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A Numerical Investigation for
Curved Pipe Flow at High
Reynolds Number

A numerical scheme for solving the curved pipe flow at high Reynolds number is
presented in considerable detail.
presenting mainly numerical results. An efficient scheme based on the conventional
Telenin method is developed to solve the general three-dimensional Laplace

This paper complements an earlier paper

equation subject to Dirichlet, Neumann, or mixed boundary conditions.

1 Introduction

Numerous investigations of curved pipe flow have been
carried out since the first theoretical studies due to Dean [1,
2]. A brief survey of the more important work on this topic is
given by Yeung [3], which is also the major source of the
present work.

A numerical investigation is made of the flow of an in-
compressible fluid in the entry region of a circular curved pipe
at very large Reynolds number. The three-dimensional flow
field is divided into two parts, namely, the boundary layer
region near the inner pipe surface and an irrotational core.
The Method of Integral Relations (MIR) is used to solve the
appropriate boundary layer equations while a modified
version of Telenin’s method is applied in the irrotational core
region, The general equations of motion are the usual Navier-
Stokes equations written in toroidal coordinates as shown in
Fig. 1.

The equations of motion, respectively, governing the in-
viscid and boundary layer flows are solved as a coupled
system. This composite method was applied to flow in a 90
deg elbow with ratio of pipe radius to elbow radius equal to
0.1 with Reynolds number 10*. The results of the application
are given in Yeung [4]. The present paper deals with the
details of the numerical technique employed.

2 Irrotational Core

Since the core region is assumed irrotational, we can define
a potential function £ such that

29 09 [ 1
aré 6/‘0

@ COos Yg

] 1 39
ro 1+ argcosyyg

5 93
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_ asinyyg o2 o? *Q
14+argcosyy Yy  (1+ary cos yg)® 0s3

Equation (1) is written in toroidal coordinates shown in Fig.
1. The pipe is generated by rotating the circle, radius a, about
the y axis. The angular coordinate ¢ is in the main stream
direction (following the mean radius of the curved pipe) while
r and ¢ are polar coordinates in the cross-flow plane. The
ratio of the pipe radius @ to the pipe radius of curvature R is
denoted by «; ry is nondimensionalized with respect to @ and
(ro, Yo, Sp) are the coordinates for the core region. The
corresponding velocity components, relative to the constant
entry velocity W;, are given by
1 a4Q 1 00 1 i193

=0. (1)

Uy=— —, Vo=— —, = —— (2
LS argy 0 arg 0y L argy cos Y, 0y @
We restrict ourselves to the following boundary conditions:
o0
—=14argcosy, at s;=0 3)
350
corresponding to uniform flow at the entry, and
Q=g(Yg,ro) at so=u/2 )

corresponding to a prescribed variation of the potential at the
exit. In addition, the radial velocity is prescribed at the pipe
boundary,

Q
o =f3(g.S0) at

arg
The function f; is the main interaction term between the
boundary layer region and the core region, as we shall see
later.

Telenin’s method, which is described in full in Holt [5], is
chosen to solve equation (1). In short, £ is represented by
appropriate interpolating functions in r, and y,. This makes
possible the calculation of the corresponding partial
derivatives, and eventually replaces equation (1) with a system
of ordinary differential equations in s,. The principal ad-
vantage of Telenin’s method over conventional finite dif-
ference schemes lies in the flexibility in choice of the in-
terpolating functions. Thus, when certain functional
properties of the unknowns are known (for example, the

r0=1. (5)
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Fig.1 Toroidal coordinate system

¥=90°

1= 1.0

y= p=0°

Fig.2 Grid system and nodal point coordinates in the core region

functions may be odd, even, or periodic), one can easily
choose appropriate functions that exhibit those properties,
thereby improving the accuracy of the numerical results.
Furthermore, some boundary conditions can be carefully
incorporated into such chosen functions, thus eliminating the
need to consider the boundary points separately, as is required
in finite difference formulations.

The cross-flow plane is discretized according to Fig. 2.
Changing from Cartesian to toroidal coordinates introduces
an artificial singularity in the solution of equation (1) at ry =
0. This is avoided in numerical work by taking the inner
boundary of the integration on the circle r, = 0.1 rather than
the center r, = 0. The resulting numerical solution can be
extrapolated uniformly to r, = 0. Let (i,k) represent the
coordinates of the nodes, i.e., at the point (/,k), ry = rp; and
Yo = Yo The value of any function f(ry,y,,S,) at the node
(i,k) will be denoted by f (s). Note that f; is only a func-
tion of sq.

On planes of constant ¥, Yo = Yox, We approximate { by
a Lagrangian polynomial in the ry direction:

NX1+1
o= ), Q! )
i=1
where NX1 is the number of nodes in the r, direction and Q7
depends only on y, and s,. Normally, one can only fit a
(NX1 —1) degree polynomial to NX1 points. However, due to
the derivative boundary condition at 7, = 1, one has an extra
degree of freedom in fitting a polynomial through NX1
points, i.e., one can fit an NX1 degree polynomial through the
NX1 points. Rewrite (6) as
NX1
Q= Q"+ Qo 78 )
J=1
Applying the boundary condition at r, = 1 from equation (5)
we finally obtain

NX1 J"‘ 1
Q=00+ Y, Q}?{r{;' — r{)VXl}, ®
j=2
where {1is defined as
NX
Qzﬂ_fa(‘//;)\’;?:ro . ©)

240/ Vol. 50, JUNE 1983

The interpolating coefficients 0,09, . .. can be solved in
terms of the nodal values of €. Thus, if we apply (8) to the
NX1 points in the ry direction, we have

NX1

Qik= E AUQ;)’ i=12,...,NX1, (10)
j=1
where A;; is given by
A;=1 when j=1
and
. -1 .
Ay=rfit - N otherwise. 11
Solving (10), we obtain
NX1
Q?z E Alflﬂjk) i=1,2, v ’NXI (12)
j=1

The partial derivatives in the r, direction are then given by

30y & .
= C1,;Q,
ory ,; ij 3éj
where
NX1
Cly= X (=DAj 07 =™ a
=2
and
P20, NX1 ]
= D1,Q;
arg ,;, if S4jk
where

NX1
Dly= Y, (.= DAG'[(¢=2)r;? — (NX1 - )rfX1-2]. (14)
=2

Similarly, on contours of constant rq,  is expressed in cosine
series (because of its symmetry property) as follows,

NX2

Q= Y, % cos (- yo,

j=1

(13)

where NX2 is the number of nodes in the ¥, direction. As
before, 9%, which is now a function of ry and s, only, is a
linear combination of the values of Q on the NX2 points. If a
matrix B is defined as

Byi=cos (— s, k, j=1,...,NX2, (16)
it can be shown that the following holds,
NX2
Q0= Y, Bi'Qy, j=1,...,NX2, (17
=1
a9, NX2
= C2,;%;,
o j; KA
where
NX2
C2y=— Y, (6= DBy sin (- Doy, (18)
i =2
and

2, e
e = D2,:%,;,
a‘p(z) j; LA
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Fig. 3 Notation of the mesh size in the streamwise direction in the
core region

n Exact Solution
[oX51 (Eq.a)
)
r o 1 0
. e | ™
04 6 o1 o
. ® Ol ™

— Numerical Sol'n,
0.2  (present
scheme)

-0.2

-04

-0.6L

Fig. 4 Comparison of numerical solution by the modified Telenin
method to the exact analytical solution of Laplace’s equation in a
circular cylinder

where
NX2

D2y;=~ Y, (£=1)2Bj" cos (I— Dy

(=2

(19)

Substituting the partial derivatives in ry and y, directions into
equation (1), Laplace’s equation reduces to the following
system of second-order ordinary differential equations in sq:

5 N\
dZQZik (D S, i=1,...,NX1
dsp k=1,...,NX2
where F,, is given by
5 __ W) {azﬂik (_1_ , <08 wo,k)gﬂi r 20)
§ o aré Fo. J; arg
1 3Qy  asin g, 69,-,(}
B, WE T 0w )
with
Jp=1+ org ; COS Yo r - @2n

The dependence on f; is derived from equation (9).

Journal of Applied Mechanics

The boundary conditions for (20) can be derived from (3)
and (4) as

dQ,
'—=I+Otr0,‘COS¢0k at S0=0 (220)
dSO 4 s
and
Q0 =g (Youro,) at so=m/2. (22b)

The conventional Telenin method transforms the boundary
value problem into an initial value problem by guessing
enough initial conditions to start the integration.
Mathematically, this is equivalent to solving an elliptic
problem by assigning Cauchy data along an initial line. This
approach suffers from so-called Hadamard instability [6].
Indeed, when this shooting technique was applied to (20) with
(22a,b), the solutions increased without limit and it was not
possible to obtain convergent results.

A different approach is sought by taking advantage of the
linearity of equation (20). Since Hadamard instability arises
only when we try to cast the elliptic problem into a Cauchy
initial value problem, numerical schemes based on the direct
solution of (20) should eliminate this instability. To do so, let
us divide the curved pipe into NX3 equal parts in the direction
of increasing sy, as shown in Fig. 3. Denote the value of Q at
the point ({,k) on the plane s, = (v/NX3) x/2, where » =
0,1, . .. ,NX3, by Q4. Equation (20) is then approximated by
replacing the second derivative by a central difference for-
mula. For the derivative boundary condition at s, = 0, we
imagine a fictitious plane s, = — (1/NX3)e #/2, and denote
the values of Q at this plane by Qz!. In the case when a
derivative condition is also prescribed at s; = 7/2, it can be
treated in similar fashion. The resulting finite difference
system of equation (20) is

Q' 20 4+ Qpt!

n = ik(Q;m’f3)!
Q- Q!
e = (D ik (23)
2h
i=1,...,NX1l, k=1, L,NX2, »=0,1,...,NX3,
where A = (1/NX3) w/2 is the step size in the present
problem.

