and 8(c). Based on these two con­
siderations, it may be said that the first three modes of Fig. 7 
and those of Fig. 8 (i.e., modes 1, 2, 3, 7, 8, 9) form one 
modally cohesive group, and similarly modes 4 to 6 and 10 to 
12 constitute another such group. 

Consider next the form of the axial modal shapes. In view 
of the spring stiffnesses involved, these should resemble the 
modal shapes of a beam with sliding-sliding boundary con­
ditions. This is verified by the modal shapes shown. Thus, the 
modal shapes of Figs. 1(b) and 8(b) resemble that of the first, 
or "null ," rigid-body mode of a sliding-sliding beam, where 
the cylinders move essentially parallel to their long axes, while 
the modal shapes of Figs. 7(c) and 8(c) are similar to those of 
the second mode (first flexural mode) of a sliding-sliding 
beam. 

The calculations in Figs. 6-9 were purposely conducted with a small u to 
highlight mostly the structural coupling effects on system behavior. 
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o>4= 10.67* 0.007 i ou5= 10.75*0.007 i .54*0.0041 

(a) 

Fig. 6 Modal shapes of a system of three cylinders with large in-plane 
and small out-of-plane stiffnesses, corresponding to the parameters of 
Fig. 2 and u = 0.5. (a) Cross-sectional modal patterns of the first mode 
group; (b) and (c) typical axial modal shapes of the first and second-
mode groups, respectively. 

w,= 3.02 + 0 0 0 4 i w3= 5.22* 0.010 i 

w4= 10.82*0.004 i u)5= 10.98*0.010 i OJ6= 11.03*0.010 i 

(a) 

(b) 
Fig. 7 The modal shapes of the six lowest modes of a system with 
quite low in-plane stiffnesses and intermediate out-of-plane stiffnesses 
[(t(/--0(10), k/y-0(10~2), c,y, C/y~0(102), as in Fig. 4]; system 
parameters as in Fig. 4, and u = 0.5. (a) Cross-sectional modal patterns; 
(b) and (c) typical axial modal shapes for the lowest three modes and 
the other three, respectively. 

Hence, the discussion of the foregoing two paragraphs 
makes it obvious that one may distinguish a first-mode group 
consisting of modes 1 to 3 and 7 to 9, and a second-mode 
group consisting of modes 4 to 6 and 10 to 12. Thus, although 
the two groups of modes are intertwined and the highest 
eigenfrequency of the first-mode group is not lower than the 
lowest eigenfrequency of the second, one may nevertheless 
still distinguish individual mode groups. The preceding 
discussion also reinforces the view expressed in Part 1 that 
what happens in circumstances where both the c,;, c,y and the 
ky, k'jj are neither very small nor very large, the bands of first 

and second-mode eigenfrequencies become so wide as to 
intersect (vide Fig. 7 of Part 1). 

A final point of interest in Figs. 7 and 8 is that in some cases 
orbital, rather than planar motion may be observed, e.g., in 
the cross-sectional patterns of the fifth and sixth modes in 
Fig. 7(a). Such patterns had been observed before in con­
junction with repeated eigenvalues [3, 4]. Here, however, it is 
believed that this likely arises because of the differences that 
exist, in these cases, in the axial modal shapes in they and z-
directions; thus, although they are all similar to those shown 
here, the axial mode shapes for some of the cylinders are 
appreciably different in the two directions, e.g., in one 
direction they may be as in Fig. 7(c), while in the other the 
quasi-node at the cylinder midpoint is much more diffuse. 

OJ ,=12.10* 0.007 i 

o j4=2l.29*0.008i 

1 • 
1 

w2=l2.2l*Q007i 

f @ 
•a o 

1 
cu5=.2l.48*0.008 

\ ® 

w3=l3.49*O0lli 

v @ 
\ 

/ 

u)6=24.45*0.lli 

(a) 

Fig. 8 The modal shapes of the six next to lowest modes of the 
system of Fig. 7. (a) Cross-sectional modal patterns; (b) and (c) typical 
axial modal shapes for, respectively, modes 7 to 9 and modes 10 to 12. 

Figure 9 shows the modal shapes of a system with 
vanishingly small in-plane spring stiffnesses and out-of-plane 
stiffnesses relatively higher, but still one order of magnitude 
smaller than those in Figs. 7 and 8; thus, one might expect the 
system to behave similarly to one of free-free beams. Here the 
modes occur once more in distinct mode-groups; thus, the real 
parts of the first-mode group eigenfrequencies range from 
7.37 to 9.72, while those of the second-mode group are 
clustered two decades higher. Moreover, once more the cross-
sectional modal patterns of the first group of six modes, 
shown in Fig. 9(a) and associated with the axial mode shape of 
Fig. 9(b), are essentially identical to those of the second mode 
group (not shown) which have the axial mode shape shown in 
Fig. 9(c). Here it is also noted that Fig. 9(b) is the evolution of 
the modal pattern of Figs. 7(c) and 8(c). The "first-mode" 
group, associated with Figs. 1(b) and 8(b) still exists in this 
case, with essentially the modal shape of Fig. 7(b), but the 
associated eigenfrequencies become vanishingly small—i.e., 
as the spring stiffnesses tend to zero, that group is trans­
formed into what might be called the "null-mode" group. In 
this connection the reader is referred to the discussion of Figs. 
6 and 7 of Part 1 [1]. 

Conclusion 

Various aspects of the dynamics of a system of cylinders 
were examined in this two-part study, where the cylinder 
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4 
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Fig. 9 The modal shapes of a system with vanishing in-plane and 
relatively higher out-of-plane stiffnesses [fcfy, fcy ~0 {10 - 4 ) , c f j , 
cfy~0(10), as given in Table A.2 of Part 1, with 0^=13 .9 ] ; other 
parameters: /S = 0.1, r = n = 0, icf = 0.25, h = 1.26, G c = G w = 1/4, u = 0.5. 
(a) Cross-sectional modal patterns of the first-mode group; (b) and (c) 
typical axial modal shapes of the first and second-mode groups, 
respectively. 

extremities were interconnected by a number of in-plane and 
out-of-plane springs, modeling physical connectors at these 
points. In Part 1 [1] the dynamics of the system were 
examined in vacuum, while the present paper was devoted to 
the study of the system in axial flow. 

It was found that, provided that either the in-plane spring 
constants or the out-of-plane ones are either small or large, 
the system behavior is similar, but not identical, to that of a 
system of independently supported (structurally uncoupled) 
cylinders. Thus, the characteristics of the system in vacuum 
tend toward those of solitary beams with the appropriate 
boundary conditions, as in such cases there is effectively little 
intercylinder coupling of any kind; similarly, in axial flow, 
system behavior is similar to that of systems studied 
previously [3, 4], where structural coupling was not con­
sidered, but hydrodynamic coupling was. Indeed, in the limit 
of either very small or very large stiffnesses of the different 
types of springs involved, the system eigenfrequencies and 
modal characteristics approach those of systems with in­
dependent and ideal clamped, pinned, sliding, or free 
boundary conditions. 

The foregoing are as one might expect. When one set of 
spring stiffnesses, however, is of intermediate magnitude, 
then structural coupling effects become pronounced, as may 
be seen in Fig. 1 (and in Figs. 5 and 6 of Part 1), and the 
frequency bands of the so-called mode groups become 
considerably broader; but, these mode groups remain distinct 
from one another. This broadening of the frequency band 
becomes more pronounced in the presence of fluid (Fig. 1), 
and more so in the presence of flow (Figs. 2 and 4). The 
relative importance of hydrodynamic and structural coupling 
depends on the fluid density and "tightness" of the cylinder 
geometry, as well as on the magnitude of the spring stiff­
nesses, all of which have been characterized by appropriate 
dimensionless numbers in the mathematical model developed 
here. 

The most interesting case arises when all kinds of springs 
are of intermediate strength. Then the curious phenomenon 

occurs, where the first and second-mode groups, or even all 
the lowest three mode groups, merge. As shown here this may 
be thought to be a manifestation of extreme widening of the 
frequency bands of the different mode groups, leading to 
intertwining of the eigenfrequencies. One may still identify 
sets of 27V modes as belonging to distinct mode groups, but 
the ordering of the modes becomes irregular: as shown in 
conjunction with Figs. 7 and 8, the first mode group there 
consists of the first, second, third, seventh, eighth, and ninth 
modes of the system, where these modes have been numbered 
in ascending order of the eigenfrequencies. 

The stability of the system was also examined—vide Figs. 
2-5. For the systems studied, stability was lost by divergence, 
although it is expected that for different sets of spring stiff­
nesses, flutter may be the most critical mode of instability. 
The reason for not pursuing this latter point further is that in 
these circumstances the geometry of the leading and trailing 
ends of the cylinders becomes important from the fluid 
mechanics viewpoint [5], while these effects are not taken into 
account in this mathematical model. Nevertheless, for systems 
with firmly supported ends (i.e., fairly large ky, k'y), the 
transition from one limit of spring stiffnesses to the other is 
smooth (Fig. 5), and one may consider the pinned-pinned 
system as giving the most conservative estimate of the critical 
flow velocity. 

All calculations presented were fot three-cylinder clusters, 
in the interests of economy; systems of two cylinders have also 
been studied. Even so, the expenditure in terms of com­
putational cost was considerable. This arises because, unlike 
the case of independently supported, structurally uncoupled 
systems (/) the comparison functions here involve all the 
cylinders, rather than just one, and (//) the comparison 
functions are functionally dependent on the spring stiffnesses, 
so that they change as these latter are varied. 

Finally, it should be noted that, in the calculations 
presented, the spring stiffnesses were varied arbitrarily, as if 
one were dealing with individual physical springs—which is 
justified in this type of fundamental study. However, for a 
real system, as one changes the thickness or width of the 
connectors, the spring stiffnesses would of course all be af­
fected together. It is obvious that for a given physical system 
these stiffnesses may be estimated analytically. Better still, a 
simple finite-element model for the interconnecting structure 
may be constructed that would directly give the pertinent 
equivalent stiffnesses, and this is now being done, as an aid to 
designers. 
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Application of Wiener-Hermits 
Expansion to Nonstationary 
Random Vibration of a Duffing 
Oscillator 
Nonstationary random vibration of a Duffing oscillator is considered. The method 
of Wiener-Hermite series expansion of an arbitrary random function is reviewed 
and applied to the analysis of the response of a Duffing oscillator. Deterministic 
integral equations for the Wiener-Hermite kernel functions are derived and 
discussed. For the special case of a shaped white-noise excitation, the system of 
integral equations are solved by an iterative scheme and the mean square responses 
of a Duffing oscillator for various values of nonlinearity strength and damping 
coefficient are calculated and the results are elaborated in several graphs. 

1 Introduction 

Analysis of the response of linear and nonlinear systems 
subjected to random excitations is of considerable interest to 
the fields of mechanical and structural engineering. 

When the amplitude of vibration is large or when the 
system undergoes a plastic deformation, nonlinear analysis 
must be employed. The development of the mathematical 
theory of nonlinear vibrations was started at the end of the 
last century by the work of Poincare [1] who laid the foun­
dation of topological and perturbation methods for the study 
of weakly nonlinear systems. 

Studies undertaken by Duffing [2] brought important 
contributions to the theory of nonlinear vibrations and drew 
attention to the importance of this theory in physics and 
engineering. 

Response of linear systems subjected to stationary random 
excitations was investigated by several investigators as 
summarized for instance by Eringen [3], Crandall and Mark 
[4], Clough and Penzien [5], and Lin [6]. 

The problem of nonlinear random vibration has been 
considered in the past two decades. The common techniques 
for approximate analysis of nonlinear random systems are the 
method of equivalent linearization [7] and the perturbation 
technique [8]. The exact method of the Fokker-Planck 
equation [9] can only be used when the response is a Markov 
process [10]. 

An excellent review of the literature on the response of 
nonlinear systems to random excitation was provided by 
Caughey [11]. Analysis of the response of nonlinear plates to 
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stationary random excitation was considered by Ahmadi, 
Tadjbakhsh, and Farshad [12]. Nonlinear strings and beams 
subjected to stationary random excitation were studied by 
Caughey [13] and Srinivasan and Vasudevan [14], respec­
tively. 

Progress in the theory of nonlinear random oscillation is 
reported by Spano and Iwan [15, 16], Spano [17, 18], and 
Roberts [19]. Recently, response of nonlinear systems under 
nonstationary random excitations was investigated by Ah­
madi [20-22], Kaul and Penzien [23], Iwan and Mason [24], 
Wen [25], and Baber and Wen [26, 27]. An excellent review is 
provided by Spanos [28]. 

In the present study, the method of truncated Wiener-
Hermite expansion is employed for analysis of the response of 
a Duffing nonlinear oscillator subjected to some non-
stationary random excitations. The Wiener-Hermite series 
expansion method was developed by Cameron and Martin 
[29] and Wiener [30]. It was applied to a time invariant 
nonlinear system with white-noise input by Barret [31]. 
Meecham and Siegel [32] and Meecham and Jeng [33] applied 
the Wiener-Hermite method to the closure problem of Navier-
Stokes turbulence. Recently, this technique was used in the 
analysis of strong electrostatic plasma turbulence by Ahmadi 
[34]. Wiener-Hermite expansion was also employed to 
represent the random ground acceleration during an earth­
quake by Ahmadi [35]. 

In the present analysis both the forcing function and the 
response of the Duffing oscillator are expanded on the 
random, statistically orthogonal Wiener-Hermite set. The 
series are truncated after the third terms. Deterministic 
equations for the time development of the Wiener-Hermite 
Kernel functions are derived and discussed. For the special 
case of a modulated, nonstationary white-noise excitation, the 
nonlinear integral equation for the first-order kernel 
function is solved by an iterative technique. The mean square 
responses of the Duffing oscillator are obtained for various 
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ranges of values for damping coefficient and strength of 
nonlinearity. The results are presented in several figures. 

2 Formulation 

The basic equation for vibration of a nonlinear Duffing 
oscillator subjected to a random force/(0 is given by 

x+2fa0x+o>2
lx+eu2

0x
3=f(t), (1) 

where u0 is the natural frequency of the corresponding linear 
system, f is the damping coefficient, and e is the strength of 
nonlinearity. Duffing equation (1) is encountered in the 
vibration of nonlinear plates as discussed for instance by 
Ahmadi [20] and Jahedi and Ahmadi [36]. 

To analyze the response of equation (1) to an arbitrary 
random f o r c e / ( 0 , the Wiener-Hermite expansion method is 
employed. The Wiener-Hermite is a complete set of 
statistically orthogonal random functions which was 
developed by Cameron and Martin [29] and Wiener [30]). 

The first few terms of the Wiener-Hermite series are: 

//<0> = 1, 

//<»(/) =n(t), 

H<2\tl,t2) = n(tl)n(t2)-5(tl-t2), 

H^(t],t2,t,) = n(tl)n(t2)n(t3)-n(tl)6(t2-ti) 

-nViMtj-tA-nVsmti-ti), (2) 

where n(t) is a white-noise process with the following 
statistical properties 

< « ( : ) > =0, 

<n{ti)n(t2)>=5(tl-t2), (3) 

and 5( ) is the Dirac delta function. < > stands for the 
expected value (ensemble average) operator. Elements of the 
Wiener-Hermite set are random variables with zero mean with 
the exception of the zeroth-order term, i.e., 

<//<" (/,,/2, . . . /,) > =0 for ;V0. (4) 

The Wiener-Hermite set is also an orthogonal set, i.e., 

<//<" (tltt2, . . . t,)HW (t{,t{, . . . / / ) > =0 for i*j. 

(5) 

Furthermore, as shown by Wiener [30], the Wiener-Hermite 
set is a complete set in the sense that any arbitrary random 
function can be expanded in terms of a Wiener-Hermite set 
and the expansion converges to the original random function 
with probability one. Further properties of the Wiener-
Hermite set is described in Appendix A. 

The basic method for the use of the Wiener-Hermite ex­
pansion in the analysis of the response of a nonlinear system is 
the following: both the forcing and the response are expanded 
in terms of the Wiener-Hermite set. From the' original 
governing equation deterministic equations are derived for the 
dynamics of the unknown kernel functions of the Wiener-
Hermite expansion of the response, which involves the known 
kernels of the corresponding series for the forcing function. 
The Wiener-Hermite expansion series for the response must 
be truncated after a few terms. As discussed in Appendix A, 
the zeroth-order term in the Wiener-Hermite series 
corresponds to the mean value, the first-order term 
corresponds to the Gaussian part, and the second and higher-
order terms correspond to the non-Gaussian part of the 
random function. Therefore, it is clear that the Wiener-
Hermite method is capable of considering the non-Gaussian 
response of a nonlinear structure subjected to random load. 

To analyze the response of a Duffing oscillator as given by 
equation (1), the functions f(t) and x(t) are expanded in 
terms of the Wiener-Hermite set. These are given by 

/(o = f+e°^l)(Mi)«(1)ai)*i 
J — co 

+ \+ \+ F«\t,tut2)H<2\tut2)dtxdt2+ . . . , 
J - c o J — oo 

(6) 

and 

+ ( +°° ( + A^(t,tut2)H^2\tl,t2)dtldt2+ . . . , 
J — oo J —co 

(7) 
where the mean values are taken to be zero and the higher-
order terms are neglected. I*l) and F^ are known deter­
ministic kernel functions. 

Employing (6) and (7) into equation (1), neglecting the 
second and third-order power of A(T) (/, /, , t2) and 
multiplying both sides of the equation by Hw (t5), taking the 
expected value, and using orthogonality properties of the 
Wiener-Hermite set, we find 

AW(t,t5) + 2fr0AW(t,t5) + u2
0AM(t,t5) 

i
-f-GO f» + OO ft + CO 

A^(tA)Ail)(tJ2)A
w(t,t,) 

- o o J —oo J - o o 

^Ktx)H^^{t2W\t3W\t5)dtxdt2dt3> 

{
+ O O /» + CO n + 0 0 f* + OO 

A^(tA)Aw(t,t2) 
- 0 0 J - 0 0 J -CO J - O O 

A^it^M^u^^Kt^^ih^KhA) 
dt]dt2dt3dt4>=f*[\t,t5). (8) 

Employing equations ^4-3) and (A-6) of Appendix A, after 
some algebra, equation (8) reduces to 

A^{t,t,) + 2^0A^{t,tx) + o^A^Kt,tx) 

+ 2eulA^UA)\_ [A^(t,t2)]
2dt2=^\t,t]). (9) 

Now if equation (1) in which x(t) a n d / ( 0 are replaced by 
their respective series expansions as given by equations (7) and 
(8), are multiplied by H™ (t2, / , ) , after taking the expected 
value and using orthogonality properties of the Wiener-
Hermite polynomials, the result is 

2A<2\t,t] ,t2) + 4fa0AW(t,tl ,t2) + 2<4AW(t,tx ,t2) 

i +OO n —OO p + C O ji +00 

— oo J — o o J — c o J—oo 

tfi\t5)HV\t6)Hi2\tl,t2)HiV(t3,U)> 

Simplifying the fourth term in equation (10) by the use of 
equation (A-6), we find 

AW(t,tt ,t2) + 2fr0AW(t,tl ,t2) + wgi4«2»(r,/, ,t2) 

J +oo 
A^(t,t2)A^(t,t2,ti)dti 

— Co 

+ 6ealAV\t,t2)\
+°°AV\t,t3)A

w(t,t].h)dt3 
J — 00 

+ 6eu2
0AW(t,tut2)\

 +C° {A«\t,t3))
2dt3=F2\tA,h). (ID 

J — Oo 

Equations (9) and (11) are two deterministic equations for 
finding the two unknown kernel functions Am and A(2). It is 
observed that for the present case of a Duffing oscillator, 
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equation (9) for Am is decoupled from equation (11) and can 
be solved independently. The solution for Am may then be 
employed in equation (11) and the unknown function A(T) 

may then be calculated. This decoupling simplifies the 
numerical calculations to a considerable extent. When Am 

and A(T) are known, equation (7) gives the Wiener-Hermite 
representation of the nonlinear response. From the series (7) 
all the statistical properties of the random process x(t) could 
be calculated. For instance the variance of x(t) is given by 

i +co 
[A^{t,t{)]

2dtx 
— oo 

i
+OO ji + 00 

[A2U,tut2)]
2dtidt2. (12) 

- O o J - o o 

The formulation given by equations (9) and (11) are quite 
general and could be used for analysis of the response of the 
Duffing oscillator subjected to an arbitrary, stationary, or 
nonstationary Gaussian or non-Gaussian random excitation. 
These equations are exact up to the second-order terms in the 
Wiener-Hermite series. Considerations of third and higher-
order terms would of course lead to more accurate results. 

3 Response to Modulated White-Noise Excitations 

In this section, the special case, when the excitation/(/) is a 
modulated white-noise process is considered. The expansion 
of f(t) in terms of the Wiener-Hermite set is given by 

(a) If e(t) is a unit step function 

e(t) = \ (20) 

J) t<0 

then from equation (19), it follows that 

o2(t) = \ a2(6)d6. (21) 

(b) lfe(t) isunity for a finite time duration/0, i.e., 

fl 0 < ^ < ? 0 , 

e ( 0 = 

0 otherwise, 

the expression for the response variance then becomes 

(22) 

f{t) = \+C°F(t,tl)HV\tl)dtl, 
J — oo 

(13) 

where its mean value and non-Gaussian parts are zero. Now 
let the Kernel F{t,ti)be given by 

FU,ti) = e(tl)SV-tl), (14) 

where e(tx) is a deterministic envelope function. In this special 
case the explicit form of the excitation given by equation (13) 
becomes 

f(t)=e(t)H^(t)=e(t)n(t). (15) 
For solving equation (9) with F{t, tt) being given by equation 
(14) it is assumed that 

Am(t,tl) = 

'eit^aU-ti) / > / , 

0 t<tx 

0 t, <0 . (16) 

Since F2) is identically equal to zero, equation (11) satisfies 
the trivial solution 

A^(t,ti,t2) = 0. (17) 

Employing equations (14) and (16) into equation (9), and 
measuring time from the origin of / , , we find 

a(t)+2fr0d(t)+u2
0a(t) 

+ 3ew2
0a(t)\ioe

2(t')a2(t-t')dt'=8(t). (18) 

The variance of x(t) as given by equation (12) now becomes 

a2(t) = \ e2(t-6)a2(6)de. (19) 

When a(t) is found from the solution of equation (18), 
equation (19) gives the variance of the response for an ar­
bitrary envelope function e(t). 

Some envelope functions of interest are considered here. 

o2(t) = 

[' a2(6) 
Jo 

dO 0<t<t0, 

[' a2(.d) dd t>t0. (23) 

(c) If e(t) is a decaying exponential function 

e(t)= . 

J) / < 0 , 

the expression for the response variance then becomes 

(24) 

a 2 ( 0 = 

f expl-2y(t-d)}a2(6)ddt>0t 

J) t<0. (25) 

Several other envelope functions could be employed. 
However, these examples show the procedure and some of the 
most used envelope functions. 

In the absence of nonlinearity, equation (18) reduces to 

a(t)+2fa0d(t)+u2,a(,t)=8(t), (26) 

the solution of which is given by 

a{t)= — e-fwo'sin(co00, 
wD 

where 

O ) D = C 0 0 VTT2 

(27) 

(28) 

For a unit-step envelope function, substituting for a(t) from 
equation (28) into equation (21) and neglecting the second-
order terms in damping coefficient, the mean square response 
becomes 

„i(t) = ——(\-e-^0i) , . ) V ' - / o 4 [2a>Dsin2a>D? 

-2ftoDcos 2 wDt)e-2^o' +2fw0]. (29) 

If the second bracket of equation (29) which is small with 
respect to the first term is neglected, it reduces to 

<r2(0 = 7 ^ 1 - ( l - e - 2 f l J ' ' ' ) . 4 fag 
(30) 
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Fig. 2 Root mean square response of a Duffing oscillator for a white 
noise excitation with a unit step envelope function 

Equation (30) is the same equation as found by Ahmadi 
[20] for the zeroth-order perturbation of the same problem. 
The second bracket of (29) was neglected in [20]. 

Figure 1 shows the standard deviations of the response of a 
linear system to a modulated white noise (envelope function 
being a unit step function) as predicted by equations (29) and 
(30). It is observed that the results are very close and the slight 
difference is due to the terms neglected in [20]. 

For the original nonlinear Duffing equation, the nonlinear 
integrodifferential equation given by (18) must be solved. An 
iterative scheme for the solution is adapted here. First, 
equation (18) for the case of a unit-step envelope function is 
rewritten as 

a(t) +2faQa(t)+<4a(t) = 5(0 -3ew§a(0 I a2(t)dt. 

(3D 
The iteration scheme starts by neglecting the nonlinear term 
on the right-hand side of equation (31) in the zeroth-order 
iteration. The solution of the resulting linear equation, which 
is identical to equation (26) for a(t), is given by equation (27). 
In the first-order iteration the approximate value of the 
nonlinear term is found by using the previously calculated 
estimate of a(t). Then, in the next iteration it is treated as a 
part of the excitation of the right-hand side of equation (31). 
The new estimate ax (t) of the response is found by numerical 
evaluation of the convolusion integral 

fli = ( Ht-r)f{r,a0(T))dT, 
Jo 

(32) 

where h(t) is the impulse response of the linearized equation 
(26) given by equation (27). 

The iteration is continued by replacing a0 on the right-hand 
side of equations (31) and (32) by a, and evaluating a2 by 
numerical integration of (32). For the present problem the 
iteration was continued until at two successive iterations the 
absolute values of the differences of a„ (0 with the previous 
iteration an_\(t) became less than one-thousandth of the 
absolute value of a„_( for all the time steps considered. A 
simple Simpson rule of integration is employed throughout 
for numerical evaluation of the integrals. The final solution 
a„(t) = a(t) is used in equation (21) for evaluation of the 
mean square response of the Duffing oscillator. 
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Fig. 3 Root mean square response of a Duffing oscillator for a white 
noise excitation with a unit step envelope function 

Some examples of the results of the present analysis 
together with those obtained by the perturbation method in 
[20] are shown in Figs. 2 and 3. It is observed that the dif­
ferences of the standard deviations as found by these two 
methods increases slightly as the strength of nonlinearity 
increases. However, the values of the root mean square 
responses as found by the present truncated Wiener-Hermite 
method remain slightly less than the corresponding ones 
found by the perturbation method all the time. The time 
variations of the calculated standard deviations for different 
natural frequencies are plotted in Fig. 4. It is observed that, as 
the natural frequency increases, the value of the root mean 
square response of the Duffing oscillator decreases. This is 
because the square of natural frequency appears as the 
coefficient of nonlinearity in equation (1). An example of the 
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Fig. 7 Root mean square response for a white noise excitation with an 
exponential envelope function 

effect of damping coefficient on the response of the Duffing 
oscillator is shown in Fig. 5. 

Figure 6 shows the effect of nonlinearity strength on the 
root mean square response. It is observed that the magnitude 
of the standard deviation of the response decreases with an 
increase in the nonlinearity strength, as is expected for the 
hardening spring of the Duffing oscillator. 

All the results presented in Figs. 1-6 correspond to a unit-
step envelope function. When the envelope function is a 
decaying exponential, the value of the mean square response 
should be calculated by using equation (25). The method of 
numerical calculation is almost the same as that discussed for 

the case of a unit-step envelope function. Figure 7 shows the 
time variations of the standard deviation of the response for 
various levels of nonlinearity for the case of an exponential 
envelope function given by equation (24). It is observed that 
when 7 is zero, root mean square response increases rapidly to 
a constant level in agreement with the results obtained for the 
unit-step envelope function. But when y is finite, the response 
curves increase to a maximum point and then decrease to zero 
gradually. For the example shown in Fig. 7, the maximum of 
the curve of the root mean square response for 7 = 0.1 occurs 
at 2.5 sec, and the maximum of root mean square response for 
7 = 1.0 occurs at 1 sec. 
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4 Conclusion and Discussion 

Mean square responses of a Duffing equation are found by 
the truncated Wiener-Hermit method for the cases when the 
excitation is a modulated white noise with unit-step or ex­
ponential envelope functions. It is shown that, for slightly 
nonlinear systems, the results of the truncated Wiener-
Hermite method are the same as those found by the per­
turbation technique. It is observed that, for nonlinear systems 
with large nonlinearities, the values of the variance of the 
response found by the present truncated Wiener-Hermite 
method are less than the corresponding ones found by the 
perturbation technique. Also it is observed that, as the 
nonlinearity strength increases, the magnitude of the dif­
ferences of the results of these two methods increases to an 
extent. The effects of damping coefficient, natural frequency, 
and nonlinearity strength on the root mean square response of 
Duffing equation are shown in several plots. It is observed 
that the increase of these three parameters cause the values of 
the variances of the system response to decrease. 

It is concluded that the present method is a useful technique 
for analyzing nonlinear systems with large nonlinearities 
where the perturbation method is no longer applicable. A 
truncated Wiener-Hermite method could also be employed in 
the analysis of nonlinear systems with general non-Gaussian 
excitations where the well-known technique of the Fokker-
Planck equation is no longer applicable. 

The method is also superior to the most common technique 
of equivalent linearization by its capability of inclusion of 
non-Gaussianity of the response statistics. However, these 
advantages are at the expense of complexity encountered in 
dealing with integrodifferential equations. The iteration 
scheme employed in this study appears to work reasonably 
well for single-degree-of-freedom systems. But for 
multidegree-of-freedom structures some suitable numerical 
schemes should be developed. Such studies are under con­
sideration and the results will be reported in the near future. 
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A P P E N D I X A 

The Wiener-Hermite polynomials satisfy the following 
relationships 

H<>\tl)HU\t2) = H<2\ti,t2) + &(t1-t2), 

+ 5(t2- t3)H^»Ui) + 8(*i " h ) H " \ t 2 ) , (4-1) 

&»(ti)HQ\t2,ti,u) = HW(sut2,ti,u) 

+ S(tl-t2)H^2\tiJ4) + d(tl -t,)rf2\t2,tA) 

+ 5(71-r4)//<2>(/2);3), 04-2) 

H^(tl,(2)H
{2)(h,ti) = H^^(tlJ2,ti,t,) + 5(tl-ti) 

xHUKhJ^ + b d i - t ^ i t ^ + Hh-t,) 

x/ /< 2 »(/ l , / 4 ) + 5(/ 2- / 4) J t f< 2)( / 1 , /3) + 5 ( / 1 - / 3 ) 

x 5 ( t 2 - 1 4 ) + <5(/, - U)b(t2 - 1 3 ) . 04-3) 
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The Wiener-Hermite polynomials satisfy the following 
statistical properties: 

<Hi0)HV)> = \, (A-4) 

<^\tx)H^\t2)>=8(tx-t2), 

<H^2\tut2)H^\t,,t,)> =8(tl -t,)8(t2 -U), 

+ 8(tl-t4)8(t2-ti), (.4-5) 

<H^2\tt ,t2)rf2\t2 ,U)HV\t5)ffi
l\t6) > = 

Htx-t3)8Us-t2)Wt6-U) 

+ &Ul-t3)S(ts-u)B(t6-t2) 

+ 8(tl-t4)8(t5-t2)8(t6-t3) 

+ 8(t1-t4)8(t6-t2)8(t5-ti) 

+ 5(f 2-f 3)6( / , -t5)8{t4-t6) 

+ 8(t2-t,)8(t]-t6)8(t5-t4) 

+ 8(t2~-t4)8(t5-t])8(t6-ti) 

+ 8(t2-t4)8(t6-ti)8(t5-t3) 

+ 8(t5-t6)8(tl-ti)8(t2-tl) 

+ 8{t5-t6)5(tl-t4)8(t2-t3). (A-6) 

A random function g(t) could be expanded in terms of a 
Wiener-Hermit set, i.e., 

g(0=G<°>(/)H<0>+fO°G<1>(?,/1)#(1>('1)tf/i 
J oo 

{
CO n oo 

Gm(t,ti,t2yHm{tl,t2)dtldt2 
— oo J — oo 

J
— oo /> oo ii oo 

CP){t,tl,t2,ti)lP>iti,t2t3)dt1dt2dh, 
oo J — oo J — oo 

(.4-7) 

where Gm (t) is the mean of g(t). The second term is the 
Gaussian part and the rest of the terms are non-Gaussian 
parts of g(t). The deterministic function Gu) (t, / , , t2, . .) 
are the statistical projection of g(t) on z'th Wiener-Hermite 
base function, i.e., 

G»> (/,*,,f2, • • • ti) = <g(t)H^(tut2, ...t,)>. (.4-8) 
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The Radially Flexible Pendulum 
Subjected to a High-Frequency 
Excitation 
A high-frequency harmonic excitation is applied to a pendulum that is flexible in the 
radial direction. Approximate equilibrium positions are found when the excitation 
is in a general and fixed direction. An approximate stable motion is found when the 
direction of the excitation changes constantly and slowly. It is found that the ex­
citation causes a reduction of the radius. 

1 Introduction 

Pendulums with oscillating base motions have been the 
subject of many investigations. Stephenson [1] considered the 
plane pendulum subjected to a vertical oscillation. He 
presented an explanation of the inverted position. Lowenstern 
[2] investigated the spherical pendulum with an oscillating 
base. Phelps and Hunter [3] presented a thorough study of the 
plane pendulum subjected to a vertical oscillation at an 
unrestricted frequency. Miles [4] considered the stability of 
the downward vertical position of the spherical pendulum 
subjected to a horizontal oscillation. Sethna and Hemp [5] 
analyzed the gyroscopic pendulum subjected to a high-
frequency vertical oscillation. Several authors including Howe 
[6], Bogdanoff and Citron [7], Mitchell [8], and Hemp and 
Sethna [9] have investigated the plane pendulum subjected to 
nonharmonic oscillations. Ryland and Meirovitch [10] 
considered stability of the vertical position of the plane 
flexible pendulum with a vertical harmonic oscillation at an 
unrestricted frequency. Schmidt [11, 12] presented variations 
of pendulums with oscillating base motions. 

In this paper, we consider a radially flexible pendulum. The 
pendulum is shown in Fig. 1. The pendulum is made up of a 
mass, a spring, and a pivoted weightless rod. The mass is 
allowed to move along the rod under the influence of the 
spring. The mass is not allowed to move rotationally with 
respect to the rod. A small-amplitude harmonic excitation is 
applied to the pivot. The excitation is along a line in the plane 
of the pendulum. The frequency of the excitation is large with 
respect to the natural frequency of the rotational motion of 
the pendulum under the influence of gravity. The frequency 
of the excitation is not large with respect to the natural 
frequency of the motion of the mass along the rod under the 
influence of the spring. 

In Section 2, the method of averaging [13] is used to replace 
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the equations of motion by differential equations which 
provide the first approximation of the motion. Equilibrium 
solutions are found in a special case in which the direction of 
the excitation is fixed. In another special case, equilibrium 
solutions are found when gravity is zero and the direction of 
the excitation is moving constantly and slowly. In Section 3, 
the method of averaging is used to obtain the improved first 
approximation. The direction of the excitation is allowed to 
be either fixed or moving as in Section 2. An interesting effect 
is shown. 

EXCITATION 

PIVOT 

V 

SPRING ( K ) 

MASS (m, I ) 

Fig. 1 The pendulum 
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2 The First Approximation 

The excitation is applied at an angle a measured from 
vertical. The angular position of the pendulum is given by 6 
measured from the line of the excitation. The equations of 
motion are 

(I + mr2 )(9 + &) + Imrr (8 + a) 

+ mrgsin(9 + a) + mAp2 rsindcosvt 

-ImAvracosOsmvt + mAracosdcosvt 

+ mAra2smdcosvt + C, (0 + d) = 0 

and 

mf — mrd2 — 2mr9a — mra2 + K(r—r0) — mgcos(6 + a) 

— mAv2cosdcosvt -ImAvasinds'mvt 

+ mA a.sin8cosvt — /??y4<i2cos0cosj'/ + C2r = 0 

where m is the mass, / is the moment of inertia of the mass 
with respect to the center, r is the distance from the pivot to 
the center of the mass, r„ is the value of r when the spring is 
not strained, g is the gravitational constant, A is the am­
plitude of the excitation, v is the frequency of the excitation, K 
is the spring constant, c, and c2 are the damping coefficients, 
t is time, and the dot indicates differentiation with respect to 
time. 

The excitation is restricted so that the frequency is large and 
the amplitude is small. The smallness of some terms is in­
dicated by a small and positive parameter e To 
represent the problem in dimensionless variables and 
parameters, let e = v~x, x=r/re, x0=ro/re, ey = A/re, 
e28=g(rev

2)"x, r=vt, k2 =K(v2mYx, efl, = C , (mr2
ev) ; ' , 

e(Xl = C2(mv)~x, and let the prime indicate differentiation 
with respect to r. re is the radius of gyration of the mass. 
Also, let a be slowly varying, i.e., a=h(er). If third-order 
terms are discarded, the equations of motion become 

(1 + x2)d + 2xx8 + e28xsin(8 + h) + 67Xsin0cosT 

„ d2h „ , dh 
+ e2(l+.y2) ,, , , + 2exx 

d(er)2 d(er) 

-2e2*/x 
dh 

dj^) 
cosdsinr+m 

/A dh \ 

x-x92-2ex9 
\d(er)J 

dh 
— — -e'Xl 
d(er) \d(er) 

- e2 8cos(9 + h) — e7COS0cosr 

dh 

k2(x-x0) 

-2ezy 
d(er) 

smds'mT + ea7x = 0. (la, b) 

The parameters 6, k, x0, alt and a2 are positive and in­
dependent of e. Further restrictions are made. (1) k2 is not 
near 1 or 4, i.e., k2 - 4 are independent of e, and (2) x(0) -xQ 

and x' (0) are of order e. 
To change the equations of motion (1) into four equations 

in the standard form for the method of averaging, the 
following transformation is made. Let 

9 = t<t> - eyx0(\ + x2
D) ~' sinflsinT 

x = x0 + £usinkT+evcoskr~ey(l -k2)~xcos9cosr 

x=eukcoskr — evksmkr + ey(l -k2)~x0sin0cosr 

+ £7(1 - k2)'' cosftsinr. (2a, b, c) 

The choice of (2) is motivated by the assumption that 9 is 
made up of a slow term plus a small fast term and that X is 
made up of a constant, x0, plus a first-order solution of (lb) 
using variation of parameters. Differentiation of (2a) and 
substitution of (la) and (2a-c) gives a first-order differential 

equation for 4>'. Variation of parameters with (2b) and (2c) 
and substitution of (la), (lb), and (2a-c) gives an equation for 
u' and an equation for v'. Then, if (2a) is included, there are 
four first-order equations in the standard form for the 
method of averaging. They are 

d = e<t> — eyx0(l+x2
0)~

lsm8s\nT 

4> = e[-yxa(l +x2
0)-

,(l + k2)(l -k2)-[ 

(<f>-yx0(l +Xo)~'sin0sinr)cos0sinr 

- 2x0 (l+xl)~l (ukcoskr 

-vksinkr) (ct> — yx0(l + A-2,)"'sinflsinT) 

, , d2h 
-bx0(l+x2

oy
xsin(6 + h)- ——-2 

d(try 

+ 7(1 +x2
0)-

2(x2
0 - l)(usinkr 

+ i>cos&T)sin0cosT 

- 7 2 ( 1 +x2
0)-

2(x2
0 - 1)(1 -Ar2r'cos0sin0cos2T 

- 2x0 (1 + x2
0) ~' (ukcoskr 

dh 
- vksinkr +7(1 - k2)-[cosdsinr) d(er) 

dh 
+ 2 T X : 0 ( 1 + * 2 ) - 1 — cosflsinr 

d(er) 

-at(l + x2
B)~x (<f>-yx0(l + xl)~isin9s'mr 

dh \ 1 
+ d(er))\ 

u= -j- |7 2^ 0 ( l+x 2 ) - ' ( l - fc 2 ) - 1s in 29(cos 2T-2sin 2T) 

dh 

d(er) 

[y2x0( 

+ 2y(l - k2)-14>sm9s\nr 

+x0(<j>-yx0(l + x2
0)~

x sin9sinr)2 

+ 2xo(<t>-yx0(l+x2
o)~

l sinflsinr) 

/ dh \ 2 

+X°\^7~T> +Scos(6 + h) \d(er) / 

„ dh 
+ 27—-—-sinflsinr 

d(er) 

— a2 (ukcoskr — vksinkr 

+ 7(1 -A:2)_1cosflsinT cos/tr 

v = • [72Ar0(l+x2)^1(l-/t2)- 'sin2fl(cos2 

- 2sin2r) + 2y(l - k2) ~' cj>sin9sinr 

+xo(<j>-yx0(l -x2)"'sinflsinT)2 

+ 2x0(ct>-yx0(l +x2)"'sinesinT) 

/ dh \ 2 
+XO\^7-T) +8cos(9+h) 

\d(er) / 

„ dh 
+ 27 ——r sinflsinr 

dh 

d(er) 

d(er) 

— a2(ukcoskr— vksinr 

+ 7(1 - k2) ~' cosflsinr) sinkr. (3a, b,c,d) 
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Averaging equations (3) gives 

9 = 

* = 

r 

u= 

v= 

6 * 

- eBsin29 

-tDU + 

-e\a2U 

~e\a2V, 

-eCsin(9 + /j) 

dh \ d2h 

d(er)J ed(eT)2 

(4a, b,c ,d) 

wherefl = 1/4 T
2( l + x2

0)~
2 (k2x2

0 + \)(k2 - l ) " 1 , C=bx0(\ + 
x2

0)~\D = a](\+x2
0)~

x, and 9, i , U, and Fare the averaged 
variables corresponding to 6, <j>, u, and v. h(er) is held con­
stant in the averaging process. 

For the first approximation, equations (4) are analyzed for 
two cases. (A) flier) is constant, and (B) 5 is zero and h(er) is 
slowly and constantly varying, i.e., h(er) = h0 + e/i! T, where 
h0 and hx are constants independent of e. In Case B, 5 is 
chosen to be zero to ease the analysis and because a nonzero 5 
is not expected to add any feature of particular interest. That 
5 is zero implies the pendulum is confined to a horizontal 
plane. In this investigation, the equilibrium solutions of (4) 
are presented. Other solutions, for example, solutions near 
the equilibrium solutions, could be found. They are not 
treated here. 

In both Cases A and B, we may refer to a theorem of 
Balachandra and Sethna [14] to provide validity to our 
results. This theorem applies to the first approximation of the 
method of averaging for a more general problem and for a 
more general set of hypotheses than occur in this problem. By 
means of this theorem, we may state that there exists a 
solution to (3) that approaches an equilibrium solution to (4) 
as e — 0, for all T. The equilibrium solutions in Case A and B 
are valid in this sense. 

For both Cases A and B, equations (4c) and (4d) can be 
solved. Attention is restricted to the equilibrium solutions. 
They are 

and 

U=0 

K=0. (5, a, b) 

These solutions are stable. 
Consider Case A. In this case, h(er) = h0, where h0 is a 

constant and 0 < h0 < TT/2. This interval is sufficient. A 
larger interval causes effects that are similar in an obvious 
way. Equations (4a) and (4b) become 

9 = e* 

* = - e5sin29-eCsin(9 + h)- tD*. (6a, b) 

Equations (6a) and (6b) indicate the following about 
equilibrium and stability. In all cases of equilibrium $ = 0. If 
k2 > 1 ,9 always has a stable equilibrium value 9 c l and an 
unstable equilibrium value Be2 and 9 sometimes (as specified 
in the following) has a stable equilibrium value Qe3 and an 
unstable equilibrium value 9 e 4 . These equilibrium values have 
these properties: 

1. -h0 < 9 f l < 0, 1/2TT < Ge2 < w-h0. 
2. If 1/2 C < B < C and h0 < hi or h0 > ir/2-h$, Qei 

and 9c4 occur with TT < 9 r f < 9* and 9* < 9e4 < 3/2ir. 9* 
is the third quadrant angle obtained by eliminating h0 from 

and 

B sin 29 + Cs in (9 + h0) = 0 

25cos 29 + Ccos (9 + h0) = 0, 

Fig. 2(a) (K^>1) 

(7a, b) 

Fig. 2(b) (K^-cl) 

Fig. 2 Typical stable equilibrium positions 

and h$ is the first quadrant angle obtained by eliminating 9 
from (7a) and (lb). 

3. If B > C, Qe3 and Qe4 occur with 7r < Qe3 < Qe4 < 
3/27T. 

4. If gravity is made smaller, i.e., if 8 is diminished, 9 e l , 
9 e 2 , 9 e 3 , and 9 e 4 become closer to 0, 1/2TT, it, and 3/2IT, 
respectively. 

If k2 < 1 ,9 sometimes (as specified in the following) has an 
unstable equilibrium value 9 e l and a stable equilibrium value 
9 e 2 and 9 always has an unstable equilibrium value 0e3 and a 
stable equilibrium value 9 e 4 . These equilibrium values have 
these properties: 

1. If B > C, Oel and 9 e 2 occur with 0 < 9 e l < 9e2 s 
1/27T. 

2. If 1/2C < B < C and ha < h% or h0 > l/lv-hl, 0 e l 

and 9 e 2 occur with 0 < 9 e l < 0* and 9* < Qe2 < 1/2it. Q* 
is the first quadrant angle obtained by eliminating h0 from 
(7a) and (lb) and h$ is the first quadrant angle obtained by 
eliminating 9 from (7a) and (lb). 

3. 7r-/i0 S 9 d < w, 3/2ir < 9 e 4 < 2ir-h0. 
4. If gravity is made smaller, i.e., Sis diminished, 0 e l , 9,,2, 

9 e 3 , and 9e4 become nearer to 0, 1/2-7T, ir, and 3/27T, 
respectively. 
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The equilibrium solutions are Qej (i = 1, 2, 3, 4), $ = 0, 
t / = 0 , and V=0. From the theorem of Balachandra and 
Sethna we can conclude that solutions exist for equations (3) 
that are near these equilibrium solutions (for all T) if e is near 
zero. Using equation (2b), corresponding solutions for 6 and x 
can be constructed. They are 

6=Qei 

x = x0-ey(l-k2)-[cos9eicosT (8a, b) 

where 9e, are the four equilibrium solutions described by 
equations (6a, b). 

Equations (8a, b) along with the conclusions about Qel 

allow the following summary. When k2 > 1, the excitation 
creates a moment that tends to align the pendulum along the 
line of the excitation (in either direction). The moment caused 
by gravity tends to move the pendulum to the downward 
vertical position. The two moments create the two stable 
equilibrium positions shown in Fig. 2(a). These equilibrium 
positions coincide with those that would occur if the pen­
dulum were rigid. This is described by Hemp and Sethna [9]. 
When k1 < 1, the excitation causes a moment that tends to 
move the pendulum to either of two positions perpendicular 
to the line of the excitation. This, along with gravity, causes 
the stable equilibrium positions shown in Fig. 2(b). 

For Case B, 5 is zero and h(er) = h0 + hxtT, where hQ and 
hi are constant and hx > 0. If hx were negative, the motion 
would be different in an obvious and uninteresting way. These 
conditions mean that the pendulum is restricted to move in a 
horizontal plane and the direction of the excitation is slowly 
and constantly changing. As in Case A, equations (4c) and 
(Ad) have stable equilibrium solutions as given by equations 
(5a) and (5b), i.e., U = 0 and V = 0. In Case B, equations 
(4a) and (4b) become 

9 = 6* 

and 
* = -eBsm2Q-tD($ + hx) (9a, b) 

Equations (9a, b) indicate the following about equilibrium 
and stability. In all cases of equilibrium $ = 0. If k2 > 1, 
equations (9a, b) indicate that 9 has equilibrium values 9 ^ , 
6 e 2 , 9 d , and 9e4 when Dhx<B. These equilibrium values 
have these properties: 

7< 9 « < 0, - 7T < Qe2 <T T ' 
3 3 7 

— 7T < 9 e 3 < 7T, — IT < 9 e 4 < — 7T. 

2. 9 e l and 0 d are stable. 9 e 2 and Qe4 are unstable. 

•K 

3. Ge, - 0 a s £ > - 0 , 9,, as D - 0, 

3 

T 
v 3 

4- Qei ~7 asDhi -B,Qe2 - — TrasDhx - B, 

3 7 
9 d —— -K asDhx -~B, 9 e 4 — — irasDhx — B. 

If A:2 < 1, equations (9a, b) indicate that 9 has equilibrium 
values QeX, Qe2, Qei, and 9e4 when Dhx < -B. These 
equilibrium values have the properties: 

1. 0 < 9 e l < — ,-TT < Qe2 < - ir, IT < Qei < — ir, 

5 ^ 3 

— 7T < 9 f 4 < y TT. 

2. 0 e l and 0 r f are unstable. Qe2 and 0 s 4 are stable. 

3. e e l - 0 as D - 0, Qe2 - — as D - 0, 

9.1 — 7rasD—0, G,4— — 7ras£>—0. 

4. 9C, — as/?/). 

9 d —— ir as Dhx — 

-B, 6e2 - — asZ>/!, B 

-B,de4 - - j TrasZ)/!, B. 