The linear system (23) has a very interesting property.
Rearrangement of the equations enables us to write it in the

following form
AX =C, 249

where A turns out to be a block tridiagonal matrix with the
following special property,

Ay 20
I A I
A=
A 25)
I Apx;
with Ag = A = ... = Anx; and I being the identity

matrix. The order of each matrix element is NX1 « NX2 by
NX1 « NX2. The transpose of X is given by

XT:{XOaXI, [ 9XNX3]’ (26)

where X, is a column vector containing @4,/ = 1, NX1, k =
1, NX2. Finally, C contains the corresponding in-
homogeneous term that depends on the boundary conditions.

JUNE 1983, Vol. 50/ 241
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The special structure of the coefficient matrix A improves
the efficiency of the present numerical scheme for solving
equation (1) tremendously. Thus, one can easily transform A
into a lower and upper triangular matrix as one does for an
ordinary tridiagonal matrix [7]. The order of systems that
need to be solved during the course of the LU decomposition
is at most NX1 « NX2, as compared to the original order of
NX1 « NX2 « (NX3+1) in (23). Moreover, many matrix
multiplications are saved since the lower and upper diagonal
elements of A are multiples of the identity matrix I.

The present modified version of Telenin’s method has been
applied to solve Laplace’s equation in a circular cylinder with
prescribed Neumann boundary conditions, as shown in Fig. 4.
The numerical results agree well with the exact analytical
solution indicated. Other boundary conditions, mostly mixed
Neumann-Dirichlet conditions for the same problem, have
been tried and in all cases there is close agreement between the
numerical and exact solutions. Hence there is no doubt that
the present modified scheme is more efficient than the con-
ventional Telenin method, at least when applied to a linear
problem.

For equation (1), different forms of g(ry,¥y) have been
tried and the corresponding solutions do mnot differ
significantly over most of the curved pipe downstream of the
entry plane, This is in conformity with a simple perturbation
analysis [3]. In view of this we take g = constant for the rest
of the paper. It now remains to specify f;, the boundary
condition at ry; = 1. The value of f; is determined from the
radial outflow of the boundary layer region and, con-
sequently, provides the interaction between the core and the
boundary layer region, as mentioned earlier,

3 Boundary Layer Region

In this region, the governing equations are of the usual
boundary layer type [3]. The Method of Integral Relations
(MIR) has been applied to reduce the original parabolic
equations to a system of first-order hyperbolic partial dif-
ferential equations. The derivation of the basic integral
relations is given elsewhere [3, 4]. The final forms of the basic
integral relations are as follows,

1 by, S* We (W) b, )
1+acos¢{ a Jo 1-W W+ 0s ¢k
! ¥4 oV
- Ve Z—-) w = ...,N=
SO( 3 + 3y g (Wydw k=1,2, N=1,
1 b U We (W s
oxS gn( )dW
l+acosy ds Jo 1-W
! aZ Vv
—C(N —S (V—ﬁ+zm> Wyaw,
(N) o EW) E) gn (W) J
(27)
1 by, S‘ 14
— —= =Dk~ V——
l+acosy ds (k) o ady i (W)W,
k=1,2,...,N, (28)
where
-1
V=£, W=1, S:i, Z:(ﬂ) ,
w, W, o an
n=(a—r)Rla"/a, R,=W,/». 29)
Here, w, is the streamwise velocity component at the
boundary layer edge, b;, j = 0, ...,N—1 are the
parameters for the Z profile, by, j = 1,...,N are the

parameters for the V profile, g, (W) and h, (W) are ap-

242/ Vol. 50, JUNE 1983

propriate weighting functions, and C(k) and D(k) are
complex expressions that do not contain any s or y derivatives
of by or b,. The coordinates for the boundary layer are

(r,,8).

On the plane ¢ = 0 the following integral relations are used

1 dby S“ Wean (W) ~
dW=C(N),
14a ds Jo 1-W (N
1 dby, S‘ Wg, (W) dbj,} ~
14 =C(k),
1+a{ ds Jo 1-W aw+ ds (k)
k=1,...,N=1, (30)
1 dek ~
— — =D(k), k=1,...,N, 31
1+oa ds (k) (1)
wheree;,j =1, ... ,Narethe parameters for the profile § =

av/oy and C(k) and D(k) are again complex expressions
not containing any s or y derivatives of b; ore;. C,D,C, and
D are given in the Appendix.

The appropriate initial conditions can be obtained from the
solution of a uniform entry into a straight tube. As a first
approximation, the Blasius solution with a free stream
velocity equal to W; was used. It is well known that a
similarity solution exists in this case and equation (27) yields a
system of nonlinear coupled algebraic equations given by [3]

- (' Wen
A S dW=S(N),
Aol Tow (N}
_ ot owg
Vz{Ak+AOSO l_sVdW} =S(k), k=1,...,N—1,
(32)
where A is related to by, by
b =a” Ap s, (33)

and s; is an initial station taken as 0.0025 at present. S(k) is
given in the Appendix. Equation (32) has been solved
iteratively for A,’s. Since the flow is approximately
axisymmetric at s;,

by=e;=0, j=1,...,N. (34)

A simple method based on the Method of Lines [5] was used
to solve equations (27) and (28). The ¥ domain is divided into
? equal intervals and the y derivatives of either Z or V at the
nodal point ¥, = kn/f, k = 1,2, ... ,(f—1)is approximated
by a backward difference formula

(30) U= Up 35

ay Sk Ay

where U is either Z or V and Ay is simply /¢ It should be
mentioned that the backward difference scheme produced
stable results for the present problem. The conventional
Telenin method has been tried and found to yield oscillatory
results in the streamwise direction.

The solution procedure in the boundary layer region was to
integrate equations (30) and (31) directly subject to the ap-
propriate initial conditions at s;. Solutions at ¢ = 0 were used
to calculate the ¢ derivatives of the next plane, ¢ = =/f
equations (27) and (28) were then integrated to yield results at
¥ = w/f This procedure was continued until y = 7 was
reached. It should be noted that it is possible to decouple each
Y = constant plane only because of the simple backward
difference scheme used. If a general finite difference formula
were used in place of (35), 2Nf coupled ordinary differential
equations would be generated by equations (27) and (28). An
available ODE solver package has been used for the in-
tegration.
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4 Interaction Between the Core and Boundary Layer
Regions

A computer program was written for each of the solution
procedures described in Sections 2 and 3. A simple iteration
scheme was used to account for the interaction between the
two regions. The core flow was initially represented by a two-
dimensional point vortex to provide the necessary functional
values at the boundary layer edge. In general, a five-point
Lagrangian interpolation scheme was used to calculate the
values at a particular point in space. From the boundary layer
solution, a new estimate for the outward radial velocity, and
hence f3, could be calculated and the core region reevaluated.
If /% and f~! are the estimates of f; from the current nth
boundary layer calculation and the previous (n— 1)th
calculation, respectively, then the new estimate of f3 is
evaluated as

e =A"+u(ff -,
f % Visthen updated as
Shl =f Snew)

O<w<l (36)

(37)
for the next iteration.

5 Results and Discussion

The overall accuracy of the present model is restricted by
the accuracy of the boundary layer calculation, which is of
first order in y by virtue of equation (35). All numerical
calculations were carried out on a CDC 7600 computer. In the
first approximation (corresponding to N = 1 in the Method
of Integral Relations (equations (27) and (28)), the computing
time for the boundary layer calculation requires about twice
as much time as for the core calculation, which needs about 1
sec. The computation time increases rather rapidly as the
order of approximation, NV, increases. The present calculation
is limited to the second-order approximation, N = 2. Five
points were calculated in the  direction and three points were
taken in the v direction. A typical calculation requires about
40 iterations or S min of computation time, which is to be
compared with 50 sec for the first approximation. Also, the
converged solution for the core region from the first ap-
proximation was used to initiate the iteration process for the
second approximation. As a result, comparatively large
values of w can be used (v = 0.1 at present) which speeds up
the iteration process. Typical results have been presented in

[4].

6 Conclusion

A numerical scheme has been.presented in detail for the
solution concerning the steady laminar flow of an in-
compressible fluid in the entry region of a circular curved pipe
at very high Reynolds number. A special feature of the
numerical scheme is to eliminate as much finite difference
formulation as possible. The present scheme is restricted to
the second approximation due to the large number of or-
dinary differential equations arising in the boundary layer
calculations.
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APPENDIX

Expressions for C(k), D(k), C(k), D(k), and S(k) from
reference [3]
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where the prime denotes differentiation with respect to W,
and 6 is related to 4, (equation (33)) by

N—1
b (W) ={/i(,+ Y, /ijgj(W)}/(l— w).
Py
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The viscous boundary layer analysis for the sidewalls of a wave tank is presented for
the case of two-dimensional waves of small amplitude traveling along the
channel length. The second-order transverse streaming motion induced in the in-
terior of the channel by the sidewall layers is determined. The calculations extend
the work of Mei and Liu [I1 which examined the effect of sidewalls on the
longitudinal streaming motion. The intensity of the transverse streaming flow is
found to increase as the depth to wavelength ratio decreases, and is found to be

significant for typical wave tanks that generally have a depth to width ratio between
one-half and one-fourth. The present results are useful if accurate conclusions
concerning mass transport in the open ocean are to be made from laboratory
studies. Furthermore, the results may offer an explanation for some of the
laboratory observations already in the literature.