Using the equilibrium solutions for 9, U, and V and 
equation (2b), corresponding approximate solutions for 6 and 
x can be constructed. They are: 

e=Qei 

and 

x = xB-ey(l -k2)~lcosQeicoST, (10a, b) 

where Qei are the four equilibrium values described by (9a, b). 
We can make this summary. When k2 > 1, the excitation 

tends to align the pendulum along the line of the excitation, 
i.e., 6 = 0, -w. When k2 < 1 the excitation tends to align the 
pendulum along a line perpendicular to the excitation, i.e., 6 
= T/2, 3/27T. The damping moment causes the pendulum to 
lag these positions in such a way that the moment caused by 
the excitation balances the moment caused by the damping. 
The pendulum rotates following the rotation of the line of the 
excitation. 

3 Improved First Approximation 

The improved first approximation (described by 
Bogoliuboff and Mitropolskiy [15]) reveals an interesting 
effect of the excitation: the excitation causes an average 
reduction of the radius of the pendulum. 

The theorem of Balachandra and Sethna does not pertain to 
the improved first approximation so the validity that it at­
taches to the first approximation is not useful here. However, 
the improved first approximation is still useful at least in a 
conjectural sense. It can also be said that the differential 
equations (3) are more fully satisfied by the improved first 
approximation. It might also be noted that the improved first 
approximation gives a solution to equations (1) which satisfies 
equation (\b) through second-order terms but does not satisfy 
equation (la) through second-order terms. This occurs 
because of the nature of the transformation (2). If the second-
order solution to (1) were desired, the second approximation 
of equations (3a) would be needed while the improved first 
approximation of (3b, c, d) would suffice. The feature of 
interest is shown by the improved first approximation. It is 
presented here. 

In the improved first approximation, each of the variables 
6, 4>, u, and v are assumed to be the sum of a slow term and a 
small fast term, i.e., 

0 = 9 + 66,, 

u= [ /+e«i, and 
v= V+ev, (11a, b, c, d) 

where 9, $, U, and V are the slow variables and dx, 4>i, ux, 
and v, are the fast variables. The variables 9, *, U, and Fare 
described by the averaged equations (4a, b, c, d) and the fast 
variables are described by equations formed in this way: e 
dds/5T, e d4>\/dr, e dux/dT, and e di>i/drare, respectively, set 
equal to the right-hand sides of equations (3a-d) with the 
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averaged parts deleted and with the variables 8, </>, u, and v 
replaced by the slow variables 6, $, U, and V. d{, </>,, ux and 
v{ are then found by integrating these equations while holding 
9, $, U, and V constant. h(er) is treated as are the slow 
variables, i.e., it is held constant during the integrations. 

Following this procedure and imposing the equilibrium 
values for the slow variables $ = U = V = 0 and 9 = Qei, as 
described in Section 2 (for either Case A or B), we obtain: 

6X =7X0(1+Xo)"'sin9e,cosT 

4, = (2k2yx0(\ +xl) ~' (1 - k2)~' - ^ - cos9e, 

-a,7A:0(l + A'2)~2sin9(,,)cosT 

+ k2x2
0 - l)sin9£,,cos91,,sin2r 

(K-l-y1xo{\+x2
0y\\-k1r'{\+k1xl^m1Qei 

+ x0(- ) +8cos(Qej + h) )k~ismkr 
Vfl(fT) / / 

+ y2x0(l + x2
0)-

2(\ -k2)-](3 +2x1 + k2xl)(4-k2)-1 

sin29e,(cosA'Tsin2T £sinA:TCOs2T) 

dh 
- 2 7 ( l + x 2 ) - 1 s i n 9 P ; - — — 

d(tr) 

- a 2 7 ( l -£ 2 ) _ 1cos9 ( , , ) ( l -^2)" '(COS/CTCOST 

+ ^rsin/:TsinT) 

- - t" 1 [ - ( -^7 2 ^( l+4 ) - 2 ( l - * 2 ) - | ( l+Ar 2 ^)s in 2 9 f i 

+ * „ ( - ) +Scos(9e/+/;) I^^'COSATT 
\d{tT) / / 

+ T
2 x 0 ( l + 4 ) - 2 ( l ~ A : 2 ) - 1 ( 3 + 24+A:2x2)(4-A:2)-1 

sin29„,(sin^Tsin2T+ - A"COS£TCOS2T) 
2 

+ ( 2 7 ( l + 4 ) ^ s i n 9 „ — — 
of(eT) 

-a2y(l-k2)-lcoseei)(l-~k2)-, 

(-sin^TCOST + Arcos^Tsinr) (12a, b, c, d) 

Combining (12c), (12d), (lie), (lie/), and (2*) (with £/= V= 0) 
and also combining (12a), (11a), and (2a) (with 9 = 9 f (), 
approximate solutions for 6 and x are obtained. They are 

d=Ql,i + eyx0(\ +x2)~1sin9(,,C0ST 

x = x0 - e7( l -fc2)_lcos9(,,cosT 

1 
+ t2k-2(- -y2x0{\+x2

0)~
2sm2Qe, 

+ X"(d^Y +8cosi^+h)) 

+ e2~y2x0{l+x2
0)-

2(l+2x2
0)(4-k2)-[sm2eeicos2T 

- e 2 2 7 ( l - / t 2 ) - ' ( l + 4 ) " 
dh 

dj^) 
- sin9„,sinr 

+ e2a27(l -k2) 2cos9e,sinr. 

Equations (13a, b) give the approximate solutions for 6 and x 
which correspond to the improved first approximation of 
equations (3). Qei is any of the equilibrium values in Cases A 
and B in Section 2. h (er) is either of the functions described in 
Cases A or B. When equations (13a, b) pertain to case B, 8 
must be set equal to zero. 

For the most part, equations (13a, b) reveal nothing 
unexpected. However, the term -e2\/2k'2y2x0(\+x2,)^2 

sin29CT in equation (136) is surprising. This term shows that 
the excitation of the pendulum causes an average reduction of 
the radius except when 9^, = 0 or TT. Some thought might 
suggest that the excitation creates an inertia force in the 
negative radial direction. 

4 Conclusions and Remarks 

The first approximation shows that the excitation creates 
new equilibrium points when the direction of the excitation is 
fixed. The position of the equilibrium points depend on the 
amplitude and frequency and direction of the excitation. If 
the frequency is less than \l~K/m the pendulum acts much the 
same as the rigid pendulum. If the amplitude were large 
enough or if the frequency were near enough to -jK/tn, the ex­
citation would cause two stable equilibrium positions near the 
line of the excitation and nearly 180 deg apart. The stable 
equilibrium points would be displaced from the line of ex­
citation toward the downward vertical. If the amplitude or 
frequency were reduced, the stable equilibrium points would 
be moved further toward the downward vertical. Typical 
equilibrium positions are shown in Fig. 2(a). If the frequency 
of the excitation were greater than \lK/m, the equilibrium 
positions would be different. If the amplitude were large 
enough or if the frequency were near enough to \l~K/m, there 
would be two stable equilibrium positions near the line 
perpendicular to the line of the excitation and nearly 180 deg 
apart. The stable equilibrium points would be displaced from 
the perpendicular line toward the downward vertical. Typical 
equilibrium positions are shown in Fig. 2(b). If the amplitude 
were reduced or if the frequency were increased, the stable 
equilibrium points would be moved further toward the 
downward vertical. 

When the direction of the excitation is constantly rotating, 
the pendulum follows the rotation. In this analysis, the 
gravity was restricted to be zero and the excitation was 
restricted to be slowly and constantly rotating. It was shown 
that the pendulum would follow the rotation of the excitation. 
If the frequency of the excitation were smaller than \f~K/m, 
the pendulum would follow but lag the line of the excitation. 
If the frequency of the excitation were larger than -4Kim, the 
pendulum would follow but lag the line perpendicular to the 
line of the excitation. The lag is caused by the damping. 

The solution obtained by using the improved first ap­
proximation, equations (13a, b), shows that an unexpected 
average reduction of the radius can occur because of the 
excitation. This effect is shown by the term -e2l/2Ar~2 

72x0(l +x2)~2sin29 f , in equation (lib). This term indicates a 
reduction of the radius. The terms e2k~2x0(dh/d(eT))2 and 
e2k~28cos(Ql,i+h) in equation (136) show average changes in 
the radius but they are not surprising. The former is the in­
crease in radius caused by a centrifugal force associated with 
the rotation of the pendulum and the latter is the change in 
radius caused by gravity. 

An understanding of the physical situation can be gained if 
it is understood that the excitation causes small amplitude 
oscillations in 0 and x at the frequency of the excitation. This 
is shown in the solutions (13a, b). Because of this, the terms 
x20, 2xx8, and erysinflcosr in equation (la) will have slow 
parts that are the rectifications of the products of the 
oscillatory parts of 9 and x. These inertia moments cause the 
equilibrium points mentioned in Section 2. Also because of 
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these oscillations in 8 and x, the terms - x 82 and - <;7COS0COST 
in equation (lb) will have slow parts. These inertia forces 
cause the reduction of the radius shown in (136). 
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Natural Frequencies of In-Plane 
Vibration of Arcs 

T. Irie,1 G. Yamada1 and K. Tanaka1 

The natural frequencies of in-plane vibration are presented 
for uniform arcs with circular cross section under all com­
binations of boundary conditions. 

Previously, the natural frequencies of out-of-plane 
vibration of elastic arcs have been present by the same authors 
[1]. The Design Data present the natural frequencies (the 
dimensionless frequency parameters) of in-plane vibration for 
arcs with the same dimensions and the same boundary 
conditions as in reference [1]. Although the free in-plane 
vibration of arcs has been studied by many researchers [2-18], 
there have been not sufficient engineering data for practical 
use. Here, the Timoshenko beam theory is used for the 
calculation, because it presents accurate values for beams or 
arcs of considerably thick cross section. 

Consider a uniform arc of radius of curvature of the 
neutral axis R. With the angular coordinate denoted by 9 and 
the opening angle by a, the X, Y, and Z-axes are taken in 
radial, transverse, and tangential directions, respectively. The 
Timoshenko equations of in-plane vibration of an arc are 
written as 

dQl 
de 

+ N*+pARw2(l+k2)u*=0 

dM; 

Rd9 
• + Q*+pARw2(k2w*+k2

2Rt) = 0 

dN 
—--Qx*+pARo>2{(l+k2)w*+k2Ri,}=0 (1) 
dd 

where p is the mass density, A is the cross-sectional area, and 
to is the frequency in radians/second. The quantities k2, k2, 
and k\ are the dimensionless parameters defined as 

k\ 
A JJ/i 

!f{l-&dA (2) 
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where x = R% denotes the length measured from the neutral 
axis in radial direction. The distance between the neutral axis 
and the centroid of cross section is calculated by 

A l - { 
-dA=0 (3) 

The shearing force Q*, the bending moment M*, and the 
tensile force N*, respectively, are expressed as 

/ i du* \ 
Q. = KGA(-*+--+) 

M:=EARk2—^-
/dw* 

N*=EA\ 
T"*) (4) 

d9 \Rd6 

in terms of the displacements u* and w* in radial and 
tangential directions and the slope \f/ due to pure bending. The 
variables u*, \p, w*, Q*, M*, and TV* are defined to be 
positive sign in the X, Y, and Z-directions. Here, E and G are 
Young's modulus and shear modulus, respectively, and K is 
the numerical factor depending on the shape of the cross 
section, which is 0.85 for rectangular cross section and 0.89 
for circular cross section, respectively, for an arc of Poisson's 
ratio y = 0.3. 

The boundary conditions of an arc are given by 

(5) 

Upon eliminating the variables Q*, M* and TV*, equation 
(1) can be written as 

K / , 1 + k2 \ K 

2(1 + v) V sj ) 2(l + c ) r 

+ j 1+ — - — \ w ' = 0 
C 2(1 +j/) J 

K , ( K , k\ ") 
u' +k2V•- X2-f U 

2; 
u* 

u* 

= M;=N* = O 
= W*=M; = O 

= ^ = w * = o 

at free edge 
at hinged edge 
at clamped edge 

2(1 + v) 2(1 + v) 

+ f—^-+\ 24-}W = 0 
C2(l + e) si J 2(1 + v) 

[1+20T7))"'-f2(I^)+x2T]^ 
f K , 1 + k2 -) 

C 2(1 + v) sj i 
(6) 
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Table 1 Frequency equations of in-plane vibration of arcs 

Free-free 

7-41 

7*51 

7*61 

T « 

7*52 

T62 

7*43 

7*53 

7*63 

Free-hinged 

= 0 

(«) 

7*n 7"i2 

7*31 7*32 

7*51 Ti2 

7*13 

7*33 

7*53 

= 0 

(Of) 

Free-clamped 

7*11 T\i 

7*21 7̂ 22 

7*31 7*32 (a) 

Hinged-hinged 

7*12 7"i4 7*16 

M ? M J T-if, ' 3 2 

7*52 

' 3 4 

7*54 '56 (a) 

Hinged-clamped 

7*12 Tl4 

Tn 7"24 

7*32 7^34 

Clamped-clamped 

(a) 

7*14 

7*24 

7*34 

7*,5 

7*25 

7*35 

7*16 

7*26 

7*36 

= 0 

(a) 
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Fig. 1(a) Free-free arcs 
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Fig. 1(6) Free-hinged arcs 
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Fig. 1 Frequency parameter Xn of arcs of circular cross section; ^ = 0.3 
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Table 2 The frequency parameters X„ of clamped-clamped arcs with rectangular and circular cross sections; 
« = 0.3 

sy 

20 

100 

n 

1 
2 
3 
4 
1 
2 
3 
4 

Rectangular cross section 

a = 60 deg 

23.70 
38.73 
62.35 
69.97 
52.78 
75.98 

117.8 
170.8 

120 deg 

12.57 
15.17 
24.63 
30.38 
11.79 
23.24 
42.35 
61.39 

180 deg 

4.143 
8.519 

15.40 
17.90 
4.374 
9.602 

17.81 
27.21 

a = 60 deg 

23.75 
39.05 
62.38 
70.71 

52.82 
76.01 

117.9 
171.1 

Circular cross section 

120 deg 

10.61 
15.19 
24.72 
30.47 
11.79 
23.25 
42.37 
61.43 

180 deg 

4.151 
8.542 

15.46 
17.91 
4.374 
9.603 

17.81 
27.22 

Here, for simplicity of the analysis, the following dimen-
sionless variables have been introduced: 

( « , w ) = — ( H * , W * ) 

(Qx,My,N)= -^ (QX*,-^-M;,N*) 

AR2 

X2 = 
pAR4o>2 

EIV 
(7) 

ty i-".y 

where Iy is the second moment of area, sy is the slenderness 
ratio of the arc, and X is a frequency parameter. 

With the variables taken as u = Cep9, ^/=-Cqepe and 
w = Cre"6, equations (6) are written as the matrix equation, 

The parameter p is determined by calculating numerically the 
eigenvalues of (8), and the parameters q and r are determined 
by calculating the eigenvectors corresponding to the eigen­
values. The state vector (z(0)) = {u^wQxMyN) T of the arc is 
expressed as 

(Z(0))=[r(0)]U(O)) (9) 

by using the transfer matrix 

1T(0)] = [M(0)][M(O)]-' (10) 

where 

2 ( 1 + J») 
1 + X2 l+k2 

2(1+ y) 

[1 + 2Trb3; 

K 

2(1 + 

-*v 
K 

v)" 

K 

+ 2(1 + v) 

+ x2^t 

k\ 

2(1 + v) 

x1+27IT7)} 

2(1 + v) 

-P2 + 

+ X2 k\ 

l+k2 

2(1 + v) 

= 0 (8) 
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[M(0)] = 

ePit 

2{\ + v) 
(px+qx+r{)eP\ 

- ( l - p , / - , ) ^ 6 

2(1 + v) 

ePt,« 

-q6e»6e 

r6e"6<> 

(P6+Q6+r6)e
p6<> 

-k2p6q6eP6° 

-(1-/V6)e"6« 

(11) 

The substitution of (9) into a given set of the boundary 
conditions (5) derives the frequency equations with only the 
elements of [71(a)] necessary for the calculation, as shown in 
Table 1. The frequency parameters X of arcs are determined 
by calculating the eigenvalues of the equations. 

Figures 1 present the frequency parameters X of arcs with 
uniform circular cross section under all combinations of the 
boundary conditions. For an arc with circular cross section of 
diameter d, the parameters k2 , k2, k\ and sy are written as 

k2 = (d/4R)2, k2=k2(l+k2), k\ =k2{\ + 4k2 +k4) 

sy=(4R/d) [1 + (d/4R)2]" (12) 

In general, the frequency parameters become smaller with an 
increase of the opening angle a and with a decrease of the 
slenderness ratio sy. 

In Table 2, the frequency parameters of rectangular cross-
section arcs are compared with those of circular cross-section 
arcs under clamped-clamped edge conditions. For an arc with 
rectangular cross section of height h, the parameters k2 ,k2 ,k\, 
and sy are expressed as 

k2= — coth 
2R 

1, k\=k2(\+k2) + 

•"^•(s)*K(5): 

ar 
sy = [k* + (l/3)(h/2R)2] - 'A (13) 

independent of the breadth of the cross section. Although the 
frequency parameters of rectangular cross-section arcs are 
generally smaller than those of circular cross-section arcs, the 
difference between them is very small. 

The natural frequencies of arcs can be calculated 
numerically by 

u = (EIy/pAR4yA\ (14) 

using the dimensionless frequency parameters X presented 
here. 
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A Note on Broken Pencil Points 

S. C. Cowin1 

A stress analysis of a pencil writing tip at fracture is 
presented. It is an interesting illustration of combined axial 
and bending loading. 

Cronquist [1] pointed out that broken-off pencil points 
(BOPP's) are almost all the same size and shape. He suggested 
that the mechanism for fracture of the lead near the writing 
tip is the tensile stress due to a bending moment. He analyzed 
the stress state near the writing tip by idealizing the tip as a 
tapered caltilever beam subject to a transverse end load. This 
analysis predicted that the pencil lead would fail in tension at 
the distance from the writing tip where the lead had a 
diameter 1.5 times the lead diameter at the writing tip. Walker 
[2] gave a popular presentation of Conquist's result and 
introduced a convenient dimensionless geometric parameter 
for BOPP's analyze the data from his own pencil-point 
breaking experiments. This dimensionless geometric 
parameter is denoted here by N and it is the ratio of the length 
of a BOPP (measured from the writing tip to the closest point 
on the fracture surface, along the slanted conical surface of 
the BOPP) to the diameter of the writing tip. According to 
Cronquist's analysis A' should be equal to 0.25 (cos a) etna 
where a is one-half the apex angle of the BOPP if it were a 
pointed cone rather than a truncated cone. Walker's data 
showed a value N of 2.5 for pencils with an apex angle of 12 
deg broken by pressing the pencil down on a tabletop. As the 
pencil was pressed down on the tabletop an angle 45 deg 
between the plane of the tabletop and the long axis of the 
pencil was maintained. Cronquist's analysis predicts a value 
of 2.37 for A''when a is 6 deg. This agreement between theory 
and experiment is satisfactory. However Cronquist's stress 
analysis of a pencil writing tip neglected the axial force in the 
pencil and the frictional force between the paper and the 
pencil. This Note extends the analysis of Cronquist to include 
these two forces. 

The problem of breaking pencil points has several features 
of interest. First, the location of the fracture site is in-

Professor, Department of Biomedical Engineering, Tulane University, New 
Orleans, La. 70118. Fellow ASME 
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Fig. 1 This figure illustrates the geometry of the idealized writing tip 
of a pencil and the forces the writing surface exert on the pencil 

dependent of the exact value of the tensile strength of the 
pencil lead and dependent only on pencil lead being a brittle 
material weaker in tension than compression. The results of 
this analysis are therefore applied to any brittle material. 
Second, a consequence of the analysis is the prediction of the 
dimensionless geometric parameter N of the BOPP in­
dependent of all material properties except, possibly, the 
coefficient of friction between the writing tip and the writing 
surface. Nis experimentally determined from a BOPP using a 
micrometer. A significant feature of the stress analysis 
presented is that most of the results are obtained from strictly 
geometric parameters and are independent of material 
properties. 

An analysis of the stress state near the writing tip that 
includes the axial force in the pencil and the frictional force 
between the writing surface and the pencil as well as the 
bending moment will now be presented. The geometry of the 
writing tip and the forces that act on it are illustrated in Fig. 1. 
The apex angle of the pencil point is 2a and the sharpness 
length is /. Small values of / correspond to sharp points and 
larger values of / to dull points. The angle between the plane 
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Q t a n a ( R s i n e - F c o s e ) 

Rsin9-Fcos© 

Rcose+FsinG 

Fig. 2 This figure illustrates the forces at the writing tip resolved in an 
axial component, a transverse of shearing component, and a bending 
moment 

of the writing surface and the long axis of the pencil is 
denoted by 0. The normal force between the pencil and the 
writing surface is denoted by R and the friction force is 
denoted by F. If the pencil is moving relative to paper, 
F= fxdR where ixd is the coefficient of dynamic friction. If the 
pencil is not moving, but motion is impending, then F= /xR 
where /x is the coefficient of static friction. If motion is not 
impending, then F<fxR. The friction force is taken to lie in 
the plane that is perpendicular to the writing surface and 
contains the long axis of the pencil. This orientation for the 
friction force is chosen because it is the orientation in which 
the friction force makes the largest contribution to the tensile 
stresses induced by bending. It is assumed that that pencil 
point will break on the downstroke in writing, or by statically 
pressing the point down on a flat surface while maintaining a 
fixed value 0 less than 90 deg and greater than 0 deg. 

The forces acting in the writing tip can be resolved into an 
axial force, a shearing force, and a bending moment applied 
at the tip. The results of this resolution are illustrated in Fig. 
2. The axial force P, the shear force V, and the bending 
moment M in the pencil at a distance (x-l) from the writing 
tip are given by 

P = -Rsmd + Fcosd, 

-Rcosd-Fsind, and 

M (x-l)(Rcos6-Fsme)-ltana(Rsm8-Fcosd), (1) 

respectively. The bending moment is taken to be positive if it 
bends the beam concave upward. The maximum axial stress 
ax in the writing tip is given by the standard formula for 
combined axial and bending stresses, namely 

P Mc 

where A is the cross-sectional area of the beam, / is the 
moment of inertia of the cross-sectional area bout the neutral 
axis, and c is the distance from the neutral axis to the 
outermost fiber of the cross section. Because of the taper of 
the pencil point A, / , and c are all functions of A: and a; 

A = 7ir2 = 7W2tan2a /= irr 

~4~ 
tan4 a, c= -x tana , (3) 

where r is the radius of the cross section which is equal to 
x tana. The distance c is negative so that it corresponds to the 
fiber in which the tensile stress is maximum. The substitution 
of (1) and (3) into (2) yields a formula for the maximum 
tensile stress ax at any cross section as a function of x: 

cos0 ., 
a v = 5— [(.R(4-tanatan0)+F(4tan0 + tana))A:~2 

7rtanJ a 

-(R{\ +tanatan0)+F(tan0-tana))6/.x:-3]. (4) 

An interesting feature of equation (4) is the fact that term 
proportional to x~2 is opposite in sign from the term 
proportional to x~*. Thus, there will be a maximum value for 
ax as a function of x for some finite value of x. This value of x 
is determined by computing the first derivative of ax and 
setting it equal to zero. The value of * for which ax(x) given by 

(4) takes on a maximum value is denoted by xmm and given by 

6/(7?( 1 + tana tan0) + F(tan0 - tana)) 
max R{4- tana tan0)+F(4tan0 + tana) ' ' 

This result shows that the location of the tensile fracture site is 
independent of the tensile strength of the material and 
dependent only on the geometric parameters / and a and the 
ratio of the forces F and R. When the pencil point is moving 
or when its motion is impending, the ratio of F to R is a 
coefficient of friction. Recall that a is one-half of the apex 
angle of the perfectly sharp pencil point and / is the sharpness 
length of the pencil point. As / tends to zero, xmaK tends to 
zero and the mode of failure of the pencil point changes. As 
one can see from equation (4) the stress becomes proportional 
to x~2 as / tends to zero indicating a crushing failure mode at 
the writing tip. Thus, a very sharp pencil will tend to crush 
rather than form a BOPP. 

The dimensionless geometric parameter N of a BOPP will 
now be computed in terms of the geometric parameters / and 
a and the ratio of F to R. Recall that N is the ratio of the 
slanted length of the BOPP to its writing tip diameter. The 
slanted length is measured from the writing tip to the nearest 
point on the fracture surface along the conical face of the 
BOPP. Using trigonometry it is easy to show that N i s given 
by 

(*max - OcOSa 
N= 

2/tana 

and, substituting (5) into (6), the desired result is obtained, 

cosa f #(2 + 7tan0tana)+F(2tan0-7tana) N = 
2tan a L 

(6) 

(7) 
# ( 4 - t a n 0 tana) + F(4tan0 + tana) J 

If the dependence of N on 6 and F is suppressed, the value of 
TV becomes 0.25 (etna) cosa as suggested by the analysis of 
Cronquist [1]. If friction only is neglected, then 

2 + 7tanatana 
N0 = limit N= 

F - 0 

cosa |" 

2tana L •]• 2tana L 4 -7 tan0 tana 

however, the limit of Nfor infinite friction is also finite, 

N „ = limit N= 
cosa r 2 t a n a - 7 t a n a ] 

2tana L 4tan0 + tana J ' 

(8) 

(9) 

In order for a BOPP to form, N must be greater than zero. 
From (7), (8), and (9) it is easy to show that a necessary and 
sufficient condition for N to be positive for all values of the 
friction force F is that the angle 0 the long axis of the pencil 
makes with the table satisfy the condition 

4 7 
>tan0> — tana. 

7tana 2 
(10) 

With these results concerning N it is interesting to consider 
again the pencil-point breaking results reported by Walker 
[2). Walker used several No. 2 pencils with a half apex angle 
of 6 deg. He held the pencils at a 0 of 45 deg while pressing the 
writing tip downward on a tabletop. In order for a BOPP to 
form for a pencil with a half apex angle of 6 deg, the angle 0 
must be between 20 and 80 deg. These restrictions on 0 follow 
from equation (10). For a = 6 deg and 0 = 45 deg, N0 and N„ 
are 3.32 and 1.46, respectively, thus N is restricted to the 
range 

1.46<N<3.32. (11) 

Walker reported an N of 2.5 which is almost the central point 
in this range. 
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Microscales and Correlation Tensors in the 
Viscous Turbulent Sublayer 

p. S. Bernard1 and B. S. Berger1 

Introduction 

G. I. Taylor originally defined a microscale, X2, (XN), [1], 
as the minimum radius of curvature of a parabolic ap­
proximation to the two-point velocity correlation function 
evaluated at XN. The Taylor and other closely related 
microscales, based on various normalizations of the 
correlation function, have subsequetly been extensively 
studied [2-4, 7]. Physical interpretations of microscales are 
given in [1] and [7]. 

In the following, two-point velocity correlation tensors, 
R[Jt are defined in curvilinear coordinates. The microscale 
associated with each component of Ru, for a particular 
direction and in rectangular Cartesian coordinates, is given 
for various normalizations. Power series expansions of the 
correlation tensors are derived utilizing Taylor's series 
representations of the velocity fluctuations. Expressions for 
the microscales are found in terms of the normalizing func­
tion and the coefficient of the quadratic terms in the ex­
pansion of the correlation tensor. The microscales were 
numerically evaluated in the sublayer of a channel flow 
through least square polynomial fits of <u2 > W2/uT and the 
more complex quantity Q(y) as measured in [5]. The Taylor 
microscale is shown to be essentially constant for 1.5<^<8.0 
wherey is in wall units. 

Correlation Tensors 

The two-point velocity correlation tensor may be defined at 
XNhy 

R,j(XN,x„) = <uI(XN)uj(x„)>g//^ (1) 

where XN and x„ are the coordinates of two points in the same 
curvilinear coordinate system, XN, u,(XN) = covariant 
components of the velocity fluctuation vector evaluated at 
point XN, Uj(xn) = covariant components of the velocity 
fluctuation vector at point xn, $ = a scalar function of 
Uj (XN) and Uj (x„), and <f> = the average of / in some 
sense, [7] .g / = bk

K dxj/dzk dZK/dXJ where ZK = ZK (X„) is 
the coordinate transformation that defines the curvilinear 
coordinates XN in terms of the rectangular Cartesian coor­
dinates ZK, 5k

K is the Kronecker delta, dxJ/dzk is evaluated at 
z„, and dZK/dXJ is evaluated at XN. The shifters, g/, shift 
covariant vectors from point xk to point XN, [6], and appear 
in (1) because of the necessity of expressing Uj (xn) in terms of 
curvilinear base vectors defined at XN. The scalar * is an 
arbitrary nomalizing factor, [7]. If XN is taken to coincide 
with the rectangular Cartesian coordinate system ZN, then g/ 
= 5 / and (1) becomes 

RIj(ZN,zn) = <u,(ZN)uj(zn)>/<i> (2) 

For a given coordinate system ZK, consider all points such 
that Z] = Zj + 6/(M) r ( M ) , no sum on M, where rM is chosen 
so that Zi is a point of the flow. Substituting into (2) gives 

Ru(ZN,rM) = <u/(ZN)uJ(rM)>/$ (3) 

where Uj(rM) is a spatial function of the ZN and rM. For M 
= 2, Z\ = Zx, z2 — Z2 + r2, Zi = Z3 , which when sub­
stituted into (3) gives RU(ZN, r2). In the notation of [3] 
RIJ(ZN,r2) = R1J(ZN,0,r,0). 
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Microscales 

The microscales introduced by G. I. Taylor and others, 
[1-4], are generally defined as the minimum radius of cur­
vature of a parabolic approximation of one of the diagonal 
components of (3), RU)U), no sum on /. Substituting the 
Taylor's series expansion Uj(rM) = ud + ruJM + 
(r2/2)uJAM)m + . . .into (3) gives 

R;j(ZN,rM) = (<u,Uj> +r< u,uJM > 

r2 

+ y < "iuJ, («) (M) > + • • • ) /* . (4) 

where r = rM,Uj and its derivatives are evaluated at ZN and * 
is a function of ZN only. The radius of curvature of the 
parabolic approximation, Ru(ZN,rM) ~ a{r

2 + bxr 4- cu is 
given by p = 1(1 + (2a,r + bx)

2f/2/(2a^\ which has a 
minimum,pmin = l l / (2a , ) l , for/-min = -&,/(2aj) . From 
(4) it follows that pmin. = I $ / < u,uJt {m (M) > I and therefore 
the microscale X, (ZN,I,J,M) may be defined as 

V(Z/v) = l*/<W/"./,(M)(M) > ' (5) 

The Taylor microscale, \j,, is a special case of (5) for which / 
= J, bx = 0 in the parabolic approximation and $ = 
2<u2>, [ 1 ]. Since the $ so defined is not a scalar function of 
Uj it follows that the associated correlation function (3) is not 
a tensor quantity. The tensor form for Ru would be retained 
if $ = / ( <u,u,>) for example. 

A normalization of (3) in which * is a function of both ZN 

and rM or z„ is given by * = (<u,(ZN) 
u,(ZN)>Y/2(<uk(rM)uk(rM)>yn. Expanding uk(rM) 
in a power series about ZN gives {<uk(rM)uk(rM) > ) _ 1 / 2 

= a2~1/2(l + 2b2r/a2+c2r
2/a2 + . . . ) ~ l / 2 where a2 = 

<ukuk>,b2 = <ukukM>, and c2 = <ukukAM)>, {M) are 
evaluated at ZN. The Taylor's expansion about r = 0 of the 
factor (1 + 2b2r/a2 + . . .yul = 1 - b2r/a2 - c2r

2/2a2 + 
(3/8)(4 b\r2/a\ + . . . ) . Substituting into * and then into (3) 
gives 

Ru(ZN,rM)=alr
2+blr+ci (6) 

where C] = <UJUJ> la2 

bx ={<u,uJ%M> - (b2/a2)<u,uj>)la2 (6a) 

a, =(( l /2)<w /u y i ( M ) ( M ) > + (Sb2
2/2al -c2/2a2)<u,uj> 

-(b2/a2)< u, uJM >)/a2 (6b) 

From (6b) and the definition of the microscale it follows that 

X2
2(Z„) = l l / 2 a , l (7) 

Channel Flow 

Consider a turbulent channel flow in which Z, is the 
streamwise coordinate, Z2 is perpendicular to the channel 
wall, and Z3 is orthogonal to Z, and Z2 . Assume that the 
origin of ZN is on a wall with M = 2 so that z\ = 0, z2 = Z2 

+ r2, and z3 = 0 corresponds to points in the flow. Let 
u = ux/uu,y = Z2uu/v, ux s < « , 2 > 1 / 2 / u u , uu = 
("Wi, 2 (0)) 1 / 2 , and Q(y) = < u, Y(0)u (y) > I 
(w1 (y) <« 2 , y (0 )> 1 / 2 ) where v = kinematic viscosity and 
w, r(0) is evaluated at the wall, y = 0. Expanding w in a power 
series about the origin gives u(y) = u,Y(Q)y + u,Yy(0)y2/2 + 
. . . , since «(0) = 0. Then <u2 (y) > = a2y2 + by2 + (c/4 
+ d / 3 ) / +(e/12 +f/6)y5 + . . . , <(u,Y)2> = a2 + 2by 
+ (c + d)y2 + (e/3 + f)y3 + . . . , <uu,yr> = by + 
(c/2 + d)y2 + (ell + 2//3)^3 + . . . , 

ul (y) =ay+ (b/2a)y2 + (c!8a + d/6a-b2/&a3)yi 

+ ((e+2f)/24a-b(c/4 + d/3)/4ai+b3/16a5)yA + . . . (8) 
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Fig. 1 Microscales and < (u, y) > in the sublayer 

Q(y) = \+(b2/Sa4-c/Sa2)y2+(-f/l2a2+b(c/2 

+ d)/4a4-b3/\6a6)y3+. . . (9) 

where a = <(u,Y)2 > 1 / 2 , b = <u,Yu,YY>, C = 
< {u,YY)2>, d = <u,Yu,YYY>, e = <U,YU,YYYY>< a n d / 
= <u,YYu,YYY>, all evaluated aty = 0. 

Experimental values of w1 (y) and Q(j ') , as given in [5], 
provided the basis for least square polynomial ap­
proximations of the form 

K N 

Mi ^ £ ^ . / ; A - = 4 and Q= 1 + 2 > , y , iV=3. 
1=1 / = 2 

The upper bounds on K and N were set by the limited amount 
of data available, 28 values for u1 and 18 for Q. It was found 
that, for ul, At = 0.34465, A2 = 0.0037876, A3 = 
-0.0015635, and A4 = 0.000040629 while for Q, B2 = 
-0.0050066 and B3 = 0.0015642. The percentage of 
variation explained by the approximation was 99.76 percent 
for ul and 99.21 percent for Q. The six coefficients A-, and 7?, 
were equated to the coefficients of the corresponding powers 
of y in (8) and (9), providing six equations which when solved 
gave a = 0.345, b = 0.0026, c = 0.0048, d = -0.0068, e = 
0.0012, and / = -0.00051. These values were used to 
compute X,,, Xj, and X2, with 7 = 7 = 1 and M = 2 in (5) and 
(7), and <(u,Y)2>• Insufficient data precluded the 
calculation of c2, M = 2, for the general case of K = 1, 3. It 
was therefore necessary, for computation, to redefine <f> in X2 , 
equation (7), as <f> = <ul

2(ZN)U2> <ul
2(rM) > 1 / 2 , which is 

not a scalar function. For this normalization, with 7 = 7 = 1 
and M = 2, (7) becomes 

\\(ZN) = <u\ > 2 / l <ux
2 >< ( H , , 2 ) 2 > - ( < « , 2 > , 2 ) 2 / 4 l 

(10) 

Numerical Results 

Figure 1 shows < (u,Y)2 > as a function of y. The function 
reaches a maximum at y — 2.5. The Taylor microscale X,, and 
the closely related X, microscale, equation (5), are both shown 
to be nearly constant, in Fig. 1, for 1.5 < y < 8. The Taylor 
miscoscale, X,,, is defined by (4) and (5) for nonhomogeneous 
turbulence for which <w, w12 > and therefore bx and rmin do 
not vanish everywhere. Both \h and X) are undefined at y = 
0.614 since < ul wli22 > = 0 there. For 0 < y < 0.614, both ax 

= ( < W I « I J 2 2 > / 2 * ) > 0 and 6, = ( < M , H U > / * ) •> 0 and 
''min. = — b/2al, the position of the point of minimum radius 
of curvature relative to y, is found to be outside of the flow 
region, to the left of the origin at the wall. It follows that X/, 
and X, are undefined for 0 < y < 0.614. The microscales X, 
and X,, are defined, as shown in Fig. 1 for 0.614 < y < 8 since 
(<"i"i ,22> ) >0and(<w,w, i 2 > ) > 0 in that region. 

The differencing required in the computation of the 
demoninator of X2 caused error sensitivity that invalidated 
results for.y > 2.6. The upper bound ony could, presumably, 
be raised as more data becomes available. The normalization 
associated with the simplified form of X2, equation (10), 
corresponds to an Ru(ZN,rM), equation (6), for which bt = 0 
and therefore rmin = 0. X2 is therefore defined at the wall, 
Fig. 1. The quantity, < « , 2 > < (u1>2)2 > - ( < « , 2 > 2)2 /4, 
which appears in the denominator of (10) is always > 0 since 
( < M , 2 > 2 ) 2 / 4 = ( < W i « i 2 > ) 2 a n d ( < « , « | i 2 > ) 2 < I < « , 2 

> I • I < («i i2)2 > I by the Schwarz inequality. The two data 
points indicated by small squares, in Fig. 1, are values of X;, 
found in [2] by independent means. The promixity of these 
values to those found here, to some extent, support the 
validitity of the series approximations. 
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= <u,YYu,YYY>, all evaluated aty = 0. 

Experimental values of w1 (y) and Q(j ') , as given in [5], 
provided the basis for least square polynomial ap­
proximations of the form 

K N 
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The upper bounds on K and N were set by the limited amount 
of data available, 28 values for u1 and 18 for Q. It was found 
that, for ul, At = 0.34465, A2 = 0.0037876, A3 = 
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and X,, are defined, as shown in Fig. 1 for 0.614 < y < 8 since 
(<"i"i ,22> ) >0and(<w,w, i 2 > ) > 0 in that region. 

The differencing required in the computation of the 
demoninator of X2 caused error sensitivity that invalidated 
results for.y > 2.6. The upper bound ony could, presumably, 
be raised as more data becomes available. The normalization 
associated with the simplified form of X2, equation (10), 
corresponds to an Ru(ZN,rM), equation (6), for which bt = 0 
and therefore rmin = 0. X2 is therefore defined at the wall, 
Fig. 1. The quantity, < « , 2 > < (u1>2)2 > - ( < « , 2 > 2)2 /4, 
which appears in the denominator of (10) is always > 0 since 
( < M , 2 > 2 ) 2 / 4 = ( < W i « i 2 > ) 2 a n d ( < « , « | i 2 > ) 2 < I < « , 2 

> I • I < («i i2)2 > I by the Schwarz inequality. The two data 
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( X | , X 2 ) 

D, 

X, 
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of Green's functions, or their derivatives with nonsingular 
functions, arise in both solid and fluid mechanics (references 
[1-4]). A comprehensive discussion of Green's functions for 
linear elastodynamics, together with some examples, is given 
in [1]. It is shown that once Green's function is found for a 
given geometry, often a difficult task, the solution of a large 
class of boundary-initial value problems is reduced to the 
evaluation of definite multiple integrals. For a study of in­
tegration formulas for multidimensional singular integrals see 
[11]. For an incompressible viscous fluid the velocity vector 
potential may be expressed as the integral of the product of 
Green's function with the vorticity, [2]. While F.F.T. methods 
may provide more efficient algorithms for this computation, 
when cast in partial differential equation form (reference [4]) 
there are related problems arising in turbulence computations 
for which the corresponding differential equation form is not 
known, (reference [5]). In this and other cases for which a 
numerical evaluation of an integral formulation may be 
required, the singularities associated with the Green's func­
tion constitute a significant computational difficulty. 

The technique given here for the numerical integration of 
products of Green's functions, G, with nonsingular functions, 
w, is applied to the Poisson equation for the region, D, ex­
terior to a circle. Domain D is subdivided into domains Dx 

and D2 such that Dx contains the singular point of the in­
tegrand and D2 is covered by a global polar coordinate 
system. The integral over Dx is expressed as the sum of a 
nonsingular integral and the product of the nonsingular 
function, w, with the integral of Green's function. A trans­
formation to local polar coordinates removes the singularity 
of Green's function, yielding a nonsingular double integral 
over an irregular domain which is reduced to a single integral 
through exact methods. TV-dimensional integrals are evaluated 
with TV-dimensional forms of Simpson's rule. The nonsingular 

function, ve, need be defined only at the nodes of the mesh 
associated with D2. If a finer mesh than the global is required 
in Dx, then w may be interpolated in Dx from the given nodal 
values in D2. For the exterior problem, an asymptotic form of 
the Green's function is employed for R > exp.(8). 

Comparisons between exact and numerical results are in 
excellent agreement. The technique is applicable to both two 
and three-dimensional geometries. Algorithms for the in­
tegration of singular functions defined on the real line 
(reference [6]) do not entirely reflect the computational 
difficulties associated with the TV-dimensional integration of 
products of Green's functions with nonsingular functions 
defined at nodal points. 

Green's Functions 

Consider the velocity vector potential, B(xx, x2), and 
vorticity vector w(Xx, X2) which satisfy (reference [2]) 

V2B=-w (1) 

for the region exterior to the unit circle where R = exp Xx, r 
= exp xx, X2 = 9, x2 =6 and R, 9 , r, 6 are polar coor­
dinates, see Fig. 1. The xx, Xx coordinates are introduced in 
applications to expand the R, 9 grid step size as R increases 
for a constant step size in Xx. The Green's function for (1) 
with the given geometry is known to be 

G(/-,0;^)9) = (-l/47r)log(TV/TW) (2) 

where TV = r2 - 2rR cos ( 0 - 9 ) + R2 and M = 1 -
(2/VT?)cos(0-e) + l/(nR)2 ,[7].Then 

B{xx,x2)=\j ^BG(xx,x2;Xx,X2)w(Xx,X2)dA (3) 

where dA = RdRdQ = exp (2XX )dXx dX2 and the integration 
is over the region, D, exterior to the circle (reference [3]). 
Since (xx ,x2) or (r,d) are coordinates of a point in D it follows 
that the arguments XX,X2 of G(xx,x2;Xx,X2) in (3) will 
always take on the value Xx = xx and X2 = x2 or R = r and 
9 = d. From (2) and the definition of TV and M it follows that 
N/M = 0 for this point and therefore that G(r,6;R,Q) will be 
unbounded. The existence of a singularity for G(x„;X„) atx„ 
= X„ is a property of Green's functions, (reference [3]). 

Therefore the domain D is taken to be the sum of two 
subdomains Dx and D2 such that Dx contains the singular 
point (xx ,x2), Fig. 2. Then (3) may be evaluated by any of the 
standard cubature formulas (references [8,9]) over the sub-
domain D2. The integration of (3) over Dx may be ac­
complished by letting 

G(xx,x2;Xx,X2)w(Xx,X2)dA 
J JDX 

= j j o G(xx ,x2;Xx ,X2)(w(Xx , * 2 ) - * ( * , ,x2))dA 

+ w(xx,x2)\j j f l G(xx,x2;Xx,X2)dA (4) 

For a large class of functions w(Xx ,X2) including those that 
possess a convergent power series expansion, in the neigh­
borhood of {xx ,x2), the first integrand on the right side of (4) 
vanishes at the singular point (xx = Xx, x2 = X2) of G (xx ,x2; 
XX,X2) (reference [10]). It follows, therefore, that this in­
tegral may be evaluated by any of the standard cubature 
formulas. The second integral on the right side of (4) may be 
written 

f G(xx,x2\Xx,X2)dA = (-\/4-K)[ [ logNdA 
J Z)[ J J Z>j 

+ (l/4ir)f f logMdA (5) 
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where log M is well behaved in Dx. It follows that the second 
integral on the right side of (5) may be evaluated by the 
standard methods. The singularity of log N occurring in the 
first integral on the right side of (5) may be removed through a 
coordinate transformation to the local polar coordinates p 
and cj> with origin at the singularity R = r, 0 = 6, Fig. 1, 
which gives 

( - l / 4 i r ) f f logMM = ( - l / 2 i r ) ( f (\ogp)pdpd<l> (6) 

Note that lim(plogp) = 0 for p = 0. It is seen from Figs. 1 and 
2 that the boundaries of Du which are coordinate lines in Xx 

and X2, do not coincide with the coordinate lines of the local 
p, <t> coordinates. Thus the limits of integration for (6) are 
variable in p and 4>. For Green's functions possessing 
singularities of greater complexity, the evaluation of the 
expression corresponding to (6) could be accomplished 
through the application of the adaptive formula for numerical 
integration over an irregular region given in [12]. However, 
for the example considered here, equation (6) may be in­
tegrated exactly with respect to p to give 

j J^ (logp)ptfptf0=-Jo (p2logp--p2)tf</> (7) 

where p = p(</>) is given by p = r(sind — a cos0)/(a sin</> + cos</>) 
over the radial lines defined by 9 constant, with a = tan"1 

(0 -A9) , A9 = AX2 = step size in X2 and by p = -rsin(</>-
6) ± (r2sin2(</>-0) + (ft2 - r2))W2 over a given circular arc R 
= R0, Fig. 1. It follows that (7) may be evaluated by standard 
methods and therefore that (5) may be computed to as high a 
degree of accuracy as required, for a given grid. If the 
evaluation of (3) is part of an iteration, over the same grid for 
various w(Xx,X2) then (5) and G(xl,x2;Xl,X2) need be 
computed only once. In this and subsequent computations the 
symmetry of the Green's function G(xx,x2;Xx,X2) = 
G(Xx,X2;xx,x2), significantly reduces computer storage 
requirements (reference [3]). An alternative method for the 
evaluation of the left side of (4) involves its transformation to 
the local cylindrical coordinates p, <f> and the double in­
tegration of the resulting nonsingular integrand over a 
domain with irregular boundaries using [12]. This is a 
disadvantage if the evaluation of (3) is part of an iteration 
over the same grid for various w(Xx ,X2). Furthermore, since 
the alternative method involves the evaluation of w (Xx ,X2) at 
other than the grid points, a double interpolation would be 
required for a w(Xx,X2) defined only over the grid points. 
The method developed here requires the integration of only 
the Green's function over the irregular domain, equations (5) 
and (6). 

Numerical Results 

The following exact solution of (1), w = (2/>3) - (4/r4) 
and B = (1/r2) - (2/r), was used as a test of the accuracy and 
computational utility of the method. Note that dB(r,6)/d6 = 
0 for r = 1 as is required by (2) and (3) and that w is such that 
the integral in (3) exists for the region exterior to the unit 
circle. Although the test function, w(R), is a function of R 
only, all integrands are functions of both R and 9, Xx and 
X2, since the Green's function is a function of R and 9 . The 
domain D in (3) was defined as 0 < Xx < 8 and 0 < X2 < 2 T 
which corresponds to 1 < R < exp.(8) and 0 < 0 < 2TT. A 
grid was taken over D2 with a grid spacing of AXX = 0.0875 
and AX2 = 0.75ir. The domain Dx was defined as 0.8 < Xx 

< 1.6 and 0.47T < X2 < 0 . 6 T , Fig. 2. A uniform NxNgrid 
was taken over Dx for which N = 2, 4, 8 where N = number 

of intervals. Double integrations over Dx and D2 were carried 
out using a two-dimensional generalization of Simpson's rule 
(references [8,9]). Computations showed that the evaluations 
of the first integral on the right side of (4) and the second 
integral on the right side of (5) changed only in the fifth digit 
for N = 4 and N = 8. The evaluation of the first integral on 
the right side of (5) over the irregular region, Fig. 1, using (6) 
and (7) was accomplished using a one dimensional Simpson's 
rule subroutine, SIAMINI, with automatic step-size reduc­
tion. The relative error specified was (1.0)10 4. B(xx ,x2) was 
evaluated for the three points, x2 = 0 and xx = 0.4, 0.8, and 
1.2. The differences between the exact and numerical results 
were found to be -0.006 to three digits for each point. An 
asymptotic form of (2) for R> >r may be derived by taking 
lim R- + <x which gives G(r,d;R,e) = (- l /4ir) log R2. 
Substituting into (3) yields 

AB(r,0) = ( - l /47r) l * f logR2w(R,Q)RdRdQ (8) 

where a = exp(8.0) and AB(r,6) is the contribution to B(r,d) 
from (3) for the region i?>exp.(8.0). The evaluation of (8), 
which may be done exactly for the test function, gives AB(r,d) 
= -0.006036. Adding AB(r,8) to the results of the numerical 
integrations over Dx and D2 gives B(r,6) = -0.891316, 
-0.696753, and -0.511654 for A:, = 0.4, 0.8, and 1.2. The 
exact values for B(r,S) = -0.891311, -0.696761, and 
-0.511671, respectively. The numerical and the exact 
solutions differ only in the fifth or sixth significant digit. 

The method may be applied to the three-dimensional case 
and to partial differential equations other than (1). In the 
general case the Green's function, equation (2) may be written 
as the sum of a singular and a nonsingular function such that 
(3) holds over a volume (references [1,3]). It follows that (4) is 
valid over a volume and that the decomposition given by (5) is 
always possible. The singularity occurring in the Green's 
function is such that a transformation to local spherical 
coordinates will remove it (references [1,3]). Therefore the 
integrand on the right side of (6) will be nonsingular for the 
general case. The integral over the irregular three-dimensional 
region may be evaluated by methods given in [8]. For the 
Poisson and related equations an exact integration in p may be 
used to reduce the dimensionality of the integration. 