Introduction

The fundamental theory of mass transport in'water waves is
due to Longuet-Higgins [2]. In that work the classical two-
dimensional inviscid, irrotational water wave theory was
modified to satisfy the no-slip condition at the water bottom
and the shear-free condition at the free surface. This was
accomplished by including in the solution viscous boundary
layers at the water bottom and free surface. One of the
principal results found is that the nonlinear effect of Reynolds
stresses cause a second-order steady streaming motion in the
boundary layers which in turn drives a steady circulation or
current in the interior or core of. the fluid. Although the
existence of a mass transport velocity had already been
predicted by Stokes [3] based on inviscid, irrotational theory,
the presence of the viscous boundary layers was found to have
a substantial effect on the mass transport.

The pioneering work of Longuet-Higgins has been followed
by a great number of studies on wave-induced mass transport.
The majority of these studies have been concerned with purely
two-dimensional flow fields. Summaries of the work on two-
dimensional waves are available in the introductions to [4-6].

One of the only studies of three-dimensional effects is
presented by Mei and Liu [1] in a MIT report. In that report,
Mei and Liu consider the effect of wave tank sidewalls on the
streaming motion induced in the direction of wave
propagation by waves traveling along the channel length.

Contributed by the Applied Mechanics Division for presentation at the 1983
ASME Applied Mechanics, Bioengineering, and Fluids Engineering Con-
ference, Houston, Texas, June 20-22, 1983 of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months after final publication of the
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by
ASME Applied Mechanics Division, August, 1982; final revision, October,
1982. Paper No. 83-APM-26.

Copies will be available until February, 1984,

244/ Vol. 50, JUNE 1983

They made no calculations, however, of the induced trans-
verse streaming motion in the cross-section plane of the
channel. The present study will extend the work of Mei and
Liu by examining the transverse motion. The viscous
boundary layers at the wave tank sidewalls which, along with
the bottom and free-surface boundary layers, drive the steady
motion in the interior of the channel will be examined. The
boundary layer analysis is similar to that of Mei and Liu,
except an Eulerian description is used here as opposed to the
Lagrangian description used by Mei and Liu. The present
version is believed to be somewhat simpler. The results are in
agreement with those of Mei and Liu, and the analysis will be
presented in an appendix since their work is not readily
available in its present form. The present study will also
estimate the attenuation coefficient of the wave motion due to
the viscous dissipation in the sidewall layers. This result is in
agreement with that obtained previously by Mei and Liu [7].
In the somewhat similar situation involving closed basins, the
linear wave damping due to the sidewalls has been examined
by a number of researchers [7-10]. Note that in this con-
nection it has been pointed out that sidewall capillary effects
can contribute significantly to the damping. This effect,
however, is not considered here.

The primary result of the present investigation will be the
determination of ‘the transverse streaming motion that is
established in the interior of the channel. This will be found
for the case of very small amplitude waves when the streaming
motion is governed by the Stokes equations. This case is
referred to as the conduction-limit and implies that the steady
streaming Reynolds number R, = 4% w/v is small (a is the
wave amplitude, » the kinematic viscosity, and w the wave
frequency). Although this restriction is severe, Mei and Liu
[1] indicate that experimental results have shown qualitative
agreement with such a theory under various conditions. They
also point out that in the natural environment the eddy
viscosity », should replace the much smaller laminar viscosity
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Cross-sectional view of a wave channel

Fig. 1

vin which case this limit may be very realistic. Furthermore, it
should be noted that numerous applications of the con-
duction-limit have been made in purely two-dimensional
flows and that the results have often been useful.

For the two-dimensional case, studies have recently
examined the problem when R; > > 1 [4, 6]. For these large
streaming Reynolds numbers the analysis results in a double-
boundary layer theory in which the boundary layer of the type
previously discussed, often referred to as a Stokes layer, is
embedded within a thicker outer boundary layer. The theory
is analogous to that developed by Stuart [11] for an oscillating
cylinder. Similar attempts in the present problem have un-
fortunately not yet been successful. The difficulty is primarily
due to the increased complexity associated with the three-
dimensional character of the present problem.

Formulation

We consider a wave channel of width 27 and constant mean
depth £ in which small amplitude, two-dimensional waves are
propagating along the channel length. The wave disturbance
is given to leading order by

J=a cos(kt— wb),

where a is the wave amplitude, &k = 2#/\ is the wave number,
A the wave length, X the direction of wave propagation, y the
vertical direction, and w the wave frequency. The Z axis is
taken to be in the cross-channel direction (see Fig. 1).

_In the governing equations the velocity d, pressure p, time
t, and position X = (X, ,2) are nondimensionalized according
to

t=w;,

h=h/\,

p=Dp/putah,
[= I/,

u=u/wa,
X=xX/\,

giving the equations of momentum and mass conservation as

du
a5 +eueV)u=-V(@P+ay)+Re 'viu, veu=0. (1)

Here o = g/w?a, g is the constant gravitational acceleration, e
= g/\ is the amplitude parameter which is assumed small,
and Re = wA?/v is a Reynolds number. The boundary
conditions are as follows. The velocity vanishes at the bottom
and sidewalls of the channel. At the free surface the shear
stress vanishes, the normal stress equals the ambient at-
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mospheric pressure, and the flux of fluid across the surface is
zero. The effects of surface tension and/or surface films are
neglected at the free surface.

We restrict attention to Re > > 1 in which case it is well
known that near the solid boundaries (bottom and sidewalls)
and free surface there will be thin regions where viscous ef-
fects become important, i.e., the viscous boundary layers.
The thickness of these layers is of order § = V»/w where § is
the characteristic length s:ale associated with momentum
diffusion. The viscous regions are thin because the Reynolds
number is assumed large and §/A = Re "2 << 1. Con-
sequently, we determine the solution within these viscous
boundary layers and match the solution to the core solution
valid in the interior of the channel. Within the core the flow
field is given at leading order by the classical two-
dimensional, inviscid, irrotational water wave theory.
Deviation from this potential flow are found at second order
due to the matching with the motion in the boundary layers.
In the boundary layers, however, the flow field differs from
the two-dimensional potential flow at leading order so that
the boundary conditions may be satisfied. That is, at leading
order the boundary layer solution is given by the two-
dimensional potential flow plus a correction term that
vanishes outside the boundary layer.

Although it has been popular in previous studies to use a
Lagrangian formulation, here the problem is formulated in
terms of the Eulerian velocity.

Consideration of the Core

The solution valid in the core has the form

u = U+ e +uN+ ...,

v = v+ o)+ L.,

W= ew+ ..., 2)
P = p+ay=PF) 4 (PP) +Re™ P+ . ..

y = eYO+2YD 4+ || =ccosQRQmx—+e2 YD+ L,

where (u,v, w,) are the (x,¥,z) components of velocity, and the
last equation is the free-surface profile which contains a
perturbation at second order. u'f® =Pl P (), PPL
and Y® K = 0,1, are the first and second-order potential
flow solutions of classical water wave theory. This potential
part of the core solution is unaffected by the viscous bound-
ary layers, including the sidewalls. u*, p* are the rotational
velocity and pressure fields which must be added to the
potential flow in the core so that the core solution can match
to the boundary layer solutions.

The potential flow terms satisfy the governing equations of
inviscid, irrotational flow. The viscous terms of order Re ! in
the momentum equations are neglected and there is zero
vorticity, giving the following heirarch of equations.

ou (po)

at —ver,
veut =0, v x u=0, @
veoufh =0, vxu®=9,

The potential part of the core solution is thus given by the
classical two-dimensional water wave solution,

cosh2w (h+y)
= cosf ——,

PG)
sinh 27h
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Fig. 2 Streamlines (y = constant) in the cross section plane of the
channel. Depth to half-width ratio hil = 1.0 and 0.5 in the figures on the
left and right, respectively. kA = 5.0, 1.0, and 0.25 in the top, middle,
and bottom figures, respectively.

. sinh2x(h+y)
PO — i AL A
v s sinh 27k
cosh2x(h+y)
PP = cos " 4
08 Uy sinh 27h @
3
uPh = 5 A? cosh 4n(h+y) cos 26,
3 .
oY = ) x A% sinh 4x(h+y)sin 20,
A
PPy = Y {1—-coshdn(h+y)
+cos 260[3 cosh 4w(h +y)— 1]},
Y = L coth 27h (1 + ——3———> cos 240,
2 2 sinh? 27h
=2mx—t, A= !
AL A nh? 2nh

This motion is purely periodic and lies in a plane parallel to
the sidewalls. _

Next we consider the governing equations for the velocity
u* and pressure P*, This part of the core velocity is affected
by the presence of the viscous boundary layers. The quantity
of practical interest is the steady streaming motion in the core,
and therefore we will only consider the time average of the
velocity u* averaged over one wave period. As discussed in the

Introduction, this may be-determined in the conduction limit

of Longuet-Higgins {2], namely when ¢ < < Re~!. (This
being equivalent to R; < < 1 discussed in the Introduction.)
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in this limit the governing equations for the time average
velocity and pressure have a particularly simple form,

Vit = v P,
vVeu*=0, %)
where an overbar denotes a time average over one wave

period.

The core problem is completed with the followed boundary
values which are derived from the boundary layer solutions
(see Appendix 1),

Sides: u*=w*=0, 0*=V() at z==/,
' u* Jw*

=7, V*=

ay ay
U, v*=w*=0 at

QD

=0 at y=0, 6)

Surface:

Bottom: u* y=-—h,
V(y), 7, and U are given in Appendix 1 by equations (a), (b),
and (c), respectively.