Conclusion 

A technique has been developed for the numerical in­
tegration of products of Green's functions with nonsingular 
functions which is applicable to two and three-dimensional 
geometries. Comparisons between exact and numerical 
solutions for the Poisson equation, in the region exterior to 
the circle, show excellent agreement. For the exterior 
problem, an asymptotic form of the Green's function was 
used for the region R>exp. (8). This could be dispensed with 
for the interior problem. The level of accuracy attained in­
dicates that integration in terms of local coordinates that 
remove the singularity but introduce irregular boundaries in 
terms of the global coordinates, may be accomplished ef­
ficiently and with a high degree of accuracy. 
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The Effects of Finite Amplitude on the 
Behavior of Antisymmetric Waves on Two-
Dimensional Liquid Sheets 

R. Y. Tarn1 and M. S. Cramer2 

Introduction 

In many industrial processes liquids are sprayed in the form 
of thin sheets. Well-known examples include the spraying of 
liquid fuels [1], film coating processes, and the spraying of 
paints and insecticides. The dynamics of both radially flowing 
and two-dimensional sheets have been examined by a number 
of authors; see, for example, [2-7], The disintegration of 
these sheets and resultant droplet formation is frequently 
associated with the stability of waves that propagate relative 
to the fluid. These waves are driven by surface tension and 
can be of two distinct modes. The first corresponds to a pure 
thickness variation which leaves the centerline undisturbed 
and the second is a constant thickness mode in which the 
centerline is displaced. We will follow Taylor [4] and refer to 
these as the symmetric and antisymmetric modes, respec­
tively. With the exception of Clark and Dombrowski [6] and 
the steady flow analysis of Kinnersley [8] all previous in­
vestigations have been restricted to linear analyses. The 
purpose of this Note is to extend these results to include the 
effect of finite amplitude on the propagation of an­
tisymmetric waves. 

Formulation 

We employ a Cartesian coordinate system in which the flow 
direction of the undisturbed sheet is the x direction and which 
moves with the velocity of the undisturbed fluid. The free 
surfaces of the undisturbed and disturbed sheet are given by y 
= ±h and y — ±h + T?* (x,t), respectively, where / i s the 
time, and the upper and lower signs denote the upper and 
lower surfaces. Here we will assume the flow is irrotational 
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and ignore the effects of the surrounding gas and gravity. As a 
result, the exact nondimensional equations of motion are 

<t>xx + (j>yy=Q for - l + e ? 7 - <_y<l + e?/+ (1) 

where, on y = ±1 + erj^ , 

<t>y = V? +ev?<t>x (2) 
and 

*, + y l+l + <!>]] = ± [1 + e V 2 ] " 3 / 2 ^ , (3) 

where <ji(x,y,V,e) is the nondimensional velocity potential and 
the dimensional quantities ij* ,4>,y,x, and f a r e related to 
their nondimensional counterparts by: 

/Th\ 1/2 

rj±=ehri±, $ = e( — ) <f>, x = hx, 

- /ph\ W2 

y = hy and / = / j ( — J t. 

The quantities T and p are the surface tension and liquid 
density, respectively. The first equation is recognized as the 
usual continuity equation for incompressible irrotational 
flow, the second is the kinematic boundary condition, and the 
third is the unsteady Bernoulli equation evaluated at the free 
surfaces. 

In the small amplitude limit, equations (l)-(3) admit lowest 
order wave-train solutions of the form Aexpi\x,(x—ct) where 
ix is a nondimensional wave number such that the length of the 
wave is given by h\x~' and the phase speed c is given by either 
(/rtanh/z)1/2 or /i1/2tanh;u~1/2 which corresponds to the 
symmetric and antisymmeric modes, respectively. In the 
linear theory, these modes are completely uncoupled and can 
propagate independently of each other. 

Because of the nonlinear terms appearing in (l)-(3), the 
linear solution is only expected to be valid over relatively short 
times. We have therefore used the method of multiple scales 
to analyze the long time behavior of antisymmetric waves as 
they propagate on these sheets and in this Note will simply 
record the main results. 

Because of the symmetry of the symmetric mode, its 
behavior is exactly that of a capillary wave on water of 
constant depth. The nonlinear results for pure symmetric 
waves may therefore be extracted from the extensive literature 
on gravity-capillary waves if we set the gravitational ac­
celeration g identically equal to zero and simultaneously 
require that the wave number n be fixed. 

Results and Discussion 

Our analysis has shown that the disturbance function 
•n*1 (x,t;e) is given by 

17± =Aei6=f -^- ntanhnA2ei2<> 

+ e[BA3ei3e ±DAAxe
i2e] + 0(e3), (4) 

whereB = B(/j.),D = D(pL;e), 8 = ixx — wt and co = 
(/i)3/2tanhjt~1/2. The quantities B and D are somewhat 
complicated and, in order to save space, we will simply note 
that they are bounded for all values of n > 0. When x and t 
are of order e~2, we find that the foregoing expansion for ij* 
is valid only if A satisfies 

// • 2 

A,+o>'Ax='-^-Axx+'^A2A*, (5) 

where A* denotes the complex conjugate of A, and o' = 
doi/dfi, w" = d2u>/dii2 and a = /x2o(7tanh2/x - 6). 

Equation (5) is the well-known cubic Schrodinger equation 
first discussed in connection with nonlinear wave propagation 
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In many industrial processes liquids are sprayed in the form 
of thin sheets. Well-known examples include the spraying of 
liquid fuels [1], film coating processes, and the spraying of 
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of authors; see, for example, [2-7], The disintegration of 
these sheets and resultant droplet formation is frequently 
associated with the stability of waves that propagate relative 
to the fluid. These waves are driven by surface tension and 
can be of two distinct modes. The first corresponds to a pure 
thickness variation which leaves the centerline undisturbed 
and the second is a constant thickness mode in which the 
centerline is displaced. We will follow Taylor [4] and refer to 
these as the symmetric and antisymmetric modes, respec­
tively. With the exception of Clark and Dombrowski [6] and 
the steady flow analysis of Kinnersley [8] all previous in­
vestigations have been restricted to linear analyses. The 
purpose of this Note is to extend these results to include the 
effect of finite amplitude on the propagation of an­
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We employ a Cartesian coordinate system in which the flow 
direction of the undisturbed sheet is the x direction and which 
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and ignore the effects of the surrounding gas and gravity. As a 
result, the exact nondimensional equations of motion are 
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where, on y = ±1 + erj^ , 

<t>y = V? +ev?<t>x (2) 
and 

*, + y l+l + <!>]] = ± [1 + e V 2 ] " 3 / 2 ^ , (3) 
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The quantities T and p are the surface tension and liquid 
density, respectively. The first equation is recognized as the 
usual continuity equation for incompressible irrotational 
flow, the second is the kinematic boundary condition, and the 
third is the unsteady Bernoulli equation evaluated at the free 
surfaces. 

In the small amplitude limit, equations (l)-(3) admit lowest 
order wave-train solutions of the form Aexpi\x,(x—ct) where 
ix is a nondimensional wave number such that the length of the 
wave is given by h\x~' and the phase speed c is given by either 
(/rtanh/z)1/2 or /i1/2tanh;u~1/2 which corresponds to the 
symmetric and antisymmeric modes, respectively. In the 
linear theory, these modes are completely uncoupled and can 
propagate independently of each other. 

Because of the nonlinear terms appearing in (l)-(3), the 
linear solution is only expected to be valid over relatively short 
times. We have therefore used the method of multiple scales 
to analyze the long time behavior of antisymmetric waves as 
they propagate on these sheets and in this Note will simply 
record the main results. 

Because of the symmetry of the symmetric mode, its 
behavior is exactly that of a capillary wave on water of 
constant depth. The nonlinear results for pure symmetric 
waves may therefore be extracted from the extensive literature 
on gravity-capillary waves if we set the gravitational ac­
celeration g identically equal to zero and simultaneously 
require that the wave number n be fixed. 

Results and Discussion 

Our analysis has shown that the disturbance function 
•n*1 (x,t;e) is given by 
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complicated and, in order to save space, we will simply note 
that they are bounded for all values of n > 0. When x and t 
are of order e~2, we find that the foregoing expansion for ij* 
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by Benney and Newell [9]. Since then a number of studies 
have examined its behavior; an excellent review which in­
cludes extensions to higher dimensions has been provided by 
Yuen and Lake [10]. A useful feature of this equation is that it 
can describe the modulational stability of the simple constant 
amplitude solutions obtained in the linear theories mentioned 
in the foregoing. For / = 0(e~2) the solution for A 
corresponding to these wave trains is 

iaale2 

A=a0exp —-— t 

and can be recognized as the analog of a Stokes wave in the 
theory of surface gravity waves. The stability of this wave 
train to small perturbations depends on the relative signs of a. 
and OJ" . In this problem, to" > 0 for all p. but a changes sign 
at LI = PLC, where 

± r V T ^ i 

"f 2 L V7-V6 -I 

If we apply a simple linear stability analysis to (5), see, e.g., 
[11], we can show that this wave train is stable to all small 
disturbances provided 0 < p. < nc and, if JX > p.c, it will be 
stable to perturbations having a wave number greater than 
ea0[a/o}"]u2 but unstable to longer perturbations. In the 
latter case, we expect both the complex and simple recurrence 
phenomena described by Yuen and Ferguson [12]. The fact 
that sufficiently long antisymmetric waves are un­
conditionally stable to two-dimensional disturbances con­
trasts with the corresponding results for the symmetric mode. 
There, all wave trains may become unstable if the modulation 
is sufficiently long. 

We have also examined the possibility of wave-wave in­
teraction in the system (l)-(3). The usual kinematic analysis 
[13] shows that although no interaction is possible between 
waves of the same mode, simple two wave interactions do 
appear possible between a symmetric and antisymmetric 
mode. However, the authors have conducted the appropriate 
multiple scales analysis of (l)-(3) and found that the in­
teraction coefficients are identically zero; this, of course, 
could have been anticipated from the fact that the expansion 
(4) was seen to be nonsingular. Thus, although the dispersion 
relations satisfy the appropriate resonance conditions, 
equations (l)-(3) preclude any such interaction. As a result, 
we conclude that when the interaction with the surrounding 
gas is ignored, there can be no significant energy exchange 
between modes. 
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Analysis of Photoelastic Fringes in Wave 
Propagation Problems 

A. J. Durelli1 and A. Shukla2 

Introduction 

Attention has been called, in another paper [1], to the 
stumbling block that exists at present for the photoelastic 
analysis of some wave propagation problems. The high-fringe 
density and the high-fringe orders present in isochromatic 
patterns associated with waves make it so difficult in many 
cases to identify the fringe orders that frequently no quan­
titative analysis is conducted and comments are limited to the 
evaluation of the type of waves that seem likely to correspond 
to some portions of the patterns. In the previous paper 
guidelines were given which permit the numbering of the 
fringes in most cases of practical interest. Those guidelines are 
based on topological properties of the patterns, and also 
require a particular observation of their time derivatives. 

In this note, the application of the suggested procedures 
will be illustrated with the analysis of a complicated problem 
of interaction of several types of waves. No quantitative 
analysis of this type of problem had previously been at­
tempted, due to the great complexity of the pattern and a lack 
of guidelines to properly number the fringe orders. 

Review of Basic Guidelines 

Some of the guidelines of numbering isochromatic fringes 
in dynamic problems will be briefly reviewed. (1) Outward 
square corners on free boundaries are points of zero rmax as 
required by equilibrium; (2) At points of maximum (peaks) or 
minimum (valleys) rmax value, the space derivative of rmax in a 
direction perpendicular to the direction of the fringe, is zero. 
The gradient in that direction, of the curve representing the 
fringe order is zero at those points. The distance between 
fringes close to those points is therefore larger than the 
distance between fringes further removed from those points. 
(3) It can also be observed that the width of the fringes is 
related to the gradient. The sharper the gradient the thinner 
the fringe. Wider fringes indicate lower gradients. (4) Where 
fringes of the same order cross (saddle) the transition fringes 
divide the field in four zones. Moving away from the saddle 
point the fringe order increases in two of the opposite zones, 
and decreases in the other two. (5) Shades of gray connecting 
two fringes indicate that their order is the same. (6) The edge, 
or Rayleigh-type wave fringes, moving along a boundary 
exhibit two peaks separated by a zero, and another peak and 
two other zeros in the subsurface. 

Example Illustrating the Use of Guidelines 

The example presented here is of a wave propagation in a 
thin square plate subjected to an explosion at one of its 
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have examined its behavior; an excellent review which in­
cludes extensions to higher dimensions has been provided by 
Yuen and Lake [10]. A useful feature of this equation is that it 
can describe the modulational stability of the simple constant 
amplitude solutions obtained in the linear theories mentioned 
in the foregoing. For / = 0(e~2) the solution for A 
corresponding to these wave trains is 

iaale2 

A=a0exp —-— t 

and can be recognized as the analog of a Stokes wave in the 
theory of surface gravity waves. The stability of this wave 
train to small perturbations depends on the relative signs of a. 
and OJ" . In this problem, to" > 0 for all p. but a changes sign 
at LI = PLC, where 

± r V T ^ i 

"f 2 L V7-V6 -I 

If we apply a simple linear stability analysis to (5), see, e.g., 
[11], we can show that this wave train is stable to all small 
disturbances provided 0 < p. < nc and, if JX > p.c, it will be 
stable to perturbations having a wave number greater than 
ea0[a/o}"]u2 but unstable to longer perturbations. In the 
latter case, we expect both the complex and simple recurrence 
phenomena described by Yuen and Ferguson [12]. The fact 
that sufficiently long antisymmetric waves are un­
conditionally stable to two-dimensional disturbances con­
trasts with the corresponding results for the symmetric mode. 
There, all wave trains may become unstable if the modulation 
is sufficiently long. 

We have also examined the possibility of wave-wave in­
teraction in the system (l)-(3). The usual kinematic analysis 
[13] shows that although no interaction is possible between 
waves of the same mode, simple two wave interactions do 
appear possible between a symmetric and antisymmetric 
mode. However, the authors have conducted the appropriate 
multiple scales analysis of (l)-(3) and found that the in­
teraction coefficients are identically zero; this, of course, 
could have been anticipated from the fact that the expansion 
(4) was seen to be nonsingular. Thus, although the dispersion 
relations satisfy the appropriate resonance conditions, 
equations (l)-(3) preclude any such interaction. As a result, 
we conclude that when the interaction with the surrounding 
gas is ignored, there can be no significant energy exchange 
between modes. 
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Analysis of Photoelastic Fringes in Wave 
Propagation Problems 

A. J. Durelli1 and A. Shukla2 

Introduction 

Attention has been called, in another paper [1], to the 
stumbling block that exists at present for the photoelastic 
analysis of some wave propagation problems. The high-fringe 
density and the high-fringe orders present in isochromatic 
patterns associated with waves make it so difficult in many 
cases to identify the fringe orders that frequently no quan­
titative analysis is conducted and comments are limited to the 
evaluation of the type of waves that seem likely to correspond 
to some portions of the patterns. In the previous paper 
guidelines were given which permit the numbering of the 
fringes in most cases of practical interest. Those guidelines are 
based on topological properties of the patterns, and also 
require a particular observation of their time derivatives. 

In this note, the application of the suggested procedures 
will be illustrated with the analysis of a complicated problem 
of interaction of several types of waves. No quantitative 
analysis of this type of problem had previously been at­
tempted, due to the great complexity of the pattern and a lack 
of guidelines to properly number the fringe orders. 

Review of Basic Guidelines 

Some of the guidelines of numbering isochromatic fringes 
in dynamic problems will be briefly reviewed. (1) Outward 
square corners on free boundaries are points of zero rmax as 
required by equilibrium; (2) At points of maximum (peaks) or 
minimum (valleys) rmax value, the space derivative of rmax in a 
direction perpendicular to the direction of the fringe, is zero. 
The gradient in that direction, of the curve representing the 
fringe order is zero at those points. The distance between 
fringes close to those points is therefore larger than the 
distance between fringes further removed from those points. 
(3) It can also be observed that the width of the fringes is 
related to the gradient. The sharper the gradient the thinner 
the fringe. Wider fringes indicate lower gradients. (4) Where 
fringes of the same order cross (saddle) the transition fringes 
divide the field in four zones. Moving away from the saddle 
point the fringe order increases in two of the opposite zones, 
and decreases in the other two. (5) Shades of gray connecting 
two fringes indicate that their order is the same. (6) The edge, 
or Rayleigh-type wave fringes, moving along a boundary 
exhibit two peaks separated by a zero, and another peak and 
two other zeros in the subsurface. 

Example Illustrating the Use of Guidelines 

The example presented here is of a wave propagation in a 
thin square plate subjected to an explosion at one of its 
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Fig. 1 Isochromatics produced by an explosion, near a square corner

corners. The explosion generates a complicated system of
waves as shown in Fig. 1. This system of fringes associated
with these waves was analyzed completely using the following
steps.

Starting at the top square corner of the photograph one
finds by equilibrium that the fringe order must be zero.
Traveling along the axis of symmetry, the fringe order at
point x=y= 1.5 is 6.5. The width of this fringe, and the
distance from fringe 5.5 to fringe 6.5 suggests that 6.5 is a
maximum. This is confirmed by the existence of a transition
fringe of order approximately 4 near the boundary at x = 3.2
where a saddle point indicates that orders increase more or
less horizontally, inward, and decrease upward along the
boundary. Another saddle point of order - 5 at a position
slightly below the previous one and closer to the boundary,
indicates that the order increases to a maximum of - 7.4 on
the right half, and - 7.2 on the left half of the body. The

Journal of Applied Mechanics

second digit in these fringe orders is an estimate obtained
from the width and the intensity of the fringe at the point
where maximum occurs. For instance, it is obvious that at the
point on the left mentioned in the foregoing, the fringe of
order 7.5 has not developed yet. On the other hand, the order
at the point at the right is closer to 7.5 and comparing the
fringe at this point to the fringe present at point x= 8 and
y - 1.8, it is estimated that the order is about 7.4.

The observation of this last saddle may not be completely
clear. The results can be confirmed the following way. From
the maximum fringe order 6.5 at x=y= 1.5, going down
along the axis of symmetry, the order decreases to 1.5 (which
encloses an island) and then to 0.5 (which encloses two
islands). The order goes up then again to 1.5 and through a
transition order (represented dotted) of value - 1, down to
0.5 and to a point of value - O. Then it oscillates, rather
erratically from 0.5 to - 1, goes up to 1.5, passes through
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Fig. 3 Maximum shear stress along the line of symmetry of a square 
corner, subjected to an explosion 

another transition value of ~ 2 and down again to ~ 0. 
Therefore, on the symmetry axis there are two points at which 
the maximum shear is zero. Continuing this process a third 
one can be noticed very near the zone blackened by the ex­
plosion. This analysis indicates the existence of a saddle at 
pointx~8.5 a n d / ~ 3 , the value of which is ~ 2 and indicates 
that orders increase for generic point moving away from the 
saddle, parallel to y axis, toward the right. These values reach 
a maximum of 7.5 at the center of an island. The orders so 
obtained verify the one obtained previously. 

Another observation may sometimes be helpful. Fringes of 
order 0.5 and 1.5, and to less extent of order 2.5 and 3.5, look 
darker in the photograph than higher order fringes. This is 
proably due to the different spectrum associated with dif­
ferent orders, which are all filtered by the same filter, giving a 
somewhat different appearance in the photograph. 

Thus the whole field of fringes in Fig. 1 was completely 
identified. In this figure the fringe of order one was 
represented with dotted lines. It happens to be a "transition" 
isochromatic, crossing itself at several "saddle" points which, 
a shown in the foregoing are very important in the process of 
identifying the order of the fringes. 

The normal sresses along the boundaries are shown in Fig. 
2. Moreover, since the maximum shear stress T,„ is known in 
the whole field it has been plotted as a function of position 
along the line of symmetry in Fig. 3. 
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Dynamic Response of Rigid-Plastic Square 
Plates in a Damping Medium 

Introduction 

In this paper, the motion of a thin square plate of rigid-
plastic material in a damping medium is studied. The plate is 
subjected to a uniformly distributed load which is applied 
suddenly at time t = 0, kept constant at an intensity p during 
0<t<r, and suddenly removed at t=r. The plate material 
obeys the Johansen's yield criterion and the associated flow 
rule. The damping resistance is taken to b e / = aV where Kis 
the transverse velocity of the plate and a is a constant. When 
the damping is absent, Cox and Morland [1] found that the 
nature of the motion depends on whether the load is medium 
(p0<p<2p0) or high (p>2p0), where p0 is the static limit 
load. 

The rectangular Cartesian coordinates x, y are taken along 
the diagonals of the simply supported square plate of side 2L. 
For convenience an auxiliary coordinate z = (x+y)/42L is also 
defined. Because of symmetry it is only necessary to consider 
one quarter of the plate. In the present case, the equation of 
motion is 

d2Mx: 

dx2 

2d2Mxl 

dxdy 

d2M„ 

by2 +p = fxw+aw 

where Mrr, M yy Mxy =Myx are the moment components, n is 
the mass per unit area of the middle surface whose deflection 
is w(x,y), and dots indicate differentiation with respect to 
time. Following the method outlined in [1], the results are 
summarized in the following. 

Medium Load 

Phase 1 (0 < t < T). The moment distribution is 

Mxx = Mo+jffAz) 

M„ = Mo+y2/,® (2) 
Mxy = Xyfl (Z) 

where M0 is the fully plastic moment and the function/,(z) is 
given by 

fi(z)={liW+aW){2-z)/\2-p/6 (3) 

in which the central plate deflection W is 

" " ' - I G ' - ^ K M - T H (4) 

Phase 2 (T < t < T). The plate comes to rest at time T 
given by 

/* log ^-fexp( — ) - l ] + l 
•Po <- v /* ' J 

The final central deflection is 

W{T)=—ipT-p01) 
a 

(5) 

(6) 

The moment distribution is given by (2) with / , (z) replace by 
f2(z) where 

Mz) = (fiW+aW)(2-z)/l2 (7) 
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High Load 

Phase 1 (0 < t < r). The central plate deflection is 

In the region 0 < z < 0O, Mxx = Myy = M0 and Mxy = 0. In the 
region 60 < z < 1, the moment distribution is expressed by (2) 
with/, (z) replaced by / 3 (z) such that 
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Fig. 3 Maximum shear stress along the line of symmetry of a square 
corner, subjected to an explosion 

another transition value of ~ 2 and down again to ~ 0. 
Therefore, on the symmetry axis there are two points at which 
the maximum shear is zero. Continuing this process a third 
one can be noticed very near the zone blackened by the ex­
plosion. This analysis indicates the existence of a saddle at 
pointx~8.5 a n d / ~ 3 , the value of which is ~ 2 and indicates 
that orders increase for generic point moving away from the 
saddle, parallel to y axis, toward the right. These values reach 
a maximum of 7.5 at the center of an island. The orders so 
obtained verify the one obtained previously. 

Another observation may sometimes be helpful. Fringes of 
order 0.5 and 1.5, and to less extent of order 2.5 and 3.5, look 
darker in the photograph than higher order fringes. This is 
proably due to the different spectrum associated with dif­
ferent orders, which are all filtered by the same filter, giving a 
somewhat different appearance in the photograph. 

Thus the whole field of fringes in Fig. 1 was completely 
identified. In this figure the fringe of order one was 
represented with dotted lines. It happens to be a "transition" 
isochromatic, crossing itself at several "saddle" points which, 
a shown in the foregoing are very important in the process of 
identifying the order of the fringes. 

The normal sresses along the boundaries are shown in Fig. 
2. Moreover, since the maximum shear stress T,„ is known in 
the whole field it has been plotted as a function of position 
along the line of symmetry in Fig. 3. 
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Introduction 

In this paper, the motion of a thin square plate of rigid-
plastic material in a damping medium is studied. The plate is 
subjected to a uniformly distributed load which is applied 
suddenly at time t = 0, kept constant at an intensity p during 
0<t<r, and suddenly removed at t=r. The plate material 
obeys the Johansen's yield criterion and the associated flow 
rule. The damping resistance is taken to b e / = aV where Kis 
the transverse velocity of the plate and a is a constant. When 
the damping is absent, Cox and Morland [1] found that the 
nature of the motion depends on whether the load is medium 
(p0<p<2p0) or high (p>2p0), where p0 is the static limit 
load. 

The rectangular Cartesian coordinates x, y are taken along 
the diagonals of the simply supported square plate of side 2L. 
For convenience an auxiliary coordinate z = (x+y)/42L is also 
defined. Because of symmetry it is only necessary to consider 
one quarter of the plate. In the present case, the equation of 
motion is 
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by2 +p = fxw+aw 

where Mrr, M yy Mxy =Myx are the moment components, n is 
the mass per unit area of the middle surface whose deflection 
is w(x,y), and dots indicate differentiation with respect to 
time. Following the method outlined in [1], the results are 
summarized in the following. 

Medium Load 

Phase 1 (0 < t < T). The moment distribution is 

Mxx = Mo+jffAz) 

M„ = Mo+y2/,® (2) 
Mxy = Xyfl (Z) 

where M0 is the fully plastic moment and the function/,(z) is 
given by 

fi(z)={liW+aW){2-z)/\2-p/6 (3) 

in which the central plate deflection W is 
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Phase 2 (T < t < T). The plate comes to rest at time T 
given by 
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The final central deflection is 
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High Load 

Phase 1 (0 < t < r). The central plate deflection is 

In the region 0 < z < 0O, Mxx = Myy = M0 and Mxy = 0. In the 
region 60 < z < 1, the moment distribution is expressed by (2) 
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''"'-Whs^-'-f*?] <9) 

where d0 is given by 
(\+60)(l-60)

2=2p0/p (10) 

Phase 2 (T < t < Tx). The central square region 0 < z < 
0O shrinks to zero at time Tt given by 

'••N^H")-']. 
At that instant, the central plate deflection is 

(11) 

W( *••>-•£[-IM-7)-'M-T*)] <12) 
Phase 3 (Tl <t< T2). The plate comes to rest a.tt=T2 

r2=^iogri + ^[exp(^)-i] 
a L p 0 

The final central deflection is 

a a 

(13) 

(14) 

that includes a strain-rate term is necessary. The inclusion of 
the effect of transverse shear and rotary inertia, in a manner 
similar to one adopted in [3], in the present analysis is also 
desirable. Alternatively, one can follow the continuum ap­
proach of Batra and Dubey [4]. 

It may be worthwhile to extend the present study to plates 
clamped along the periphery. An unfinished attempt has 
revealed that the determination of the central plate deflection 
itself is not a straightforward exercise; it requires solving two 
coupled, nonlinear, ordinary differential equations. 
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Discussions 

The variation of moments is found to be independent of 
damping during the motion. However, the plate deflection is 
affected by damping force. When the damping coefficient 
tends to zero, it is found that the present solutions reduce to 
those obtained by Cox and Morland [1]. 

The results for an impulse I0 can now be obtained easily. 
Let r tend to zero and p/p0 tend to infinity such that pr tends 
to a finite value I0. Then, equations (11) and (13) become 

M 

a 
log -

log 

pA + i] 
L i" 2p0 J 

[« A+11 
L U. Pn J a L p. p0 

The corresponding final central deflection is 

W(T2)--
a 

2Po, 
— log 

If a tends to zero in (17), then 

W{T2y-

( " V W 7 Q ) + 1 

( a V 2 w ? 0 ) + l 

3/g 
4^0/* 

(15) 

(15) 

(17) 

(19) 

which is the same as obtained in [1]. 
One of the important observations is that the expressions 

for the deflection (and for the velocity field) are identical to 
ones derived for simply supported circular plates in a damping 
medium [2]. The final central deflection in two cases is the 
same but, of course, not the deformed shape of the plate. 
However, if the deflections are plotted in the plane y = 0 or in 
x = 0, the curves will again be similar to the one drawn along a 
diameter of the circular plate. The conclusion is, therefore, 
that the permanent central deflection of a simply supported 
square plate is the same, for a given impulse per unit area, as 
that for a simply supported circular plate inscribed to the 
square, since under these circumstances the yield-point 
pressure p0 is the same. The same conclusion holds in the 
absence of damping also [1]. 

While the rigid-plastic theory is fairly successful in 
predicting the final deformation, certain discrepencies still 
remain between the results of experiments and those predicted 
by the theory. Many of these are attributed to the effect of the 
rate of strain on the material response. A constitutive relation 

Bending of a Free Beam on an Elastic 
Foundation 

A. P. Gallagher1 

Introduction 

The bending, due to a concentrated load at the center, of a 
uniform weightless finite beam resting on a foundation, which 
is treated as a two-dimensional, frictionless, elastic half space, 
is considered. Various foundation models have been used (see 
Kerr [1], Lentini [2]). Biot [3] used the two-dimensional model 
for the infinitely long beam, as well as the three-dimensional 
one. Conway and Farnham [4] solved this problem assuming 
uniform pressure and deflection but their results appear to be 
in error since they indicate increasing deflection with in­
creasing foundation stiffness. Weitsman [5] applied a 
variational approach to the infinite beam but his results 
contain an error as was pointed out by Gladwell [6], who 
solved this problem using the two-dimensional model. 
Gladwell's results are in good agreement with those of Keer et 
al. [7] and with the present ones. The method used here (see 
Gallagher [8]) expresses the problem as an integro-differential 
equation. Thexcontact length is found to be independent of the 
load, a particular case of the more general result proved by 
Dundurs [9]. Good agreement is obtained with the ex­
perimental results of Vesic [10]. 

Statement of Equations 

Assuming no friction is present at the beam-foundation 
interface and that the weight of the beam is negligible in 
comparison with the load P, then the Bernoulli-Euler law 
gives 

E„/ 
d4y 

~dxr = PS(x)-W(x), \x\<a (1) 

wi th/ ( ± a) = y" ( ± a) = 0. 
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uniform weightless finite beam resting on a foundation, which 
is treated as a two-dimensional, frictionless, elastic half space, 
is considered. Various foundation models have been used (see 
Kerr [1], Lentini [2]). Biot [3] used the two-dimensional model 
for the infinitely long beam, as well as the three-dimensional 
one. Conway and Farnham [4] solved this problem assuming 
uniform pressure and deflection but their results appear to be 
in error since they indicate increasing deflection with in­
creasing foundation stiffness. Weitsman [5] applied a 
variational approach to the infinite beam but his results 
contain an error as was pointed out by Gladwell [6], who 
solved this problem using the two-dimensional model. 
Gladwell's results are in good agreement with those of Keer et 
al. [7] and with the present ones. The method used here (see 
Gallagher [8]) expresses the problem as an integro-differential 
equation. Thexcontact length is found to be independent of the 
load, a particular case of the more general result proved by 
Dundurs [9]. Good agreement is obtained with the ex­
perimental results of Vesic [10]. 

Statement of Equations 

Assuming no friction is present at the beam-foundation 
interface and that the weight of the beam is negligible in 
comparison with the load P, then the Bernoulli-Euler law 
gives 

E„/ 
d4y 

~dxr = PS(x)-W(x), \x\<a (1) 

wi th/ ( ± a) = y" ( ± a) = 0. 
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In the preceding equation EB is the Young's modulus of the 
beam; / is the moment of inertia per unit width; P is the load 
per unit width; W(x) is the contact pressure; x is distance 
measured along the beam; y is downward deflection; 5(x) is 
the delta function and 2a is the contact length. 

If the slope of the deflection of the interface is assumed to 
be the same as that of the neutral axis of the beam, the 
pressure may be taken using the formulation given by 
Muskhelishvili [11], namely 

E(a2-x2)i/2 

W(x) = 
2TT(1 - a2) 

y'(t) 
•dt, \x\<a, 

- - « (a2-t2),/2(a-x)"" " V , J " ' ( 2 ) 

where E and a are the Young's modulus and Poisson's ratio of 
the foundation. 

Equations (1) and (2) are made nondimensional by letting £ 
= x/a, r\ = y/aa, r = t/a, <5(£) = a8(x), a = Pa2/EBI&n& 
X = Eo3/(l - a2)EBI where a and X are nondimensional 
parameters. 

The dimensionless form of (1) and (2) is 

d*v X ( l -£ 2 ) l / 2 f+1 J ) ' ( T ) 

dH4 2TT • I : i ( l - r W r - S ) 
dr 

(3) 

(4a) 

(4b) 

(4c) 

(4d) 

with i)( ± 1) = JJ" ( ± 1) = 0. The unknown quantity X must 
be determined from the condition that the total reaction and 
the load must balance. Denoting this value by X0, the solution 
to the problem is given by the following: 

half contact length a= (\ ,(1 - < J 2 ) E S / / E j 1 / 3 , 

deflection y(x) = \QP(\ -o2)ri(£)/E, \x\ <a, 

bending moment per unit width 

-EBIy"(x) = -Par,"(H), Ixlasfl, 

pressure W(x) = Pa>(£)/«, \x\ <a , 

where a{i) = (X(l - ^ 2 / 2 , ) j +_[ ^ _ ^ ^ . 

These expressions show that the contact length is in­
dependent of the load P, while the maximum deflection, 
which clearly occurs at x = 0, is independent of the flexural 
rigidity EBI of the beam. It may also be noted that the 
deflection, bending moment, and pressure at a point are all 
directly proportional to the load [9]. 

For values of x for which 1*1 > a, the deflection of the 
beam may be taken as a straight line with slopes ' ( ± a). 

Solution of the Dimensionless Beam Equation 

The method of solution of (3) is to expand the slope in a 
series of Chebyshev polynomials of the first kind thus 

V («)=E«2»-|7'2 f l-,«), If I S i , (5) 

where only odd polynomials are used since r;(£) is obviously 
even because of the symmetry of the problem. 

Substituting (5) into (3) and assuming validity of termwise 
differentiation and utilizing 

j * t ( r „ ( T ) / ( l - r 2 ) 1 / 2 ( r - f ) ) r f r = 7 r C / „ „ 1 ( a , « > l , If I s i , 

where U„ is the Chebyshev polynomial of the second kind, 
one obtains 

£«2„-i7i;:'}(£) 

Table 1 The dimensionless functions i/(£), )/"(£), and a>(£) at 
intervals of 0.1 for X = 22.0 

vd) i"(£) «>(£) 
0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

0.037 
0.036 
0.034 
0.031 
0.027 
0.023 
0.019 
0.014 
0.009 
0.005 
0.000 

-0.176 
-0.133 
-0.095 
-0.066 
-0.043 
-0.027 
-0.015 
-0.007 
-0.002 
-0.000 
-0.000 

-0.894 
-0.851 
-0.771 
-0.679 
-0.584 
-0.492 
-0.406 
-0.326 
-0.247 
-0.164 

0.000 

Deflection at 
center (mm) 

Half contact 
length (mm) 

Maximum bending moment/ 
unit width (kN) 

Maximum contact 
pressure (kN/m2) 

Table 2 

Experimental 

9 

787 

20.5 

221 

V) 

18 

908 

28.9 

178 

(«) 

11 

782 

24.9 

207 

(/) using W(x) (equation (2)) 
(//) using Wa„ (x) (equation (11)) 

-(X/2)(l-£2)"2 S ^ - i ^ - z t t ) =*(€)• (6) 

The end conditions become 
CO 

£ (2«-l)2a2„_,=0. (7) 

Multiplying by U2m_u m-1,2,3, . . . and integrating, 
making use of the orthogonality of the polynomials, equation 
(6) becomes 

- (37rX/8)5m„)a2„_, 
n = l 

= 1 . 5 ( - l ) m - \ /M = 1 , 2 , 3 , . . 

where /,„„ = J ^ U2m_2T[n"Jrff = / ^ + 4 2 i , 

(8) 

and 4), 
r(2) 

J mn 

7(2) 1 mn 

8„„ 

= ( 2 w - l ) ( 2 r t - l ) 4 , m , « > l , 

= 0, m = 1 or n = 1, 

= 192(2«-/) ZEE 
f_, , = 1 ,_, ( 2 / - l ) 2 - 4 r 

= 1 and 5,„„=0 if m^n. 

-,m, «>2 , 

Equation (7) has been used in calculating I$„. The method 
of solution of equations (8) was the usual one of truncating 
the coefficient matrix to a finite square one of size N and 
increasing N until no change is observed in the coefficients an. 
A further term of the form ± (2m ~ 1)" E£L, (2n - l)2«2n-i 
m = 1, 2, 3, . . . , was added to the wth equation, where/? 
and the sign were chosen so that maximum accuracy was 
obtained in the case where the exact solution was known, 
namely X = 0. This corresponds to a beam with no foun­
dation but simply supported at x = ± a. It was found that p 
= 4.3 and the minus sign gave maximum accuracy, the error 
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in each coefficient being less than 2 x 1 0 9 , while the error in 
,j(0)was8 x 10~8 and in 7)"(0) was 3 x 10~3. 

The value of X0 was determined by the fact that the load 
and the total reaction of the foundation must balance. Using 
the expression for the total reaction given in [11], this implies 

E f"7 ty'(t) 

~ 2 (1 -a 2 ) J -a (a2-t2)W2 ( 9 ) 

Using (4) and (5) the equation in Xo becomes Xo = - 4/TO, . 
Equations (8) were solved with different values of X until 

this condition was satisfied. The value of Xo was found to be 
22.0. This is to be compared with the value 22.14 obtained in 
[6]. To conform with the present notation the shear modulus 
G used in that paper must be replaced by E/2(l + a) and the 
flexural rigidity D by EBI. The values of ?)(£), i\" (£), and 
a) (J) for X = X0 are given in Table 1 at intervals of 0.1. 

Modification Using Average Pressure 

The value for the contact pressure as given by the two-
dimensional model is too small since it does not allow for the 
large values in contact pressure near the faces z = ± b, where 
z is the transverse coordinate and b is the half-width of the 
beam. This increase in contact pressure can be allowed for, 
and better agreement with experimental results expected, if a 
widthwise average pressure Wm (x) is used instead. This can 
be estimated from the expression for the contact pressure 
under a rigid stamp of width 2b, [11], namely 

If W(x) is equated with the value of (10) at the center line of 
the beam, z = 0, one obtains 

W,Ax)= y W{x). (11) 

Comparison With Experiment 

Vesic [10] obtained experimental results with a beam and 
foundation with the following values for the parameters: P = 
181 kN/m, EBI = 282 kNm, E/(l - a2) = 8274 kN/m2 . The 
beam was 2.54 cm (1 in.) thick, 20.32 cm (8 in.) wide, and 
182.9 cm (72 in.) long. The comparison with these ex­
perimental results is shown in Table. 2. It will be noted that 
while the results using W{x) as given in (2) are in fair 
agreement with the experimental ones, there is considerable 
improvement in those obtained using Wav (x), particularly in 
the value for the contact length which is in error by only 0.6 
percent as compared with 15 percent for that obtained using 
(2). 

Comparison With the Winkler Theory 

If the Winkler theory is correct, then the ratio of contact 
pressure to deflection should be constant, i.e., W/y = K 
where K is a constant. From (4) it is found that 

/ r = C ( 0 ( E / ( l - < 7 2 ) ) 4 / 3 ( l / E f l / ] 1 / 3 (12) 

where C(£) lies between 0.344 and 0.563 for 0 < £ < 0.9 so 
that the assumption of the Winkler theory is approximately 
satisfied. Biot obtained a similar expression to (12) with C = 
0.3 for the infinite beam on the two-dimensional foundation, 
by equating the maximum bending moments of the two 
theories. It should be noted that the foundation modulus is k 
= 2bK, where 2b is the width of the beam. If the average 
pressure under the beam is used then C(£) must be multiplied 
by(ir/2)4/3 = 1.83. 

Conclusion 

The foregoing method can be applied to similar problems, 

for example, to nonfree beams, to different loading con­
ditions, and to the case where friction is present. The latter 
problem is being investigated and it is hoped that the results 
will be published shortly. 
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Viscoplastic Modeling With Strain Rate-
History Dependency 

H. Ghonelm,1 S. Matsouka,1 and Y. Chen2 

The strain rate-history effect on the plastic behavior of some 
classes of viscoplastic materials is incorporated into the power 
formula of Bodner's model by adopting an integral-memory 
type equation for the "hardening" state variable. The 
modified model is incorporated into a finite element program. 
Results on uniaxial loading-unloading-reloading at different 
rates as well as jump tests show the capability of this modified 
model in simulating the strain rate-history effects on the yield 
stress and the plastic hardening for some viscoplastic 
materials. 

Introduction 

In modeling viscoplastic materials, the effect of the strain 
rate-history on plastic behavior, yield stress, and strain 
hardening has been gaining growing interest. Extension of the 
classical theory of plasticity to incorporate strain rate-history 
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in each coefficient being less than 2 x 1 0 9 , while the error in 
,j(0)was8 x 10~8 and in 7)"(0) was 3 x 10~3. 

The value of X0 was determined by the fact that the load 
and the total reaction of the foundation must balance. Using 
the expression for the total reaction given in [11], this implies 

E f"7 ty'(t) 

~ 2 (1 -a 2 ) J -a (a2-t2)W2 ( 9 ) 

Using (4) and (5) the equation in Xo becomes Xo = - 4/TO, . 
Equations (8) were solved with different values of X until 

this condition was satisfied. The value of Xo was found to be 
22.0. This is to be compared with the value 22.14 obtained in 
[6]. To conform with the present notation the shear modulus 
G used in that paper must be replaced by E/2(l + a) and the 
flexural rigidity D by EBI. The values of ?)(£), i\" (£), and 
a) (J) for X = X0 are given in Table 1 at intervals of 0.1. 

Modification Using Average Pressure 

The value for the contact pressure as given by the two-
dimensional model is too small since it does not allow for the 
large values in contact pressure near the faces z = ± b, where 
z is the transverse coordinate and b is the half-width of the 
beam. This increase in contact pressure can be allowed for, 
and better agreement with experimental results expected, if a 
widthwise average pressure Wm (x) is used instead. This can 
be estimated from the expression for the contact pressure 
under a rigid stamp of width 2b, [11], namely 

If W(x) is equated with the value of (10) at the center line of 
the beam, z = 0, one obtains 

W,Ax)= y W{x). (11) 

Comparison With Experiment 

Vesic [10] obtained experimental results with a beam and 
foundation with the following values for the parameters: P = 
181 kN/m, EBI = 282 kNm, E/(l - a2) = 8274 kN/m2 . The 
beam was 2.54 cm (1 in.) thick, 20.32 cm (8 in.) wide, and 
182.9 cm (72 in.) long. The comparison with these ex­
perimental results is shown in Table. 2. It will be noted that 
while the results using W{x) as given in (2) are in fair 
agreement with the experimental ones, there is considerable 
improvement in those obtained using Wav (x), particularly in 
the value for the contact length which is in error by only 0.6 
percent as compared with 15 percent for that obtained using 
(2). 

Comparison With the Winkler Theory 

If the Winkler theory is correct, then the ratio of contact 
pressure to deflection should be constant, i.e., W/y = K 
where K is a constant. From (4) it is found that 

/ r = C ( 0 ( E / ( l - < 7 2 ) ) 4 / 3 ( l / E f l / ] 1 / 3 (12) 

where C(£) lies between 0.344 and 0.563 for 0 < £ < 0.9 so 
that the assumption of the Winkler theory is approximately 
satisfied. Biot obtained a similar expression to (12) with C = 
0.3 for the infinite beam on the two-dimensional foundation, 
by equating the maximum bending moments of the two 
theories. It should be noted that the foundation modulus is k 
= 2bK, where 2b is the width of the beam. If the average 
pressure under the beam is used then C(£) must be multiplied 
by(ir/2)4/3 = 1.83. 

Conclusion 

The foregoing method can be applied to similar problems, 

for example, to nonfree beams, to different loading con­
ditions, and to the case where friction is present. The latter 
problem is being investigated and it is hoped that the results 
will be published shortly. 
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Viscoplastic Modeling With Strain Rate-
History Dependency 
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The strain rate-history effect on the plastic behavior of some 
classes of viscoplastic materials is incorporated into the power 
formula of Bodner's model by adopting an integral-memory 
type equation for the "hardening" state variable. The 
modified model is incorporated into a finite element program. 
Results on uniaxial loading-unloading-reloading at different 
rates as well as jump tests show the capability of this modified 
model in simulating the strain rate-history effects on the yield 
stress and the plastic hardening for some viscoplastic 
materials. 

Introduction 

In modeling viscoplastic materials, the effect of the strain 
rate-history on plastic behavior, yield stress, and strain 
hardening has been gaining growing interest. Extension of the 
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effects presents difficulties, as pointed out by Naghdi [1], and 
complicates the applicability of the theory to numerical 
solution for boundary value problems [2]. Consequently, 
other approaches have been developed among which are: the 
endochronic theory of Valanis [3], the fracture entropy of 
Matsuoka [4], and the "state variable" theories. 

The internal or state variable theories utilize state variables 
which, in turn, relate to microstructural changes of the 
material to provide for the history-dependent behavior. In 
many of these theories, two internal state variables are used, 
one to simulate isotropic hardening and a second to simulate 
kinematic hardening [5]. These state variables are generally 
governed by differential equations following a work hard-
ening-recovery format. 

This paper is concerned with modeling viscoplastic 
materials of which yield stress and work hardening are strain 
rate-history dependent. The basic idea is to let the hardening 
state variable be strain rate-history dependent via an integral-
memory type equation. The present paper does not aim at 
developing a new viscoplastic model, nor does it aim at 
quantitative modeling of a specific material. Rather it is 
intented to investigate the influence of introducing such in­
tegral-memory type equation on the behavior of an existing 
viscoplastic model. Because of its mathematical simplicity 
and the lucidity of its material constants, the power formula 
of Bodner's model [6] is chosen. 

The modified model is implemented via a finite element 
program. Numerical results of loading-unloading-reloading 
and stepwise jump tests are presented. The results demon­
strate the capacity of the modified model in depicting some of 
the rate-history dependent phenomena exhibited by some 
viscoplastic materials. 

Mathematical Model 

Based on Bodner's model, at all stages of loading history, 
the total deformation rate tensor d is assumed to be separable 
into elastic d*" and plastic dp components, i.e., 

d = d e + d " (1) 

the plastic component is assumed to be governed by the flow 
rule, i.e., dp = AS, or upon squaring, 

where J2 is the second invariant of the deviatoric stress tensor 
S, and Z>f is the second invariant of the plastic deformation 
rate. In addition, £>f is assumed to be defined by the relation, 

Di=F(J2,T,Zk) (3) 

where Tis the temperature and Zk are internal state variables. 
If the power formula is adopted for (3), for isothermal in­
finitesimal deformation, equation (2) can be written as 

/TE\" S 

^ = c ( z ) 7 (4) 

where f is the plastic strain rate tensor, TE is the effective 
stress (TE = V372). n and Z are two material parameters, and 
C is a scalar factor. Analysis of (4) shows that n can be 
considered as a strain rate-sensitivity factor. Increasing n 
decreases the rate sensitivity. Also, Z can be considered as the 
"equivalent yield stress," or the threshold beyond which the 
plastic deformation becomes more pronounced [6]. In fact, as 
n tends to infinity, the power formula of Bodner degenerates 
to the elastic-perfectly plastic model of the inviscid theory of 
plasticity with Z as the yield stress. It should be pointed out 
that (4) can be considered as a special case of the internal state 
variable theories, where the kinematic hardening state 

variable is dropped and Z is the isotropic hardening state 
variable. 

Since Z can be viewed as the equivalent yield stress and/or 
the isotropic hardening variable, and since experimental 
evidences, for some viscoplastic materials [7, 8], show strain 
rate-history dependency of the yield stress and plastic 
hardening, Z is taken to be functional of the strain rate-
history, 

Z=$T\'Hs)} (5) 
7 = 0 

where s is a measure of the length of a "convenient" 
parameter from a past time T to the present time t, 

s=s,-sT 

where s, and sT are the values of the s at the present time t and 
the past time T, respectively. The parameter 5 can be taken as 
time, deformation, entropy, or any other variable that may 
yield meaningful result. In this paper, s, is taken as a measure 
of deformation, 

s=Vitrt2 = Vitr(ejjtij) 

Consequently, the equivalent yield stress Z becomes 
dependent on the strain rate-history of deformation. 

Upon adopting the integral-memory type equation for the 
functional, ff, for isotropic case, equation (5) can be written 
as [si . 

Z=y+\o g(sT)i(s)dsT (6) 

where y stands for the static yield stress, e is the equivalent 
strain rate (e = '/ie^-ey), and g is a weighting function. Abiding 
by the principle of fading memory, a simple form of g(s) can 
be written as 

g{s)=g0e"so (7) 

where s0 is a relaxation constant which determines the length 
of the memory of the equivalent yield Z, and g0 is a material 
constant that controls the strain rate sensitivity of Z. 

Equations (1), (4), (6), and (7) complete the constitutive 
equation of the modified model. Evaluation of the modified 
model is exercised by incorporating the constitutive equation 
into a finite element program and running some uniaxial tests 
as will be demonstrated in the following sections. 