Since the boundary conditions are independent of x, we
consider solutions for the velocity field a* which are functions
only of y and z. Consequently, the motion in the x-direction.
decouples from the motion in the cross-section plane. The
problem for #*, i.e., the streaming motion in the direction of
wave propagation, is therefore,

3*u*  d*ur .oP*
— = =G, 7
ay? az? ax M
with the boundary conditions
ur(y, £H=0,
ou*
o Oa =T,
ay 0,2)=r
u*(—h,2)=U. (8)
The motion in the cross-section plane is governed by
a%v* N 32> _ P
o a2 oy’
Pt Pt 0P
gy a2 oz’
av* aw*
+ =0, 9
Y e )
with the boundary conditions
vy, £D)=V), w*(y, £0H=0,
aw*
U—*(O, Z) = (O) Z) = 0’
dy
v*(—h,2)=w*(—h,2)=0. 10)

Note that a velocity field u* which is independent of x requires
that the pressure gradient in the x-direction be a constant G,
i.e., independent of y and z. Furthermore, such a solution is
likely only to be valid away from the ends of the wave tank.

The motion in the direction of wave propagation has been
previously considered by Mei and Liu [1] and therefore it will
not be examined here. For the motion in the cross-section
plane it is convenient to introduce the stream function ¢
defined as

N

vV = —— N = = -, 11
a7 " 3y ()
which has the governing equation,
62 32 2
— =0, 12
(ay2 972 ) 4 (12)

Due to the flow symmetry about the channel centerline, it is
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sufficient to solve the problem in the région 0 < z < +1/.
Using the symmetry condition at the channel centerline z = 0°
the boundary conditions on the stream function become

8y
= =0, z=0,
4 az? z
3 .
‘p:O! _Il/ =V(y)y z=1’
0z
%y '
= poned ) =0,
1% % y
]
y= L2 =0, y=-h. (13)
dy

The solution for y is

‘p = E bm\l’m’
m=1

. z .
VY, = sinf, y[ — tanh 8,,/cosh §,,z —sinh B,,,z]

/

+ E B, sin a,,z[ —j—} tanh «, 4 cosh o,y —sinh a,,y] ,

n=1

mmw (X8
Q= —

!
b,, and B, are constants determined from the boundary
conditions, the details of which are given in the Appendix 2.

Discussion

Shown in Fig. 2 are streamlines (yy = constant) in the cross-
section plane of a channel (0 <= z <=/, - h = y < 0) for the

depth to half-width ratios A/ = 1, 1/2 and kh = 0.25, 1.0,
5.0 (h = hA/N, I = [/N). These curves represent a cross-
sectional veiw of the stream surfaces since there is an ad-
ditional superposed flow in the direction of wave
propagation. Furthermore, a duplicate pattern is present in
the other half of the cross-sectional plane, —/ < z < 0, due to
the flow symmetry. The motion in Fig. 2 is clockwise; toward
the sidewall near the free surface and then down along the
sidewall. Note that it is easy to verify that the components of
the Lagrangian or mass transport velocity in the cross-
sectional plane of the channel are equal to the Eulerian
velocity components v*, w*, Consequently, the streamlines in
Fig. 2 describe the mass transport in the transverse direction.
Furthermore, if we combine this motion with the drift motion
in the direction of wave propagation, we find that fluid
particles typically move in a spiral-like fashion.

From Fig. 2 we observe that this transverse streaming
motion intensifies as kA decreases, i.e., as the wavelength
increases for fixed depth. This relatively strong circulation in
the cross-section plane at small values of k4 may partially
explain why experimentalists have encountered difficulty
attempting to measure mass transport, which was believed to
be only in the direction of wave propagation [12, 13]. On the
other hand, there is very little direct quantitative
measurements of motion in the cross-sectional plane. This
may be due to the fact that the majority of the experimental
work has been directed at sediment transport near the bottom
where the transverse velocity w* vanishes. In addition,
velocity measurements-taken across the depth of the channel
are usually performed along the channel center line where the
transverse motion also vanishes. Russell and Osorio [12] state
that for kh < 0.3 the flow patterns varied unsymmetrically
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‘

and ‘. . . usually involved flows in directions other than in
the direction of wave propagation.”” Whether the present
analysis pertains to what they observed is unclear, especially
since they claim that sidewall effects in the experiment were
unimportant. Furthermore, the experiments of Russell and
Osorio were strongly affected by surface contamination which
is neglected here. The unsystematic or erratic motion which
has been reported for small k& suggests that these flows may
be unstable. Craik [5] found that the two-dimensional drift
motion in the direction of wave propagation is unstable to
spanwise-periodic disturbances. A similar stability analysis
for the transverse streaming motion discussed here would be
useful.

The only experiments giving a good qualitative description
of an observed transverse flow are due to Carter [14]. Carter
observed two cells near each sidewall separated at about the
half depth point with the flow down along the wall in each
cell. With the exception of the direction of flow near the wall,
clearly such a pattern is in poor agreement with the single cell
predicted here. Unfortunately, the range of flow conditions
for which the double cell structure is observed is not made
clear. This pattern again raises the question of stability. We
should note that extending the theory to include large
streaming Reynolds numbers R, is not likely to explain the
two cell pattern. However, a large R, theory might be a more
realistic flow on which to consider the stability of laboratory
scale experiments.

I am most grateful to Professor S. Stewart for his com-
ments concerning the original manuscript. This work was
partially supported by the National Science Foundation
(MEA 81-07564).
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APPENDIX 1

(@) Consideration of the Boundary Layers

For the viscous layers near the wave channel sidewalls, we
rescale the distance normal to the wall by introducing the
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inner variable Z = Re!/? (/ + z), the + and — being for the EPTC I B0 (0« D)D)+ - (B0 B0
sidewalls at z = —/and +/, respectively. With this rescaling EY + &[u VB 4 PO (B0 4 (B0 (B0 4

the momentum equation in the direction normal to the wall

gives the familiar result that the pressure P is approximately 9 502 928D
constant across the boundary layer, i.e., 9P/3Z = 0, with an 5 200y ED 4 y B = 37
error of order Re ™2 w, w being the boundary layer velocity Y

normal to the wall. Consequently, the pressure within the B gyBL  auBY
boundary layer is given by the core pressure evaluated at the EW 3 + A =0.

sidewalls z = =/, the leading order terms of which are simply o )
the potential flow pressure field : In obtaining the preceding equations, we have used the

continuity equation satisfied by the leading-order solution to

= p@y (P1) . .
P P ) +ePYD Ly, D+ L express the Reynolds-stress terms in a convenient form. As
For the velocity field within the sidewall boundary layers we  already discussed, we are primarily interested in the time-
have average velocity at second order. Consequently, after sub-

stituting u¥® and u'®® into the equations for ut®? and taking

= (P0) (80)
u=u X, ), t)+u X, 2, t) + . . .
x5, (x.3,2.1) the time average over one wave period, we obtain

U ey, 0 +u’ 0y, Z,0l+ ... 2250
v o= v (pn+vE (v, Z,0+ 7 =%
ew® 3,0+ 0B (L1 Z,01+ . .. 42580 v )
w = Re 12wl (x,»,Z, 1)+ ¢ Re™ 12w (x,y,Z,0)+ . . .- —;Zz— = —4V(y)[-Z—e*mwe"z’ﬁcos(Z/ﬁ)],
Here u¥® (& = 0,1) are equal to the two-dimensional GuBn gyl Wb ~0
potential flow velocity present in the core (equations (4)), and ax + ay + oz
ul? (K = 0,1) are the deviations from the potential flow
which are necessary to satisfy the no-slip condition on the Vi) = sinh 2w(h# + y) cosh 2w(h + )
sidewalls. Note that the Re ~*/2 appearing in the expansion for O)=-m sinh? 27th

the Z-component of velocity is a consequence of the rescaled
form of the continuity equation which must be satisfied.
After expressing the remaining governing equations in 4B =gBY = pBY =0 on Z=0,
terms of the inner variable Z, and using the fact that the . . .
. . ) . and as Z — oo the matching with the core solution at order
potential flow solution u#®, P¥® gre functions only of x and £ €

The no-slip boundary condition requires

y and satisfy the equations (3), we obtain the following glves
3((1;{)?t10ns for the leading-order boundary layer correction TGy, 40 = 10 (x,,Z — o),
BuBO 2B (B0 52,,(B0) Uy, 2D =00 (50,2 — ),
T T oz a2 w069, %0 =0.
QBN GplBY)  GuB0) Recall that the Z component of velocity in the boundary layer
e + 3 + 37 =0 is of order eRe~!/2; hence, the zero on the right-hand side of
. ) ) . ) the last equation. With these conditions, the boundary layer
At this order the no-slip and matching conditions require solution is found to be,
(B0 = _yPo 4By = 0,
oy o 70 08 = V()1 —e V2% — e~ ZV2sin (Z/V2)).
v = ’ w®Y can be obtained from the continuity equation, but since
w8 = o its effect on the core is of higher order it is not presented.
Therefore, at the sidewalls the matching conditions for the
wBY 0 core become,
v~ 0 as Z—oo, u* (%3, £)=w*(xy, £)=0, »
wBY 0" (o, £ D= V() = — 7 sinh 2xw(h + y) cosh 2w(h + ) (@
L o sinh? 2wh
and the solution is found to be
cosh 2w(h +y) For the bottom and free-surface boundary layers the
(B0) _ -Z/N2 . . . .
u sinh 27h ¢ cos(f+ Z/2), analysis follows that of Longuet-Higgins [2] with a minor
modification. Here we must include an additional component
sinh 27(h + y) of velocity in the cross-channel or z-direction. However, there
(B0 _  _ —ZNZ ; p . .
v = sinh 27 ¢ sin(8+ Z/V2), will be no leading-order term in this component of velocity.
The flow is being driven by a two-dimensional wave motion in
whD =0, f=2mx—1 the x — y plane, i.e., u¥® = @I @0 Q). Since w®? is
In a similar fashion we obtain the governing equations for ~ zero, the boundary conditions will be satisfied at leading
the second-order boundary layer velocity u®" as order without requiring a correction to the z-component of
D P velocity in the boundary layer. The first nontrivial con-
+ — [2uP0 yBY +u‘30)2]+ tribution to the boundary layer velocity in the z-direction
ot ax : appears at second order due to the matching with the 0(¢)

velocity in the core. Furthermore, in the boundary layers the

2.,.(B1)

9 [40PO) (BO) 4 ) (P) 1y (BO) 4 1, (B0) (B0 | — Fu — z-momentum equation decouples from the equations in the x

ay oz — y plane. This is because the leading-order velocity in the z-
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direction is zero. Consequently, the Reynolds stress terms, eu
o vu, which appear in the governing equations at second
order due to the leading-order solution, are identical to the
two-dimensional case of Longuet-Higgins [2]. That is, at
second order no Reynolds stress term is present in the z-
momentum equation and the momentum equations in the x —
y plane are the same as those given by Longuet-Higgins.