Numerical Solution 

The constitutive equation of the modified model can be 
written as, 

ir=[D]i-a* (8) 

where a is the stress tensor expressed in a vector form, [D] is 
the elastic matrix, and a* is a stress term analogous to the 
initial stress and is referred to as the "equivalent initial 
stress," 

a* = [£>](£" + «") (9) 

where e" is a viscous strain rate added to make up for the 
diminishing rate sensitivity of the model as high values of n 
are chosen. Generally speaking, upon adopting Kelvin model 
to represent the viscous part, i" can be expressed as 

i" = axa-a1t" (10) 

where al and a2 are two material constants. 
Adopting the displacement method [9] for the development 

of the finite element program, the general equilibrium 
equation is 

( [B]T&dv = R (11) 

where [ ] T stands for the transpose of the matrix, R is the 
nodal force vector, and [B] is the strain-displacement matrix, 
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[B] = [L][N] 

where [L]is a linear differential operator matrix, and [N] is the 
shape function matrix. Substituting from (8) into (11) and 
making use of e = [B]u, where u is the nodal displacement 
vector, we get 

[K]\i = f*+S. 

where [K] is the global stiffness matrix, 

[K]=\ [B)T[D][B]dv 

(12) 

(13) 

and f* is a force term, will be referred to as the "equivalent 
initial load," 

f = \v[B]To* dv (14) 
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Fig. 3 Jump test 

The finite element algorithm involves the simultaneous 
solution of both equation (8) at each element (local level), and 
the global equilibrium equation (12). The corresponding 
incremental forms of (8) and (12), which are appropriate for 
the step-by-step solution strategy, are 

and 

where 

and 

A<T=[D]Ao+Aa* 

[JT|Au = AP+AR 

(15) 

(16) 

Af 
• = ) > 

TAa*dv 

Aa*- [D](Atu + Atp) 

Clearly, (4) and (10) have to be numerically integrated in 
order to find Ae^ and Ac", respectively. The rectangular rule 
and the General Implicit methods are adopted for the 
quadratures of (4) and (10), respectively, which give, 

and 

A t ^ f r f e f f ^ + a - e t y J - f c t / (18) 

where 

( 3 , = 
At a. 

and |S2 = 
Ata2 

l+AtQa2 1+A?9a2 

where At is the time increment (At = tJ+l - tj), and 9 is a 
weighing parameter (0 < 9 < 1). The subscript./ stands for 
the step number. 

From (17) and (18), solution of (15) and (16) is implicit and 
requires an iteration algorithm. At each loading step, guessed 
values of aj+l and ej+ Vl have to be assumed and improved via 
successive iteration. Isoparametric quadratic elements are 
used in this program. Also, it should be pointed out that 
evaluation of the integration (6) is necessary to complete the 
finite element solution at each step. This integration is 
evaluated using Guassian quadrature. First, the integration 
limits in (6) are to be changed such that, 

Z=y + si\l.Asi^Wi^}dx 
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and upon applying Guassian quadrature, 

The number of integration points m depends on the nature of 
the strain rate history e(s) and the lengths of s,. The more 
intermittent e(s) and the longer st are, the more integration 
points are required to get good numerical results. 

Numerical Examples 

Uniaxial loading at different rates, loading-unloading-
reloading, and jump tests are selected for the investigation of 
the response of the modified model. The following material 
constants are chosen for those numerical examples, 

E = 4.137xl05KPa, e = 0.45,a, 

= 2.417 xlO- 6 (KPa sec)"1, 

a2 = 1.0,C = 0.1 sec- 1 ,« = 20 ,s 0 =0.5 , 

y = 1.034 Xl04KPa, and g0 = 3.447 Xl04KPa 

Young's modulus E, Poisson ratio v, and>» are obtained from 
the tensile mechanical properties of Polytetrafluoroethylen 
(PTFE) [10], a material that exhibits plastic strain rate-history 
dependency and consequently is foreseen as an appropriate 
material to be represented by the present modified model. 
Pending experimental works, the other material constants are 
determined via numerical exercises, and consequently no 
qualitative comparison is presented. Figure 1 presents the 
strain rate effect on the stress-strain curve. It is clear that 
increasing the strain rate, in general, increases the yield stress 
and plastic hardening. 

Loading-unloading-reloading results are shown in Fig. 2. In 
these figures, the upper and lower dotted curves represent the 
constant-rate stress-strain curves at 1.0 and 0.1 sec - 1 , 
respectively. And the solid as well as the dashed curve 
represents the loading-unloading-reloading stress response. 
Dotted curves are plotted for the sake of comparison. Clearly, 
on reloading at a different rate from that of loading-
unloading, the reloading stress yields at values that are in­
fluenced by the previous strain rate of loading-unloading. 

The jump test, results where the strain rate is suddenly 
changed, are displayed in Fig. 3. As in loading-unloading-
reloading, the jump test results reveal the strain rate-history 
dependency inherited in the modified model. Upon decreasing 
the strain rate from 1.0 to 0.1 sec - 1 (solid line) the stress 
drops to values higher than that of the constant-rate loading 
at 0.1 s ee - ' (lower dotted curve). This is because the response 
after the jump is influenced by the previous strain rate of 
loading before the jump (1.0 sec - 1) . Similarly, when the 
strain rate is increased from 0.1 to 1.0 sec - 1 (dashed line) the 
stress response rises to values lower than that of the constant-
rate loading at 1.0 sec ~' (upper dotted curve). 

Conclusion 

The power formula of Bodner's viscoplastic model is 
modified to account for the strain rate-history effect on the 
plastic behavior, yield stress, and hardening of the model. 
Modification is accomplished by adopting an integral-
memory type of equation for the "hardening" state variable. 
Results from uniaxial simulation reveal the capability of the 
modified model not only in simulating the strain-rate effect 
on the stress-strain curve, but also in depicting the rate-history 
dependency of the plastic behavior exhibited by some 
viscoplastic materials, as illustrated by loading-unloading-
reloading and jump tests. 

The apparent success of the modified model suggests the 
extension of the modification to other types of state variable 

models which include kinematic hardening, temperature, and 
pressure effects, to solving nonisothermal-large deformation 
problems, and to experimental verification of the behavior of 
the modified model. 
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Postbuckling Analysis of Moderately Thick 
Elastic Circular Plates 

K. Kanaka Raju1 and G. Venkateswara Rao1 

Introduction 

Postbuckling behavior of thin elastic circular plates has 
been studied using contiuum [1] and finite element methods 
[2]. Recently, the authors presented a simplified finite element 
formulation [3] and obtained very accurate results for the 
postbuckling behavior of thin elastic circular plates. In this 
Note, the simple finite element formulation developed by the 
authors [3] is modified to consider the effects of shear 
deformation to obtain the axisymmetric postbuckling 
behavior of moderately thick circular plates. 

Finite Element Formulation 

The strain-displacement relations for a moderately thick 
circular plate of radius a under axisymmetric conditions are 
given by 

du 1 / dw \ 2 

6r ~dr + ~2 \~dr~) 

u 
ee = — 

r 
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and upon applying Guassian quadrature, 

The number of integration points m depends on the nature of 
the strain rate history e(s) and the lengths of s,. The more 
intermittent e(s) and the longer st are, the more integration 
points are required to get good numerical results. 

Numerical Examples 

Uniaxial loading at different rates, loading-unloading-
reloading, and jump tests are selected for the investigation of 
the response of the modified model. The following material 
constants are chosen for those numerical examples, 

E = 4.137xl05KPa, e = 0.45,a, 

= 2.417 xlO- 6 (KPa sec)"1, 
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Young's modulus E, Poisson ratio v, and>» are obtained from 
the tensile mechanical properties of Polytetrafluoroethylen 
(PTFE) [10], a material that exhibits plastic strain rate-history 
dependency and consequently is foreseen as an appropriate 
material to be represented by the present modified model. 
Pending experimental works, the other material constants are 
determined via numerical exercises, and consequently no 
qualitative comparison is presented. Figure 1 presents the 
strain rate effect on the stress-strain curve. It is clear that 
increasing the strain rate, in general, increases the yield stress 
and plastic hardening. 

Loading-unloading-reloading results are shown in Fig. 2. In 
these figures, the upper and lower dotted curves represent the 
constant-rate stress-strain curves at 1.0 and 0.1 sec - 1 , 
respectively. And the solid as well as the dashed curve 
represents the loading-unloading-reloading stress response. 
Dotted curves are plotted for the sake of comparison. Clearly, 
on reloading at a different rate from that of loading-
unloading, the reloading stress yields at values that are in­
fluenced by the previous strain rate of loading-unloading. 

The jump test, results where the strain rate is suddenly 
changed, are displayed in Fig. 3. As in loading-unloading-
reloading, the jump test results reveal the strain rate-history 
dependency inherited in the modified model. Upon decreasing 
the strain rate from 1.0 to 0.1 sec - 1 (solid line) the stress 
drops to values higher than that of the constant-rate loading 
at 0.1 s ee - ' (lower dotted curve). This is because the response 
after the jump is influenced by the previous strain rate of 
loading before the jump (1.0 sec - 1) . Similarly, when the 
strain rate is increased from 0.1 to 1.0 sec - 1 (dashed line) the 
stress response rises to values lower than that of the constant-
rate loading at 1.0 sec ~' (upper dotted curve). 

Conclusion 

The power formula of Bodner's viscoplastic model is 
modified to account for the strain rate-history effect on the 
plastic behavior, yield stress, and hardening of the model. 
Modification is accomplished by adopting an integral-
memory type of equation for the "hardening" state variable. 
Results from uniaxial simulation reveal the capability of the 
modified model not only in simulating the strain-rate effect 
on the stress-strain curve, but also in depicting the rate-history 
dependency of the plastic behavior exhibited by some 
viscoplastic materials, as illustrated by loading-unloading-
reloading and jump tests. 

The apparent success of the modified model suggests the 
extension of the modification to other types of state variable 

models which include kinematic hardening, temperature, and 
pressure effects, to solving nonisothermal-large deformation 
problems, and to experimental verification of the behavior of 
the modified model. 
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Postbuckling Analysis of Moderately Thick 
Elastic Circular Plates 

K. Kanaka Raju1 and G. Venkateswara Rao1 

Introduction 

Postbuckling behavior of thin elastic circular plates has 
been studied using contiuum [1] and finite element methods 
[2]. Recently, the authors presented a simplified finite element 
formulation [3] and obtained very accurate results for the 
postbuckling behavior of thin elastic circular plates. In this 
Note, the simple finite element formulation developed by the 
authors [3] is modified to consider the effects of shear 
deformation to obtain the axisymmetric postbuckling 
behavior of moderately thick circular plates. 

Finite Element Formulation 

The strain-displacement relations for a moderately thick 
circular plate of radius a under axisymmetric conditions are 
given by 

du 1 / dw \ 2 

6r ~dr + ~2 \~dr~) 

u 
ee = — 

r 
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where w, W are the inplane and transverse displacements, f is 
the shear rotation, r, 0, and z are the radial, circumferential, 
and normal directions, respectively. Assuming the circular 
plate to be discretized into a set of annular plate elements, the 
strain energy of an element bounded by radii rx and r2 is given 
by 

1 f 2 T f r2 f 

+ £>(X? + Xe + 2»XrXe + -j Ghe2^ rdrdd 

is the thickness of the plate, C=Ehi 

(2) 

where h is the thickness of the plate, C=Eh/(l-v2) and 
Z> = E/!3/12(l - v1), E being Young's modulus and cPoisson's 
ratio (chosen as 0.3 in the present study). G is the shear 
modulus given byE/2(l + v). 

The work done on the element by the uniform compressive 
load Nr per unit length at the boundary is given by 

1 r2* f-2 . / dw \ 2 

YJO l . ^ h r ) rdrde (3) 

where Nr is the radial load distribution per unit length in the 
element. 

Following standard principles, with cubic polynomials in r 
assumed for u, w, and f the final matrix equation governing 
the postbuckling phenomenon is obtained as 

W= 

[ * ] {«)+X[G]{5)=0 (4) 

where [K] and [G] are the assembled stiffness and geometric 
stiffness matrices, respectively. (5) is the eigenvector and X is 
the eigenvalue. The iterative numerical method of [3] is used 
to evaluate the nonlinear stiffness matrix K and to solve the 
equation (4) to obtain the linear buckling load parameter 
\L =Nr a2/D, where Nr is the critical radial load and the 
nonlinear radial load parameter \NL (Nra

2/D) for various 
ratios of central deflection (c) to thickness (h) with the 
thickness ratio {h/a) varying between 0.001 (thin plate) and 
0.2. 

Results and Discussion 

With the preceding formulation, the results obtained for 
moderately thick circular plates are presented in Table 1 in the 
form of linear buckling load parameter \L and the coef­
ficients a, b of an empirical formula for the radial load ratio, 
y = Nr/Nr =X/vz./X/. in the postbuckling range. The coef­
ficients a, b of the empirical formula for y given by 

y=l+a{c/h)2-b{c/hY (5) 

are obtained through a least square curve fitting technique 
from the nonlinear radial load parameter, X ^ , values ob­
tained for c/h values ranging from 0.0 to 1.0 in steps of 0.2 
from equation (4). 

The results for various h/a values for four and eight 
element idealizations of the plate with simply supported and 
clamped boundary conditions are given in Table 1. The 
convergence can be seen to be very good and an eight element 
solution gives very accurate results. 

\L values can be seen to decrease with increasing thickness, 
whereas the values of 7 increase with the thickness indicating 
that as the plates become thicker, the radial load ratio in­
creases (as a is increasing and b is sufficiently small). In other 
words, the effect of nonlinearity increases as the plate 
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thickness increases which consequently includes the effect of 
shear deformation. The effect of shear deformation can be 
seen to increase the 7 values by about 4 percent in the simply 
supported case and by about 14 percent in the clamped case 
over the thin plate results (/i/tf = 0.001). The present results 
for thin plates (h/a = 0.001) are in excellent agreement up to 
(c/h)2 term in the empirical formula with the continuum 
solutions [1]. All the present results are further accurate up to 
(c/h)4 terms. 

Concluding Remarks 

Results for the axisymmetric postbuckling behavior of 
moderately thick circular plates are presented. The simplified 
finite element formulation developed by the authors to study 
postbuckling behavior is extendable to plates of other shapes. 
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Magnetohydrodynamic Flow Between Two 
Horizontal Plates in a Rotating System, the 
Lower Plate Being a Stretching Sheet 

B. Banerjee1 

Introduction 

Fluid flow through porous media is of fundamental im­
portance to a wide range of disciplines in various branches of 
natural science and technology. Chakravorty and Gupta [1] 
have studied the MHD flow and heat transfer over a 
stretching sheet. Borkakati and Bharali [2] have discussed the 
MHD flow and heat transfer between two horizontal plates, 
the lower plate being a stretching sheet. The theoretical study 
of fluid flow problems taking into account the simultaneous 
effects of hydromagnetic and Coriolis forces is very useful in 
understanding various geophysical and astrophysical 
problems. The purpose of the present Note is to study the 
effect of rotation on the hydromagnetic flow between two 
parallel plates where the upper plate is porous and solid and 
the lower plate is a stretching sheet. We believe that our study 
will find application in metallurgy and polymer technology. 

Formulation and Solution of the Problem 

We consider the steady flow of an electrically conducting 
fluid between two horizontal parallel plates y = ±h, when the 
fluid and the plates rotate in unison about an axis normal to 
the plates with an angular velocity Q. We consider that the x 
axis is along the plate, the y axis is perpendicular to it, and the 
z axis is normal to the xy plane. The origin is considered at the 
center of the channel. The lower plate is being stretched by 
introducing two equal and opposite forces so that the position 
of the point (0, —h) remains unchanged. A uniform magnetic 
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Fig. 2 Variation of / ' for various k2 

flux density B0 is acting along y axis about which the system is 
rotating. The upper plate is subjected to a constant wall in­
jection with a velocity Vg 

The boundary conditions of the problem are 

u=Ex, v = 0, w-Q at y=—h 

u = 0, v=— v0, ve = 0 at y=+h (1) 

Using the substitution 

y 
r ) = — , u=Exf'(ri), V=-E hf(-t)),w = E xg(i]) (2) 

h 

where a prime denotes differentiation with respect to r/. The 
equations of motion in a rotating frame of reference are 
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thickness increases which consequently includes the effect of 
shear deformation. The effect of shear deformation can be 
seen to increase the 7 values by about 4 percent in the simply 
supported case and by about 14 percent in the clamped case 
over the thin plate results (/i/tf = 0.001). The present results 
for thin plates (h/a = 0.001) are in excellent agreement up to 
(c/h)2 term in the empirical formula with the continuum 
solutions [1]. All the present results are further accurate up to 
(c/h)4 terms. 

Concluding Remarks 
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We consider the steady flow of an electrically conducting 
fluid between two horizontal parallel plates y = ±h, when the 
fluid and the plates rotate in unison about an axis normal to 
the plates with an angular velocity Q. We consider that the x 
axis is along the plate, the y axis is perpendicular to it, and the 
z axis is normal to the xy plane. The origin is considered at the 
center of the channel. The lower plate is being stretched by 
introducing two equal and opposite forces so that the position 
of the point (0, —h) remains unchanged. A uniform magnetic 

Lecturer in Mathematics, Dibrugarh University, Assam, India 786004. 
Manuscript received by ASME Applied Mechanics Division, April, 1982; 

final revision, September, 1982. 

Fig. 2 Variation of / ' for various k2 

flux density B0 is acting along y axis about which the system is 
rotating. The upper plate is subjected to a constant wall in­
jection with a velocity Vg 

The boundary conditions of the problem are 

u=Ex, v = 0, w-Q at y=—h 

u = 0, v=— v0, ve = 0 at y=+h (1) 

Using the substitution 

y 
r ) = — , u=Exf'(ri), V=-E hf(-t)),w = E xg(i]) (2) 

h 

where a prime denotes differentiation with respect to r/. The 
equations of motion in a rotating frame of reference are 
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BRIEF NOTES 

(7) 

Variation of g for various k 

%-*,\r- -ff" R 

M2 2K2 

~R' (3) 

dp* 
= E2h 

1 

ph dr] 

-R[f'g-fg']+2K2f 

[ff'+Rf"} (4) 

-NPg^Q (5) 

where p* is the modified fluid pressure including centrifugal 
force and 

R = 
Eh2 

M2 6B2
0h

2 

pv 
K2 Qh2 

(6) 

/ ' " -R[f'2 -ff"} -2K2g-M2f =A 

where A is a constant. 
Because an exact solution to the equations (5) and (7) 

cannot be obtained, a perturbation technique has been applied 
by expanding/, g, and A in powers of R, by considering R to 
be small. We have not presented the solution but the results 
have been discussed numerically. 

Results and Discussion 

To gain an insight into the patterns of flow/, / ' and g have 
been plotted against t\ for different values of the rotation 
parameter K2 with M= 3 and \(V0/Eh) = 1 in Figs. 1-3. Figure 
1 shows that / increases steadily for low K2 where as for high 
value of K2, / increases near the plates and decreases near the 
center of the channel. Figure 2 reveals t h a t / ' decreases near 
the stretching sheet and increases near the porous plate for 
low K2 where as for high K2, / ' increases near the porous 
plate and decreases at the center of the channel. Also, the 
rotation of the channel brings humps near the porous plate, 
indicating the occurrence of a boundary layer near the porous 
plate. For high K2 the Coriolis force and the magnetic field 
that act against the pressure gradient, causes reversal of the 
flow. Figure 3 shows that the transverse velocity g increases as 
the rotation parameter K2 increases and the maximum of g 
occurs near the stretching sheet for low K2 and for high K2, 
the profile is depressed at the center of the channel, and nearly 
symmetrical about the center line of the channel. 

Equation (3) with the help of (4) can be written as 

References 
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Transfer Between Two Horizontal Plates, the Lower Plate Being a Stretching 
Sheet, to appear in Quart. Appl. Math. 

"Hydromagnetic Flow and Heat 
Appl. Math., Vol. 37, 1979, pp. 

Journal of Applied Mechanics JUNE1983, Vol. 50/471 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Extended Kane's Equations for 
Nonholonomic Variable Mass System1 

Y. Pironneau2. The paper presents a generalization of 
Kane's equations to nonholonomic variable mass systems. 
The authors claim that the new equations are simpler than any 
of the others and give an illustrative example. 

However it seems to the writer that even for the simple 
system of Fig. 1 the method leads to more complicated results. 
The (ideal) constraint 

x2 +y2 = a2 

gives 

xx+yy = 0. 

Following Kane's method we add the linear relation 

ax+&y = u 

supposedly to simplify that a and /3 are (arbitrary) constants. 
We have to calculate x, y, x, y and 

F(P). V(P) = -mgxWx-ay)-lu 

ma(P)-\(P)=m(xx + yy)=m[ . . .]u. 

Finally we obtain the equation of motion 

(x2 +y2)((5x- ay) ~' [it + (ax+By)(px- ay)~2u2]+gx = 0. 

(The result is more complicated of a and /3 are considered to 
be functions of x and y.) 

This does not seem simpler than the equation obtained 
when using, for instance, Lagrange's multiplier 

mx = \x 

my = -mg + \y 

and, eliminating X, 

yx - xy = gx. 

For a system with n generalized coordinates 
q(qhi=l, . . . , « ) and m ideal constraints represented by m 
linear nonholonomic equations 

aSi(qMi = bs(q,t) (s=\, . . . ,m) (1) 

we can choose p = n — s coordinates qa as principal, the s 
others designated by qj being secondary. The equations (1) 
can be written in the matrix form 

A(qa,qj,t)q^ +B(qa,qj,t)q^ = b(qa,qj,t) (2) 

qU) = -A-1Bq_M+A-ib (3) 

1 By Z. M. Ge and Y. H. Cheng, and published in the June, 1982 issue of the 
ASME JOURNAL OF APPLIED MECHANICS, Vol. 49, pp. 429-431. 

Professor of Mechanics, Ecole Nationale Superieure de Mecanique, Nantes 
University, Nantes, France. 
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The Euler-Lagrange equation of motion is 

( £ , - & - C , . ) ^ = 0 ( / = 1 n) ( 4 ) 

where 

Eiq^{.P)m(Py~qh dq, 
QiCjj is the virtual power of the given forces, and 

CjC/i is the virtual power of the constraining forces, with 

Ciqi = Caq+Cjqj. 

This quantity is equal to zero if, after (3), 

qu) = -A-lBq{a) (5) 

In this case (4) can be rewritten 

[F>> - Q W ] r f ) + [ E 1 ' 1 -Q^]T[-A~1Bq^]=0_ (6) 

and we obtain p = n-m equations of motion 

E<°<> - Q<°) - [A -' B] T(E "'» - Q °'>) = Q (7) 

which, using (3), gives p differential equations of the second 
order in qa whose coefficients are functions of qa, qj, and t. 
In some particular and very interesting cases these coefficients 
are only functions of qa and t. 

Fig. 1 
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DISCUSSION 

According to Kane's method, we have to add to the 
relations (2) p linear equations in order to obtain 

(8) 

A \B 

X \Y 

qU) 

= 

b 

u 

or 
it/) 

•i(«) 

-A-lBqia) +A-Xb 

[Y-XAlB]x[u-XA-lb], 

and, for virtual velocities, 

<p» = [Y-XA~lB]-lii 

qU) = -A'lB[Y-XA-lE\-x 

Then the relations (6) become 

[(£*»> -Q<-a))T + (£<•" 

-Q^Yt-A-^ByWY-XA-^BY 

and we obtain p equations of motion 

[ (Y-XA -'B) ~' ] T[Eia) - Qia) 

-(A-lB)T(Eu) -QU))] = 0 

'H = 0 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

which, using (9) and (10), give// differential equations of the 
first order in u but with coefficient functions of qa, qj and t. 
It seems difficult to consider (14) as simpler than (7). 

For the example given in (1) there are eight parameters but 
only two, q3 and q4, appear explicitely in the six constraint 
equations (2). The authors choose two complementary 
equations 

q4 = u, (15) 

cos(?3 + q4)q{ +Sin(<5r3 + q4)q2 = u2 (16) 

and obtain two differential equations of the first order in «, 
and «2 with coefficient functions of 173 and 174. 

In fact (16) can be rewritten (L being a constant) as 

L(sin qAy1-qi=u2. (17) 

Taking q,(a) = q, and q2
 <a) = q4, the relations (15) and (17) 

correspond in (8) to 

X=0 and Y= 
L(sinq4) ' 0 

0 1 

It would have been simpler to take X= 0 and Y= 1, which is 
exactly the Lagrange method. 