In particular, in the surface and bottom layers the z-
component of velocity has the form

w=ewBD £ |

In both of these boundary layers the time-average velocity
satisfies

528D

N T
where the boundary layer variable N = Re!/?n, n being the
position in the flow field measured along the normal to the
surface (i.e., at the bottomy = — A, N= Y = Re'? (» + h).
The boundary conditions on WD at the free-surface (shear-
free) and bottom (no-slip) are, respectively,

By
N =0 at N=0,
wB) =0 at Y=0,

and therefore the solution in these boundary layers is
W = constant; free surface,
wB) =0; bottom.

Consequently, the matching conditions with the core at the
surface and bottom are, respectively,

Due to the decoupling of the governing equations, the
matching conditions for the velocity components in the x and
y directions follow from the results of Longuet-Higgins [2],
and therefore their derivation will not be repeated. Thus,

v*=0 at y=0, -—h,
ou*

=7 =8n%coth2wh at y=0, b)
ay
3 g
FelUs= — — = —h.
v 2 sinh? 2wh at vy ©

Recall that here we are using the Eulerian velocities and
therefore some manipulation is required if these expressions
are to be obtained from the Lagrangian form of the results
given by Longuet-Higgins [2].

A further comment is in order. Note that the matching or
boundary conditions on the core velocity u* are discontinuous
at the corners of the channel cross section. The velocity in
reality will vary smoothly but rapidly near the corners and a
more complete analysis requires the introduction of sublayers
in each corner which matches the two intersecting boundary
layers. However, these sublayers or corner solutions are
passive as far as the leading-order interior motion is con-
cerned, i.e., they do not influence the core motion considered
here. One should be aware, however, that the present solution
is not uniformly valid as you approach the corners.

(b) Viscous Dissipation in the Sidewall Layers

From the boundary layer solution we can determine the rate
of energy dissipation due to the sidewalls, and compare it to
the other dissipative mechanisms present. The average rate of
energy dissipation per unit length due to the two sidewalls of a
wave tank is,

Journal of Applied Mechanics

Esides = zl-‘(wa)zRel/z
0 oo au(BO) 2 aU(BO) 2
e dZ d
S—hgo[( az) +( az) ] 4
1 ”
= pl(wa)’ Re'? N3 coth k#,
m
where

Rel? = «’ b
14

For a channel of width 27 the average rate of energy
dissipation from the potential flow in the core and the viscous
boundary layer at the bottom is

; 21 .
Ecore =4 Wﬂ(wa)z ”;\“ coth kh,

21
(wa)2 Re!2 csch? kh,

1
w2 ¥
see Phillips [15]. The boundary layer at the surface makes a
negligible contribution to the overall energy dissipation, since
the velocity gradients are of the same magnitude as those in
the potential flow and the layer is thin. Consequently, the
sidewall boundary layers are the dominant dissipative
mechanism when the channel is sufficiently narrow and deep
so that //N < < Re!”2 and I/\ < < sinh 2 kA. In this case,
following Phillips [15], we determine the attenuation coef-
ficient of the wave motion as

Eyottom =

_ E sides

= YR S
2E 22 Y

where

E = k~'ip(wa)® coth kh is the total mean energy per unit
length, potential plus kinetic energy, due to the wave motion.
The energy density of the wave motion decreases as
exp(—2vf) and the amplitude as exp(—+y?). Note that = is
independent of depth. This result has been found previously
by Mei and Liu [7]. They also discuss a possible mechanism by
which energy is transferred from the two-dimensional wave
train to the sidewall boundary layers. In particular, they find
that *“ . . . the free-surface meniscus is an important passage
via which the wave energy is lost from the essentially inviscid
interior to the side-wall boundary layer.”’

APPENDIX 2

The solution for  satisfying the governing equation (12)
and all but two of the boundary conditions (13) is

E bm ‘r”m:

Y =

m=1
. z .

\bm = s Bmyl:T tanh Bml cosh Bmz —sinh 6mz]

+ EB,,,,, sin a,,z[% tanh o,k cosh o,y — sinh a,,y],

n=1
mw nw

6m - T’ Oy T:
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ini bound onditions that determine b
The remaining two boundary condition m F.(9) = a, cos a, ( _;;_ tanh a, & cosh @,y — sinh oz,,y)

and B,,, are
] d
(.Tll/* (=4, 2)=0, —ai 1) =VY0). Consequently the coefficients b,, are determined from the
Y < following system of an infinite number of linear equations
Applying the first condition and defining ¢ = hA// we find "
2 1 ! . ’ br Lr + E bmAmrzqry 172’3y' LI
B = — THH SO G, (2)sin O!,,Zdz m=1
: where
4 m?n mw mw o
= — i, = czosm‘/r cosnw sth tanh—;« Ay = E B, Durs
UW((#) +n2) n=1
[
2 0 .
where P = | Fa0) singy dy
H, =(h"'tanh o,/ — «, ) cosh o, i + @, tanh o, h sinh o, h
4 n’ro
z . - 77 i
Gm (Z) = Bm COSB,,,h ( T tanh ﬁml cosh 6mz —sinh Bm Z) / 71'((”0)2 + r2)2 costm cosnw tanhnwo Slnhﬂ o,
Finally, applying the last condition gives 2 0o 2
q, = 7 S~h V(y) sinf,ydy = W coth 27h.

Y by Ly sin By + Y BuFu9] = V) g | _ N
m=1 n=1 The coefficients b, were determined numerically retaining
20 terms in the summations over m and n. Results found by
retaining a greater number of terms (e.g., 40 and 50) showed

L, = (/"'tanh B,/—B,)cosh B,!+ B, tanh 8,,/sinh 8,,/ almost no difference from those found using 20 terms.

where
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Rotating Flows

Time-dependent motion of a fluid in a container rotating at  is characterized by
boundary layers on the container surfaces if v/Q, where v denotes kinematic
viscosity, is small compared to the square of a typical length of the container. Let

the frequency of the motion, measured in a corotating coordinate system, be wQ. If
w~1, then the length scale of the boundary layer is (v/Q) ", unless \w) is equal to
twice the normal component of the unit rotation vector. If |w!| does equal twice the
normal component of the unit rotation vector, scales of (v/QL?*)“L and
(v/QL%) "% L are possible. If the normal vector and rotation vectors are parallel, the
former scale vanishes.

Introduction

The study of flow in rotating systems almost always deals
with situations for which the viscosity is small and boundary
layers appear on bounding surfaces. In many circumstances
free shear layers appear, emanating from discontinuities on
the bounding surfaces.

The earliest work is that of Ekman [1]. References [2] and
[3] contain recent review articles. Greenspan’s monograph [4]
contains a unified presentation. Much of his notation will be
adopted in the following.

The typical boundary layer is the Ekman layer, within
which the dominant balance is between the viscous and
coriolis forces. The associated length scale is (»/Q)”, where »
and Q denote kinematic viscosity and rotation rate. Time
dependence modifies this balance, usually benignly. At
frequencies much greater than the rotation rate, the Ekman
layers go smoothly over to Stokes layers. In the inertial range,
where the absolute value of the frequency is bounded by twice
the rotation frequency, the Ekman layers remain Ekman
layers unless the frequency equals plus or minus twice the
normal projection of the rotation vector. What happens in
this circumstance is the subject of this paper.

Let k and n denote unit vectors parallel to the rotation axis
and normal to the bounding surface (See Fig. 1). Then Qken
= (sind is the normal projection. If the flow is proportional
to exp i (Qwf), then the exceptional case is one for which w =
+2sinf. (The classical examples of this are the Stewartson
layers [S] (see also [4]), for which § = 7/2 and w = 0.) The
inviscid equations of motion are hyperbolic in space when
0< lwl <2.

The boundary layers described in the following would form
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within a fluid-filled spinning container were the container to
oscillate at an exceptional frequency, defined by its basic
rotation rate and geometry. A direct analytic demonstration
of the role of these boundary layers in a global problem is
difficult, primarily because the inviscid equations of motion
are separable only in Cartesian and cylindrical coordinates.
One example is given in [6]. A general linear problem would
need to be dealt with numerically. However, the choice of
numerical scheme will be better assisted by an understanding
of the basic boundary layer structure to be expected.

This paper discusses boundary layers on characteristic
surfaces of finite area. (Stewartson layers are a special case.)
The plan of the paper is:

(1) to formulate the linear boundary layer problem in
general;

(2) to discuss the special cases sinf = 0 (Stewartson layers)
and cosf=0; and

(3) to examine a case for sinf and cosf of order unity.

Formulation

The general differential equations for boundary layer flow
in a rotating system can be obtained by following and ex-
tending the procedure outlined in Greenspan’s book [4].

Let an incompressible fluid with kinematic viscosity » be
contained in a volume with a characteristic dimension L. Let
the volume rotate about an axis k at , and imagine the fluid
to be corotating. Suppose that some small perturbation, either
boundary motions or a body force, causes the fluid to have
some small additional motion. Then the velocity field in the
fluid, v, can be written

v=0L(kXr+eq), (D

where ¢ is a small parameter measuring departure from solid
rotation. It is convenient to work in a rotating coordinate
system and to measure length, time, and velocity in units of L,
Q- !, and QL. The governing equations become the familiar

JUNE 1983, Vol. 50/ 251

1983 by ASME

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subjectctco)%érl\l/%nitcgse or co;}/yrig%Msee http://www.asme.org/terms/Terms_Use.cfm



intérior

Fig. 1
text)

Sketch of a characteristic {ayer bounded by Ekman iayers (see

aq 5

m +2kxq+ vp=Ev-‘q;
where p denotes the reduced pressure and E = »/QL? is the
Ekman number. When E < < 1 a boundary layer formulation
is appropriate. That assumption is made, as is the assumption
that € = o(E), so that the problem is strictly linear.

Time dependence is incorporated by assuming a simple
exponential variation, letting q(x,£) = wu(x)e’. It is not
necessary to restrict the magnitude of w, but the interesting
cases are those for which lw! =2. The inviscid equations, (2)
with E set equal to zero, are hyperbolic in space when 0 < jwl
<2, This is also the range for which free oscillations of an
inviscid rotating fluid are possible.

The boundary layer analysis is based on dividing u into 4(x)
and u(x), an interior and boundary layer component. The
boundary layer component 1 is distinguished by a rapid
variation normal to the boundary and an exponential decay
away from the boundary. It is most easily analyzed in terms
of an orthogonal curvilinear coordinate system x;, X, X3 in
which the velocity components are u, v, w, the boundary of
the container is x; = 0, and the normal vector n=x,. The
most general such system can be defined in terms of its dif-
ferential line element as

veq=0, ()

ds* = h}dx? + hidx3 + hidx3, 3)
and the boundary layer hypothesis can be expressed as
o ou oa
— > — | = | 4
6x1 3X2 aX3 ( )

It is also necessary that the boundary shape vary slowly
enough that the spatial derivatives of the unit vectors and
scale factors be at most 0(1).

The general boundary layer equations are derived from (2)
as follows. Let

d=td.n—nX(nxu) 5)

(and drop the tilde as unnecessary in the sequel). The
divergence condition serves to eliminate neu = u:

(mev + venu=—nev X (nxXu)+ v(logh,)enx(mxu) (6)

The second term on the left will be negligible.
The normal component of the momentum equation serves
to eliminate the reduced pressure:

ne vp=2ke(nXu)+[E(ne v)? —iwju
—Ev(oghp)e(me v)nx(mxu)+0(E) +0(Ensvu) (7)

The first term on the right-hand side dominates the pressure
unless kxn =0, In all cases for which the pressure is im-
portant, the term proportional to v (logh;) is negligible
compared to [E(ne v)? —jwlu.

The governing equations for the tangential components of
the velocity are obtained by adding and subtracting nx and in
X (m X ) the momentum equation. The identity
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Fig.2 The conical surface

nXuxinX (nXw)= (vFiw) ( xixX, +X%;) ®)
allows the equations to be converted to scalar equations:
[[(w—2n<k)— E(n- v)?][v—iw]

7( 1 9 1 4 ) 214, ok — %, -k
= —_ —2i[x, ek — .
h2 sz h3 6x3 P 1 s ]u

[[(w+2nsk)— E(n+ v )?]{v+iw]

1 9 1 a . o
=—(h—z6—xz+71—;a—x3)p+2i[x2-k+zx3-k]u )

These equations are of constant coefficient form in the
coordinate x;. Thus they admit solutions of the form expux,,
and the boundary layer hypothesis requires Iul > > 1and Re
u > 0. If w+2n<k is not zero, then the right-hand sides of
these equations are negligible, and one obtains

Ep? =i(w+2n+k).

These are essentially time-dependent Ekman layers.

If w = +2ken, a more subtle analysis is called for. The two
extreme special cases, ken = 0 and lken| = 1, have been
examined, the former by Stewartson [4, 5] and the latter by
Gans [6]. These two cases, as well as a relatively general case,
can be derived from a specialization of the coordinate system.

Surfaces for which w # =x2ken will be termed Ekman
surfaces, and surfaces for which the w = +2ken will be called
characteristic surfaces. The outward normal to Ekman
surfaces will be denoted by ng. The transition between
characteristic and Ekman surfaces will be supposed to be
abrupt, and marked by curves I'. Figure 1 shows a general
case. Lo and Iy denote the characteristic and Ekman sur-
faces. The characteristic layer is shown schematically, an-
ticipating the result that it is always thicker than the Ekman
layer.

If ¢,» denote the characteristic coordinates of the inviscid
equations, then I, is just { = constant. The conjugate
characteristics shown are = constant. Free shear layers may
occur on such surfaces.

(10)

Characteristic Boundary Layers on a Conical Surface

This section examines the surface formed by making two
horizontal slices through a vertical cone. Figure 2 shows the
surface. An x, y, ¢ coordinate system is defined. In this
system x = 0 defines the surface, the differential line element
isds? = dx? + dy* + r*d¢*, sothat by =1= h,, and

h3=r=R+xcosf+ ysind ~ R + ysind. (11

The length scale is chosen so that the curves I' are given by y
= F1; nek = sinf. The reader will note that the bounding
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surfaces of a right circular cylinder can be obtained in the
limits sin §—0, R fixed (for the curved outer wall) and
cosf—0, R fixed (for the end plates). This will allow one to
use this system to explore those two special cases.

Let w = 2sinf. (The analysis for w = —2sinf is the same.)
Define Q* = v+iw, and suppose these to be proportional to
e, where lul >> I and Re 4 > 0. The governing equations
(9) may then be rewritten as

q,
—Ep*Q~ =2icosbu — ( @, ip) :
dy r

(disinf— Ep®)Q+* = — 2icosfu— < ap. —Ep> (12)

dy r
where solutions proportional to e® have been assumed.
Equations (6) and (7) can be used to eliminate # and p in favor
of v and w, and hence Q* and Q. When those expressions
are substituted into equation (12) the result is a general
formulation for characteristic boundary layers on the conical
surface:

do-
Z—Q- +~sm0Q +~l~sm0Q ]

icosf
~EwQ-+ 22|
dy

+ - ! (2m + sm()) —

2isinf— Eu? {[ a2
2u? dy?

+ riz (m? ~sin0)] Qo

—[d2+1'0d ! '0)2] ’] 13)
a7 rsm & r—z(m——sm Q (
I +
(4ising— Ep2)Q* — ’COSG[ dQ —sm0Q+
3 dy
1, B 2isind — Ep? d 1. d
+;Sln0Q ]le{[d_y +;Sln0‘d}
1 . a2 1 Lo d
—r—z(m+sm0)2]Q [d2 ;(2m—sm0)5)
1 .
+r—2(m2—sm26)]Q‘}. (14)

The right-hand side of equation (14) is always negligible.
The right-hand side of (13) is negligible unless cosf=0. Eu?
can equal 4isinf and an o(1) value. If sin = 0, both Eu? are
0(1). The two special cases, sinf=0 and cosf=0, will be
considered first.

The Case, sinf=0, Let sind=0. Eu’ will be 0(1) and the
right-hand side of each equation is negligible. By inspection
Q- «exp iEp’/2 y and Q* oexp— iEp®/2 y; the boundary
layers are Stewartson layers. Since the scale is large compared
to the Ekman scale, the boundary conditions (in y) are those
of Ekman compatibility, which can be written [4]

ng ok ] 1 }

u — (15
Ing-kl Ingek 1% (13)
where n; denotes the normal to the Ekman surfaces bounding
the characteristic surface. In the case that the Ekman surfaces

are the flat ends of a cylinder n; = =k and this approach will
yield exactly the result originally found by Stewartson [4, 5].

The Case, cosf=0. When cosf =
equation (14) is

1
Ngeu= — EEVZ"E. v X {[nEXU‘f'

0 the solution to

Q" =Qf(»)exp 2——- (16)

(2 E) Vz
Equation (13) becomes a second-order equation in y:

Journal of Applied Mechanics

d*Q-

dy?

This is recognizable as Bessel’s equation of order m—1 (after
the variable change to r=R+y). The boundary conditions
are those derivable from (15), remembering that only Q-
participates because Q* varies on the Ekman scale and is

negligible. The result, to lowest order, is that O~ must vanish
atr = R £+ 1. Thus

+1d—Q—-——i(m—l)2Q +EutQ-

a7

R Iy (knr) Y1 (kyr) "
0 = LAl e T e G
(18)
where Eu} = k, and k,, satisfies the eigenvalue relation
I 1&g (R=D]Y i [kn (R+1)]
m—1lkn (R=DW 1 [k, (R+1)]=0: (19

(If ng+k = 0, equation (15) fails. An alternative formulation
leaves the conclusions unchanged.)

The coefficients a, are found by expanding the boundary
conditions in the given eigenfunctions. If vy, w, are the values
v and w are required to take on the wall, then

() =vo +iwg

Joi ¢

R+1
SRil ré, (r)dr

and

g — iwg)rd, (rydr

(20)

where ®, denotes the function in braces in equation (18).

The General Case. When sinf and cosf are both 0(1),
equation (14) has the solution

+i
+ O 2
Q=04 (y)exp QEcscl)” X.