Authors' Closure 

The Kane's equation and its derivation in Pironneau's 
simple example are wrong, since the coordinates used in 
Kane's equation are generalized coordinates that were 
mistaken for the mutually dependent Cartesian coordinates in 
the example. The correct procedure of the formulation of 
Kane's equation for this example is as follows. Let the radius 
of the ring be r and the angle between the OP and x axis be 6 
which is taken as a generalized coordinate. 

q=0=u 

\ p = u(—r sin# i + r cos0 j) 

The partial velocity 

\ P = — r sinfl i + r cos0 j 

(1) 

(2) 

(3) 

a p = r( — u smd—u2cosd)i + r(ucos8 — u2smd)j 

The generalized active force 

F=Vp »R= —rmgcosd 

The generalized inertia force 

The Kane's equation is 

Vp • ( —map)= -r2mu = — r2md 

(4) 

(5) 

(6) 

F+F*=0 (7) 

rd+gcos0 = O (8) 

It is true that for such a simple example, the method of 
Lagrange's multiplier is simpler than Kane's equation and 
Lagrange's equation. Furthermore, in this case, the most 
convenient method is not the method of Lagrange's multiplier 
but the Newton's equation of motion. By taking the 
projection of Newton's equation on the tangent line of the 
circle at P, we can immediately obtain (8). However, this fact 
has not presented an obstacle to the superiority of Lagrange's 
equations over Newton's equations and the method of 
Lagrange's multiplier for complicated problems, just as it 
cannot present an obstacle to the superiority of Kane's 
equations over other methods in many cases of complicated 
problems. 

Both (14) and the derivation are far from Kane's equations 
and their derivation, although for specific problems the final 
equations of motion obtained by (14) and by Kane's equations 
may be the same, just as the same equation (8) can be obtained 
by several methods. The original contribution of Kane's 
method lies in the introduction of partial velocities, 
generalized active forces, and generalized inertia forces, 
which all disappeared in the derivation of (14), and the ap­
plication of D'Alembert's principle as the foundation without 
the use of virtual displacements (or velocities), while the 
foundation of (14) is D'Alembert-Lagrange's principle, which 
had been miscalled Euler-Lagrange equation of motion in 
Pironneau's statement, with the concept of virtual velocities 
used. By the statement "it would have been simpler to take 
X =0 and Y= 1, which is exactly the Lagrange method," the 
lead author has reason to say that (7) in the statement is the 
varied and unfinished form of Woronetz's equations of 
motion [1] and (14) the varied and unfinished form of 
Hamel's equations of motion [2, 3], which was compared with 
the former. 

Equation (16) is superior to (17) in that the physical 
significance of the former, of which left side is the velocity 
(projection) of Q, is more apparent than (17). Equations (15) 
and (16) are superior to ut = q4, u2 = qi in that first, the final 
equations obtained are simpler; and second, they have very 
interesting practical importance together. Let u]=q4 = <j), 
u2 = v, the equations of motion in our paper may be rewritten 
as 

Lij>+v 4> cos (/> + () sin cj> = 0 

a <j> sin 4> + IT v 4> sin 4> cos <t> 

+ {T+T{ sin2 4> + r\ cos2 4>)v + C(t)mcos(f> = 0 

(9) 

We have two equations of two variables 4>, v, where </> is the 
turning angle of the car and v the velocity of the car which, 
taken together, properly characterize the motion of the car 
and in which we are most interested. 

The choice of generalized speeds affords an opportunity to 
select the parameters of practical interest as the generalized 
speeds that can be often described by closed system of dif­
ferential equations (in our case, two equations of two 
variables) so that the specific problem can be greatly sim­
plified. This is also an advantage of Kane's method. Although 
the calculation of accelerations is an additional task, yet as a 
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An Album of Fluid Motion. By M. Van Dyke. Parobolic 
Press, Stanford, Calif. 1982. 176 Pages. Price $20.00, 
Clothbound; $10.00, paperback. 

REVIEWED BY S. WIDNALL1 

This book is a unique publishing event in the field of fluid 
mechanics. Since its arrival, I have seen many small clusters 
of enraptured graduate students work through its rich of­
ferings. The book contains 166 pages of photographs of fluid 
motion displaying a wide variety of phenomena, utilizing 
many different flow-visualization techniques. The only text 
beyond a short introduction are the figure captions, which 
contain a description of the phenomenon, an interpretation, 
and a reference to the original work or a credit. 
The phenomena include low Reynolds number flows, 
separation, vortices, flow instability, turbulence, free-surface 
flow, convection, subsonic flow, shock waves, and supersonic 
flow. The book has the power to excite and inform students 
about the complexity of possible fluid motions, arising even in 
simple geometries. Its price is low and its quality is so high 
that instructors can recommend it without reservation as a 
supplemental text or for independent study at both the un­
dergraduate and graduate level. No faculty member who 
teaches fluid mechanics should be without a copy. 
The clothbound version would make an ideal gift or coffee-
table book for any one with an interest in the natural sciences. 
The high artistic quality of many of the photographs will also 
appeal to those of a more general audience who chance to 
come upon this book. 

One unfortunate feature is the absence of color photographs. 
Although there are many such photos available, which would 
have added to the appeal of the book, it is clear that they 
would have increased the cost well beyond the current price. 
This book, at this price, is certainly to be recommended. 

Entropy Generation Through Heat and Fluid Flow. By A. 
Bejan. Wiley, New York, 1982. 248 Pages. Price $39.95. 

REVIEWED BY J. KESTIN2 

It is fair to assume that readers of the JOURNAL OF APPLIED 
MECHANICS are unaware of the existence of Public Law 95-
619-Nov. 9, 1978 entitled National Energy Conservation 
Policy Act. There, on page 3287, we read: 

'Professor, Department of Aeronautic and Astronautics, Massachusetts 
Institute of Technology, Cambridge, Mass. 02139. 

Professor, Division of Engineering, Brown University, Providence, R. I. 
02912. 

SEC. 683. SECOND LAW EFFICIENCY STUDY. 
(a) Study.—(1) The Secretary of Energy, in consultation 

with the Director of the National Bureau of Standards and 
such other agencies as he deems necessary, shall conduct a 
study of the relevance to energy conservation programs of 
the use of the concept of energy efficiency as being the ratio 
of the minimum available work necessary for ac­
complishing a given task to the available work in the actual 
fuel used to accomplish that task. 

Never mind that the ratio of the actual available work 
employed by a device to either the available energy residing in 
the fuel or to the minimum available work necessary for 
accomplishing a given task would be more appropriate 
measures. The fact remains that in 1978, as distinct from 
1983, the country was genuinely concerned about its energy 
future. A. Bejan's book is the outgrowth of that concern in 
1978 and earlier. In a number of well-known papers Bejan 
made the concept of available energy (otherwise known as 
exergy) accessible in detail to practicing engineers. The 
present book is a connected and thoughtful restatement of 
Bejan's very useful contributions. 

The basics of the subject are clearly presented in Chapters 1 
and 2. Chapters 3 and 5—10 contain applications to fluid 
flow, convective heat transfer, heat-transfer enhancement, 
heat exchangers, storage and low temperature. Chapter 11 
contains an accurate application of so-called second-law 
analysis to solar energy which corrects many erroneous earlier 
analyses and convincingly demonstrates the "high-
temperature" nature of solar radiation. In this the author is 
right, contrary opinions expressed by certain popularizers 
notwithstanding. Throughout the book, good use is made of 
the Gouy-Stodola theorem which connects entropy 
production to losses in available energy (exergy). 

Chapter 4, entitled "Theory of Turbulent Flow," con­
stitutes a surprising anomaly. In it the author rejects what 
most of use have learned, and learned to accept, about the 
origin of turbulence. He rejects the relevance of the theory of 
hydrodynamic stability and makes the astonishing statement: 

"It seems that by focusing on the transition regime as a way 
of explaining the nature of turbulence, researchers have 
complicated their work beyond need. First let us agree on 
what a "transition regime" is. It is simply that domain in 
which two different and competing mechanisms fight one 
another for dominance. 

No. We do not agree. Neither do we accept the role the 
author assigns to the "buckling property of inviscid layers." 
Chapter 4 should never have been included in this book 
because, even if it were revealingly correct, its topic is 
irrelevant to the eminently useful message contained in the 
remainder of the book. 

The last chapter, Chapter 12, by Mary Bejan discusses 
energy policy in more sociological terms; it is a very good 
basis for thinking about this aspect of the subject. 
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BOOK REVIEWS 

Finite Elements in Biomechanics. By R. H. Gallagher, B. R. 
Simon, P. C. Johnson, and J. F. Gross. Wiley, New York, 
1982. pp. xiv-404. Price $48.50. 

REVIEWED BY R. D. CROWNINSHIELD3 

The First International Conference on Finite Elements in 
Biomechanics was held in Tucson, Ariz. February 18-20, 
1980. This conference, which was sponsored by the United 
States National Science Foundation and the College of 
Engineering of the University of Arizona, contained about 60 
presentations which covered a wide variety of finite element 
applications in biomechanics. The conference organizers 
(editors of this book) invited the authors of 18 of these 
presentations to prepare manuscripts for publication in this 
book. 

The book starts with the introduction of a clinician's view 
and then a finite element specialist view of the method. G. T. 
Rab presents his views on the finite element method, special 
model problems with biologic materials, and problem of 
clinician-engineer collaboration. O. C. Zienkiewicz and D. 
W. Kelley then present the basic outline of the finite element 
process, its historical development, present trends, and its 
impact on the field of bioengineering. 

The remainder of the book presents a diverse array of finite 
element applications in biomechanics. Two chapters address 
the mechanics of biologic fluid flow. Normal mechanics of 
capillary flow, arterial flow, blood cell deformation, and 
peristaltic flow are discussed. Special problems of pulsatile 
flow through a stenosis and through an aneurysm are also 
considered. 

The application of the finite element method in soft tissue 
mechanics is demonstrated in an introductory chapter and a 
subsequent series of chapters dealing with the mechanics of 
the lungs and heart. Analyses of the role of interfacial forces 
in lung deformation, lung parenchyma, and the heart's left 
ventricle are discussed. 

The remainder of the book, and by far the most indepth 
treatment of a subject, is devoted to the finite element method 
applied to solid mechanics, predominantly orthopaedic 
problems. After a survey chapter on the role of finite element 
models in orthopaedics, subsequent chapters address specific 
orthopaedic applications. An application of the finite method 
to external fracture fixation devices is followed by studies of 
stress-morphology relationships in trabecular bone, stress 
distributions in the femoral head, intervertebral disk func­
tion, the mechanics of artificial joint fixation, cement-bone 
failure, the function of femoral endoprostheses, and head and 
neck injury mechanisms. 

This book assembles the highlights of what was a very 
interesting biomechanics conference. The presentations 
chosen for inclusion in this book survey well the diverse 
application of the finite element method to biomechanics 
problems and illustrate important problems unique to finite 
element modeling of biologic systems. The reader is in­
troduced to problems associated with biologic variability, 
growth and maturation, nonlinear materials, anisotropic 
materials, incompressible materials, viscoelastic materials, 
and structural pathology. The book as a whole serves as an 
excellent introduction for the experienced finite element 
programmer to the applications and special problems of 
biologic system modeling. The individual chapters present 
new data, discussion, and reference useful to the reader with 
interest in one or more of the specific subject areas. 

Associate Professor, Department of Orthopaedic Surgery, The University 
of Iowa Hospitals and Clinics, Biomechanics Laboratory, The University of 
Iowa, Iowa City, Iowa 52242. 

Optimality in Parametric Systems. By T. L. Vincent and W. 
J. Grantham. Wiley, New York, 1982. 243 Pages. Price 
$34.50. 

REVIEWED BY W. STADLER4 

If optimization methods are ever to become standard tools 
of analysis in industry, they must be introduced on a regular 
basis at an undergraduate level. The present book is very 
readable and could be used as an undergraduate text. With the 
exception of some supplements on differential calculus and 
cones in R", the needed mathematical background should 
include differential equations and linear algebra, a level 
usually attained by seniors in engineering. 

Only about 30 pages of the book pertain to optimality in 
parametric systems, about half of the book concerns 
nonlinear programming, and the remainder is devoted to 
gametheoretic concepts. Throughout, it is generally assumed 
that the criterion functions and the constraint functions are 
differentiable as needed, resulting in theorems and proofs that 
are relatively easy to apply and follow, respectively. 

With the exception of three examples and their various 
treatments, all of the examples are academic and there are no 
direct applications to mechanics. However, in mechanics, as 
well as in other areas, there is a need for a formal treatment of 
optimization problems involving the simultaneous 
"minimization" of several criteria. This requires some new 
notions of optimality. Although such concepts as Pareto 
optimality have been around in economics for nearly 100 
years and game theory was conceived by Borel in 1921, they 
have only found their way into the engineering literature 
within the last 20 years. The authors provide a fairly detailed 
treatment of Pareto optimality as the optimality concept for 
the "vector maximum problem" and they treat Nash-
equilibrium, min-max, and Stackelberg Leader-Follower 
solutions in a gametheoretic context. The authors, as well as 
others, usually introduce these concepts as possible 
resolutions between antagonistic "rational" players; 
however, they can also serve as optimality concepts for the 
vector maximum problem. Thus, min-max clearly is suited for 
worst case design, and the Nash-equilibrium concept could be 
used when one might wish to assure that one criterion 
maintain a lower bound when one of the design variables is 
changed with all others remaining fixed at the optimal design. 
Collectively, all of the games may be viewed as "games 
against nature" played by a single decision maker. 

In summary, the book provides a needed transition from 
the treatment of these topics in monographs and in a research 
context to possible classroom use. 

Theory of Dislocations (2nd ed.). By J. P. Hirth and J. Lothe. 
Wiley, New York, 1982. pp. xii-857. Price $72.95. 

REVIEWED BY T. MURA5 

This book is based on the lecture notes developed by the 
authors for courses on the theory of dislocations at Carnegie 
Institute of Technology, The Ohio State University, and Oslo 
University. The first edition of this book was published by 
McGraw-Hill, in 1968. The present major revision is made in 
the sections related to elastic theory of dislocations. Ac­
cordingly, the works of Willis, Barnett, and Asaro, among 
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others whose names did not appear in the first edition, are 
introduced in the second edition. These people advocated the 
importance of the line integral expressions for the elastic field 
of a dislocation loop. There is also added coverage of atomic 
calculations and new material on advanced anisotropic elastic 
theory and grain boundary dislocations. However, very little 
coverage is found in the area of continuous distributions of 
dislocations developed by K. Kondo, Bilby and Kroner, 
among others. 

This book consists of four parts. Part 1 focuses on the 
fundamentals of dislocations (elastic theory of dislocations in 
isotropic continua); Part 2 on effects of crystal structure on 
dislocations (the Peiels-Nabarro dislocation model, partial 
dislocations, kinks, and anisotropy of crystals); Part 3 on 
dislocation-point defect interactions (thermal kinks and jogs, 
pinning and drag of Cottrell, Snoek, and Suzuki's at­
mospheres); and Part 4 focuses on groups of dislocations 
(dislocation models of grain boundaries, dislocation sources, 
pileups and twinning). 

Compared with Nabarro's book (Theory of Crystal 
Dislocations, Oxford 1967), this book provides sufficient 
detail for the book to be effectively used as an undergraduate 
text, as well as extended treatments of specific problems to 
stimulate advanced graduate students and scientists. 

Micromechanics of Defects in Solids. By T. Mura. Martinus 
Nijhoff, The Hague, 1982. pp. x-494. Price $98.00. 

REVIEWED BY D. M. BARNETT6 

Much of what might be termed advances in the 
mathematical treatment of defects (inclusions, in-
homogeneities, dislocations, and cracks) in solids tends to be 
scattered throughout the journal literature; as a result, the 
researcher intent on entering this field faces the rather for­
midable task of deciding on the best way in which to begin 
learning about the theory of defects. Prior to the appearance 
of Professor Mura's monograph, the single outstanding text 
available to such a researcher was Theory of Dislocations by 
J. P. Hirth and J. Lothe, now available in its second edition. 
The Hirth and Lothe book is, in my opinion, a beautiful 
exposition of great lasting value. Nonetheless, I have long had 
the feeling that it is more easily digested by one trained in 
solid state physics or materials science than by one whose 
primary bent is solid mechanics; in addition, Hirth and Lothe 
devote very little space to J. D. Eshelby's famous "tran­
sformation strain" problem, whose solution and attendent 
results should be in the "bag of tricks" carried by every Ph.D. 
materials scientist. Professor Mura's book more than 
adequately fills both gaps. Over one-third of the book is 
devoted to the treatment of inclusions and inhomogeneities in 
isotropic and anisotropic linear elastic solids, and the 
development of the subject matter should please readers 
familiar with either solid mechanics or applied mathematics. 

The first chapter introduces the notion of eigenstrains and 
emphasizes in a self-contained way the use of elastic Green's 
functions to represent the solution to eigenstrain problems. 
The next three chapters provide a most complete survey of 
inclusion and inhomogeneity problems and contain a wealth 
of formulas which should prove most useful to those 
requiring solutions to this class of problems. Cracks and 
dislocations in elastic solids receive a reasonably complete 
treatment in chapters 5 and 6. The final chapter emphasizes 
the use of techniques and solutions introduced previously to 
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model phenomena of importance to mechanical metallurgists, 
including work-hardening of dispersion strengthened alloys, 
stress relaxation via diffusion, and polycrystal plasticity. 

In summary, Professor Mura's book may be heartily 
recommended to those interested in either applying or 
learning to apply the methods of continuum mechanics to 
treat defects in the solid state. This monograph could serve as 
the perfect text for a second-level graduate course with the 
same title as that of the book. 

Advanced Engineering Analysis. By J. N. Reddy and M. L. 
Rasmussen. Wiley, New York, 1982. pp. xiv-488. Price 
$39.95. 

REVIEWED BY L. WHEELER7 

The aim of this book is to present a unified treatment of 
three topics, namely vector and tensor analysis, functional 
analysis, and the calculus of variations for an audience of 
students in engineering and applied science. It is based on 
class notes used by the authors in teaching seniors and first-
year graduate students, and for the most part, its level and 
style reflect these origins. Exercises are included. They are 
well chosen and suitably placed. 

The subject of functional analysis is important to much of 
modern science and I believe that a useful purpose is served by 
bringing it to a wider audience. An initiate to this field faces a 
rather bland literature which might seem merely to proliferate 
abstract function spaces. Here the authors have something to 
offer. They have put together a concise introductory treat­
ment where a student can pick up the basic concepts. 

The remaining two parts of the book do not seem to 
measure up to the part on functional analysis. While the 
treatment of the calculus of variations benefits slightly from 
the emphasis placed on methods of approximation and 
computation, I am disappointed to see it so weakly linked to 
the functional analysis that precedes it in the book. 

A major goal of the vector and tensor part is evidently to 
ease the student into functional analysis. While it might also 
be intended to furnish mathematical preliminaries for such 
subjects as modern continuum mechanics, this purpose is 
hindered by the notation, level, and style of the presentation. 
In particular, I fail to see why portions of it are so elementary. 

I recommend this book as a course book to those who teach 
functional analysis and variational methods to students in­
terested in applications. Further, it is written so that students 
in need of outside reading should find it helpful. It would 
deserve serious attention as a textbook, but I doubt whether 
many institutions offer a course to which it is closely suited. 

Spacecraft Dynamics. By T. R. Kane, P. W. Likins, and D. 
A. Levinson. McGraw-Hill, New York, 1982. 436 Pages. 
Price $49.50. 

REVIEWED BY R. L. HUSTON8 

This book is a welcome addition to the literature on 
spacecraft dynamics and on dynamics itself. It is basically a 
textbook, but it will undoubtedly become a reference for 
engineers and designers as well. Although the book has only 
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four chapters, there is a vast range of topics covered in depth 
in its 436 pages. 

The first chapter on kinematics contains an excellent 
analysis and discussion of rigid body orientation and angular 
velocity - subjects that are often poorly treated in standard 
texts and are thus confusing to students. The chapter includes 
discussions of Euler parameters, Rodrigues parameters, and 
screw motion — topics of increasing interest in modern 
dynamical analyses. In the reviewer's opinion, purchase of the 
text could be justified solely on the basis of this first chapter. 

The second chapter is more specialized; it deals with 
gravitational forces as they affect spacecraft. However, it is 
perhaps the most extensive and exhaustive treatment of this 
subject at one place in the literature. 

The third chapter discusses simple spacecraft dynamics. A 
"simple spacecraft" is a single rigid body or simple gyrostat. 
Dynamical equations are formulated using the angular 
momentum principle. Knowledge of inertia principles is 
assumed. 

The final chapter extends the discussion to complex 
spacecraft with multiple degrees of freedom and with elastic 
parts. Particular emphasis is given to formulaton of the 
dynamical equations. A system of equations called "Kane's 
dynamical equations" are shown to be especially convenient 
for this formulation - particularly as the complexity of the 
spacecraft increases. The chapter concludes with a discussion 
on the use of the finite element method for constructing 
modal functions. 

Four sets of problems are provided at the end of the text 
covering the subject matter of the respective chapters. (The 
reviewer believes it would be pedagogically more efficient to 
have these at the end of the chapters themselves.) The 
problems are good, but all need to be solved to cover the 
subject material. That is, there is little overlap in the problems 
- a possible disadvantage for classroom instructors. 

The book is eloquently set in a lucid style. It should be of 
interest and use to students, engineers, and researchers, and it 
is highly recommended by this reviewer. 

Theory of Thin Elastic Shells. By M. Dikman. Pitman, 
Marshfield, Mass., 1982, pp. xii-364. Price $59.95. 

REVIEWED BY J. L. SANDERS, JR." 

This monograph is the eighth in a series of surveys and 
reference works in mathematics offered by the publisher. 
Both as a reference work and as a survey the volume is superb. 
An early chapter on the differential geometry of surfaces and 
nearby space (i.e., the shell space) developed by means of 
tensor calculus introduces the notation and takes care of most 
of the purely mathematical aspects of the subject. 

The book is devoted wholly to the theory of elastic thin 
shells. There is essentially no material on applications, 
methods of solution, or inelastic behavior. There is a strong 
emphasis on the nature of the problem: to arrive at a 
satisfactory and usable approximate two-dimensional theory 
for real shells that are three-dimensional objects. The author 
recognizes two principal approaches to the problem which 
lead to two classes of theories termed "derived" and 
"direct." Derived theories involve a descent from three 
dimensions and, at least in an intermediate stage, involve an 
infinite system of equations or rather a hierarchy of systems 
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of equations. In this case the problem is how to decide where 
to leave off. The direct approach is two-dimensional from the 
outset, and involves defining the objects of shell theory 
(displacement measures, stress measures, etc.) over the 
surface, and postulating constitutive relations. In this case the 
problem is to justify the relation of the defined objects and 
postulated equations to the real world. The direct approach 
occupies much less space in the book, perhaps because it is the 
more efficient, or as the author maintains the two approaches 
complement each other. The ideas of the many researchers 
who have contributed to the subject are smoothly woven into 
the text. Copious references are supplied. 

In addition to the material on the foundations of shell 
theory there are chapters on stability, dynamics, and 
stochastic problems. A chapter each is devoted to the state of 
knowledge on error estimation and existence. Missing is a 
chapter dealing specifically with the significant advances 
made in recent years on the geometrically nonlinear theory. 

Perhaps some readers, like the reviewer, might wish to see a 
more definite choice among alternatives at a number of places 
in the book. Some questions are, I believe, rather more 
definitely settled than the author indicates. However, no axes 
are ground, and on the whole the author has produced an 
excellent book, unique in its field. 

Classical Mechanics, Vol. I an Vol. II. By E. A. Desloge. 
Wiley, New York, 1982. 991 Pages. Price: Vol. I, $40.00; Vol. 
II, $49.50. 

REVIEWED BY R. H. RAND10 

This lengthy two-volume work consists of some 93 chapters 
and 32 appendices spread over 991 pages. Volume I treats 
Newtonian particle and rigid body dynamics, and offers a 
brief introduction to Lagrange's and Hamilton's equations. 
Volume II treats Lagrangian and Hamiltonian dynamics in 
detail and includes a discussion of special relativity. The 
appendices contain brief summaries of mathematical topics. 

The author's style is clear and readable, and there are many 
solved examples and homework problems (with solutions at 
the back of the book). In terms of current engineering 
education, volume I would be suitable for text in a senior level 
or beginning graduate course in intermediate dynamics, while 
volume II could serve as a text for a graduate course in ad­
vanced dynamics. 

Volume II offers an unusually good treatment of the 
following topics: Noether's theorem for obtaining first in­
tegrals; the use of group representations for solving linear 
vibrations problems with symmetry; the Gibbs-Appell 
equations; and special relativity. On the other hand, the 
following topics are regrettably missing: differential forms 
and exterior calculus, which provide an elegant and concise 
condition for a transformation to be canonical; KAM theory 
and related results on the breakup of invariant tori in 
nonintegrable systems; and canonical perturbation theory, 
e.g., Lie series or von Zeipel's method. 

These books, especially volume II, would be a useful 
reference for a researcher in applied mechanics, particularly a 
specialist in dynamics. However, the importance of Desloge's 
Classical Mechanics as a reference work is eclipsed by the 
existence of many other excellent and established works 
covering the same material (e.g., those by Goldstein, Lanczos, 
and Pars). 
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