Equation (13) reduces to

ag- T iER
Tdr +ZQ sin20Q =0, @b
which has the solution
; 3
The boundary condition (15) can be written, in this case, as
Fu=—YuE"w
to leading order. The upper sign apphes atTy,y = —1,and
the lower at y = 1. Let O~ wexp—i[My+y], where

M= Eyu’ /2cos. Identification of v and — w with the real and
imaginary parts of the exponential leads to the eigenvalue
relation

Fceos(yFM) = — VapE" sin(y M),

from which ¥ = 7/2 and M = nm,uE"* /2. In the former case
the analog of the E” layers arise and in the latter one obtains

E” layers.
(Alternatively one can let Vrv = Asinky and Vrw = Bcosky.
Then Q- = Asinky—iBcosky. The differential

equation gives k=Eu*/2cosf and B=—A. The matching
condition gives the same result as that cited in the foregoing.)

Wheri M=nm there is a single root with Re(u) >0 when
n>0, and two when n<0. When M=puE" /2 there is one
admissible p. Denote that by g = (cos/E")%,

Let 2p, = (2 lcosénln/E)". Then the roots for M=nx are
given by 2y, for n>0 and g, (1 £iV3) for n<0. Thus Q™ can
be represented as a complex Fourier series:
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—1
VrQ— =Ageto* + E e"™ etn* (g, N

n=-—oo

0
+b"e~i\/§x1+ E e"i”’ryC,,ez"nx,

(23)
n=1
which can be rewritten in the more useful form
VrQ™ =Ayeror + E sinnmye*n*[A, cosV3Ipu,x
n=1
+ B, sinV3p,x +C,etn*]
—i E cosnmyern*[A,cosV3u,x+ B,sinV3p,x — C,etn*],
n=1

(24)

where the boundary conditions determine 44, A, and C,,.

The leading term of the normal velocity ¥ must also vanish.
In solving for v one needs to differentiate the series (24), and
there is no guarantee that the result will converge. An
alternative boundary condition is that the flux being trans-
ported through the layer be independent of y at any given
instant. Imposing this condition on the integral of (24) leads
toB, = (4, — 2C,)/V3.

Discussion

Boundary layers (and free shear layers) have been shown to
have scales of variation of E” and E” when the surface is a
characteristic surface for the associated inviscid problem. The
formulation given can be adapted to specific problems,

254/ Vol. 50, JUNE 1983

although such an adaptation may not be practical in cases
where an inviscid solution is not available. In such cases
knowledge of the scale of variation can be used to design an
efficient numerical scheme.

In the usual Ekman layer problem the balance is between
the viscous force and a combination of the leading terms of
the coriolis force and the inertial force. For the characteristic
layers the primary balance is between the coriolis and inertial
forces, leaving the viscous force unbalanced. In that case the
viscous force is balanced by a combination of horizontal
pressure gradients and the weak coriolis force associated with
local normal velocities. When cos 6 =0 this weak coriolis force
vanishes and the horizontal pressure gradient is also weakened
in consequence. This explains the dissappearance of the E
layer in that case,
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the Thin-Tire Limit at Very Low
Forward Speed?

The flow inside a pneumatic tire is analyzed in the limit where the cross-sectional

diameter of the tire is small in comparison to the wheel diameter, and where the
JSorward speed is sufficiently low that centrifugal pressure gradients can be
neglected. The movement of the contact point around the circumference of the tire
produces an internal flow by a mechanism analogous to peristaltic pumping in long
flexible ducts. Analytic expressions for the flow velocities and pressures predicted
by this model are derived, and are related to tire velocity and load.

Introduction

The air inside a pneumatic tire is set in motion, relative to
the tire, by the movement of the ground-contact region
around the periphery. Hot-wire-anemometer measurements
[1] have shown that the internal velocities can reach 20-30
percent of the forward speed, for a typical range of loads.
Speeds of this magnitude affect the heat transfer from the tire
wall to the air inside, to a degree that is comparable with the
heat transfer from the tire wall to the air outside. Thus, an
understanding of the flow and heat-transfer characteristics of
the internal flow is a necessary step in quantifying rolling
resistance and the temperature buildup of the contained air.

The present study was undertaken in an attempt to provide
some understanding of the problem, by treating a limiting
case for which an analytic solution is possible. The limit
chosen is that of a thin tire, (i.e., one whose cross-sectional
diameter is small compared with the wheel diameter) which
moves at a forward speed low enough to permit the cen-
trifugal pressure gradients to be neglected. In this limit, the
flow is equivalent to that in a thin, flexible-walled tube, along
which a constriction moves at a constant speed. The motion
resulting from the movement of the constriction is called
peristaltic pumping (see, for example, [2]) and can be
analyzed very simply in the limit of small values of the
Reynolds number (where the Reynolds number is based on the
speed of the constriction, the cross-sectional diameter, and the
kinematic viscosity of the contained air). The following

U'This research was supported by the United States Department of Energy.
This paper is dedicated to William R. Sears on the occasion of his 70th
birthday, in deep gratitude for all he has done for me and for many others, as
teacher, researcher, mentor, and friend.

Contributed by the Applied Mechanics Division for publication in the
JOURNAL OF APPLIED MECHANICS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months after final publication of the
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by
ASME Applied Mechanics Division, July, 1981; final revision, January, 1983.

Journal of Applied Mechanics

sections contain a review of this analysis, and an extension to
the present case, where the tube is not infinitely long, but
rather is periodic. The case analyzed is that of an adiabatic
flow, i.e., no heat transfer is allowed between the air and the
tire wall. The rate of temperature buildup of the contained air
due to viscous dissipation is calculated. Results for a sample
case are given in the next section, and the final section con-
tains remarks on the nature of the approximations made and
the extensions required to treat the case where centrifugal
pressure gradients cannot be neglected, the Reynolds number
is larger, and the cross-sectional diameter is a significant
fraction of the wheel diameter.

Analysis

Jaffrin and Shapiro [2] present a description of the
mechanism of peristaltic pumping, by considering the case of
a long flexible tube of diameter ¢, along which a restriction
slides from left to right at speed ¢ (see Fig. 1). If the ends at 1
and 2 are closed, the pressure at 1 will rise above that at 2, to
the level required to force the required mass flow through the
restriction. The required mass flow, in turn, is given by the
cross-sectional areas of the tube and restriction, and by the
speed at which the restriction moves. The flow pattern
described in the foregoing becomes steady if it is viewed in a
coordinate system fixed to the restriction (see Fig. 2): the flow
and the wall then move from right to left. The wall speed is
equal to c if longitudinal extensions of the wall material are
neglected, which is the case assumed here.

If now the ends of the tube are opened partially, and if the
pressures imposed at the two ends differ from those that were
developed in the closed-end case, the result will be that a
certain amount of mass flows into and out of the tube at
Stations 1 and 2, and the mass flow through the restriction is
altered (see Fig. 3). This flow pattern has the appearance
shown in Fig. 4, in the coordinate system attached to the
restriction.
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Fig.1 Peristaltic pumping, tube-fixed coordinates
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Fig.2 Peristaltic pumping, restriction-fixed coordinates
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Fig.3 Open-ended case, tube-fixed coordinates

The flow inside a tire is now modeled by taking a finite
length of this tube, and joining the free ends (see Fig. 5). Note
that this configuration is viewed in a coordinate system which
translates with the axle: the roadway moves from right to left
at speed ¢, the tire surface moves with a constant angular
velocity @, and the internal flow is steady. The radius R
locates the centroid of the undeformed cross section, 4 is a
cylindrical coordinate, and @ denotes the radius of the local
tire cross section, which is taken to be circular in the present
work.

The key to solving for the flow pattern is to find an ex-
pression for the mass flow being transported past any station,
in terms of the local pressure and tube geometry. For steady
flow, the mass flow is the same at all positions around the
circumference, and is equal to the value that will make the
pressures equal at the two ends of the tube length shown in
Fig. 4, i.e., periodic in the angular coordinate of Fig. 5.

In the low Reynolds-number, thin-tire limit, the relation
between mass flow, pressure gradient, and tube geometry can
be written very simply: the vorticity introduced by shear
stresses at the walls diffuses toward the center of the cross
section at a rate that is large compared to the rate at which it is
convected along the tube. Thus, there are no distinct regions
of boundary layer and core flow; rather, the entire cross
section is filled with a viscous flow, whose properties adjust
immediately to the wall conditions imposed at that station.
This is the limit described by the Hagen-Poiseuille flow in a
tube (see, for example, [3], Section 5.2) where the inertial
terms in the momentum equation are neglected, and the
pressure gradient and shear stress gradient are equal at each
station. The Poiseuille-flow behavior can also be derived
formally from the equations of motion as the Reynolds
number ca/v and radius ratio a/R both approach zero (where
v is the kinematic viscosity).

The momentum equation is (see Fig. 6 for definition of the
coordinates):

dp w 0 < aw’ >
— = — —r

dx r or or

where p is the pressure, u the dynamic viscosity, x=1¢ =R,
and w’ is the increment in the ¢-component of velocity that is
added to the solid-body motion, i.e., v, =Q 2+ w' =QR+w’.
The gradients of pressure in the r and ¢ - directions are

0]
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Fig.4 Open-ended case, restriction-fixed coordinates
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Fig.5 Tire-flow model

proportional to higher powers of the Reynolds number and
radius ratio. The solution is the parabolic profile:

= M(ﬂ _a2) )
4

This solution is now applied in the same manner as in

lubrication theory, i.e., both the pressure gradient and the

local radius are allowed to vary with x. The mass flow m is

given by (here p denotes the density):

watdp/dx
8u

The moving wall transports an additional mass flow pcA,
where A = wa? is the local cross-sectional area and ¢=QR in
the thin-tire limit, Thus, the total mass flow is

m a g
— = S w'2mrdr = 3)
fo] 0

. 4pdp/d
= matpc+ Ta_paprax 4
8u
This can be solved for the local pressure gradient:
dp 8p .
“67x‘ = m(m—wazpc) &)

The variation of cross-sectional area around the tire leads to
positive and negative values of the pressure gradient; the value
of mass flow is determined by the condition that the pressure
be periodic, i.e.:

— dx=0 6)

where /= wR. This condition can be written entirely in terms
of the distribution of cross-sectional area A/A,, which is
assumed given (A, is the cross-sectional area of the un-
deformed tire). Substituting equation (5) into (6) gives:

m o dx o dx
-1 aa) ;0
pcA o -1 A/ALT ) -1 (A/A)
The pressure distribution is then found from:
o A
® dx pCAe Ao
- . ®)
8wuc (A/A )

At each station x, the local centerline velocity w. and cross-
sectional-average velocity w’ are given by:
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Fig.6 Cylindrical coordinates {r, ¢, Z) and toroidal coordinates (r, ¢, V)
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Finally, the increments in rolling resistance AF and power
consumption AP caused by viscous dissipation can be found
by integrating the local rate:
+lpa ow’ 2
AP= AF-c=S S u( —) 2wrdrdx
-1 Jo or
The integration over the radius can be done analytically,
giving:

(10)

dp X
AP +1 A 2, *® dax
= = - _— }d 11
8muc?e2! S—/ (Aoo) 8wuc g ah

The expressions in the foregoing display the scaling laws
and functional dependences that apply at low Reynolds
number. It should be noted that the right-hand sides of these
equations depend only on the area distribution (and, thus, on
the load or tire deflection), while the left-hand sides give the
scaling parameters: ¢ for the air velocity and pc/A, for the
pressure gradient. The dependence of pressure gradient on the
first powers of viscosity and velocity is typical of flow at very
low Reynolds number.

Results for a Sample Case

The relations derived in the preceding section are next
applied to a specific example, in which the (circular) cross-
sectional area of the tire is reduced, over a portion of the
circumference, according to a cosine law:

A

Aoo

1

1, Ixi>L

1+cos =%
COS —
2

Ixt <L (12)

= 1- -

Note that the angular extent of the area change is 2L/R.
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Fig. 10 Distribution of peak velocities

For this case, the integrals required for the mass flow
determination can be found in closed form:
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Fig. 11 Tire deflfection model
1
, 27r—2i+—L—S d0x/L)
mo R R J-1 A/A, (13
pcA o L L (' (dx/L) )
27r~2*+——~5 —
R R J 1 (Ara)
where
U dx/L)
=2/(1— AA/A )5
| = )
%,
S‘ d(x/L) A
-1 (A/AL) ( A4\ 372 (14)
Aoo

Figures 8-10 show the distributions of pressure gradient,
pressure, and centerline velocity for A4/4,=0.1 and
2L/R = w/3. These distributions are symmetric with respect to
x=0 because the assumed area distribution was symmetric.
They show uniform values of the pressure gradient and
velocity in the undeformed portions of the tire.

The velocity variation displays the same scaling law noted
in the experiments cited earlier [1]: for small changes in area,
the general formula can be approximated as follows:

Mo 2 o( )
pcA ., 2R A, A,
dp
> dx 1w/
8ruC B 7 T max

max

= (1= gm) 5o +o(57)
- 27R/ A A

o

(16)

where the subscript denotes the maximum value, which occurs
at the point of minimum cross section. The area change, in
turn, can be related to tire deflection in several ways [1, 4]; the
formula used by Schuring et al. [1] considers the deflection as
due to the removal of a sector from an initially circular cross
section (see Fig. 11).

A4 1 .
o 27r(oz sinw);
] 6\21"”
azZarcsin[2*~<——> ] 17
a a
For small deflections, these reduce to:
AA @ W2y 5\
——=—=~—(—> (18)
A, 127 37 \ a

If this relationship is used, the peak velocity scales with tire
deflection according to:
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L \ &2/ 86\¥
W )max :20(1 - —"'> e ("_‘>
2eR/ 37 \ a

This is essentially the same result as that of reference [1],
except that it contains a further dependence on deflection,
implied by the L/R term, since the length of the footprint
region will change with load.

The dependence of peak velocity on tire deflection involves
only the continuity equation, and thus is independent of
Reynolds number. The other scaling laws derived in the
foregoing apply only for the low-Reynolds-number limit, and
were not observed in the experiments of reference [1]. For
example, the measured distribution of peak velocities (see Fig.
6 of [1]) does not have the symmetry shown in Fig. 9 for the
present limiting case. '

19)

Concluding Remarks

The model used in the foregoing illustrates some of the
fluid-mechanical features that are present in the flow of air
inside a tire: the motion of the footprint region around the
periphery causes a mass flow, relative to the tire wall. The
particular value of the mass flow that will occur is that value
whose associated pressure drop will meet the periodicity
condition.

In the low Reynolds-number limit studied here, the pressure
drop and viscous shear stresses are in complete equilibrium at
every station, and so the flow experienices negligible ac-
celerations. In the case of automobile and truck tires,
however, the flow takes place at much higher Reynolds
numbers, where the effects of viscosity are confined to
boundary layers that do not respond immediately to the local
changes in the cross-sectional area. Moreover, these boundary
layers are probably turbulent. In addition, the centrifugal
pressure gradients that are present in the auto and truck-tire
case are not negligible, and undoubtedly produce substantial
secondary flows. Thus, in the next level of approximation, the
effects, on peristaltic pumping, of turbulence, boundary-layer
development, and radial pressure gradients must be con-
sidered. The present model, which applies to laminar, fully
viscous, zero radial-pressure-gradient flows, will provide a
useful starting point for the addition of these more complex
features.

Although the predictions of the present model are restricted
to very low Reynolds numbers (for example the rolling
resistance and the rate of temperature rise), nevertheless the
scaling law for the center line velocity is not so restricted,
because it is based on the continuity equation, which is not
affected directly by viscosity. The peak velocity will be
proportional to the first power of the cross-sectional area
change for any model of the flow, although the magnitude of -
the peak and its variation through the footprint region will be
sensitive to the details of how the boundary layers are.
represented. Thus, the ability to correlate center line velocity
data is not a valid test of whether a particular analysis ac-
curately models the boundary-layer behavior of the flow (and
thus also the heat-transfer properties of the flow). .
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Superpotential Solution for Jet-
Engine External Potential and
Internal Rotational Flow Interaction

For flows with prescribed parallel shear far upstream, the vorticity generation term
in the disturbance stream-function () equation and the Bernoulli ‘‘constant,’’
both of which vary from stream surface to stream surface, are explicitly evaluated
as power series in  with curvature-dependent coefficients, for axisymmetric flows
using some invariant properties of vorticity. By casting the linearized stream-
Sfunction equation in conservation form, extended Cauchy-Reimann conditions are
obtained, implying a “‘superpotential’® ¢* satisfying a ‘“‘Laplace-like’’ equation
useful for solving flows past prescribed shapes; the corresponding tangericy and
Kutta conditions, interestingly, take a “potential form,”’ so that simple changes to
existing potential flow algorithms extend their applicability to strong oncoming
Shears with arbitrary curvature. The theory, which applies to duct flows behind
actuator disks generating shear, is sketched for both ‘‘analysis’ and ‘‘design’
Sormulations; here, we address the interaction between external poiential and in-
ternal rotational jet-engine flows occurring through both an assumed actuator disk

W. C. Chin

7703 Meadowbriar Lane,
Houston, Texas 77063

and a trailing edge slipstream, and provide representative numerical calculations.

1 Introduction

In many aerodynamic problems, the important effects of
oncoming shear usually require a direct attack on Euler’s
equations or on a very complicated stream-function equation
useful in only the simplest applications. The shear, for
example, might result from radially varying work imparted by
turbomachinery blade rows, or, from the effects of
nonuniform winds. This paper, using the ‘‘superpotential’’
approach outlined in the Abstract, shows how small
disturbances to strong shears with arbitrary curvature can be
solved, making only simple changes to existing potential flow
algorithms. Both the ‘‘analysis’ problem, solving for
pressures induced by prescribed geometries, and the ‘‘design’’
problem, solving for shapes inducing prescribed pressures, are
easily handled within the theoretical framework. A par-
ticularly challenging problem not yet tackled by existing
computational methods is the jet-engine external potential
and internal rotational flow interaction occurring through an
actuator disk and a trailing edge slipstream. The power,
flexibility, and simplicity of the superpotential is applied to
this very important engineering problem and numerical results
are obtained; however, lack of experimental data precludes
comparisons.

The basic ideas derive from an invariant property of
vorticity: for axisymmetric flow, the vorticity convected along
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a stream surface changes only in proportion to its length. If a
parallel shear flow is prescribed in some part of the flow
domain (not necessarily upstream infinity), then the nonlinear
vorticity generation term in the disturbance stream-function
() equation governing the remaining perturbed flow and the
Bernoulli ‘‘constant,”’” both of which vary from stream
surface to stream surface, in principle can be evaluated ex-
plicitly as functionals of the base flow; here, they are ex-
panded in powers of y with variable shear-dependent coef-
ficients. The linearized stream-function equation, put in
conservation form, implies the existence of a ‘‘super-
potential” ¢* satisfying extended Cauchy-Riemann con-
ditions: the ¢* equation is potential-like, and the
corresponding tangency and Kutta conditions, interestingly,
take the usual potential form, indicating only minor required
changes to existing potential flow algorithms! For our jet-
engine problem, the only difference with irrotational form-
ulations turns out to be an additional but discontinuous
coefficient in the governing equation; this interfacial
discontinuity, handled carefully, is stably implemented. The
approach taken is quite general and obvious applications to
other applications will be seen by the reader.

Our superpotential results, actually, appeared quite for-
tuitously in the course of extending the stream-function
approach of references [1, 2] for aerodynamic ‘‘design’’ or
‘““inverse’’ problems to flows with oncoming shear (these
formulations solve for shapes inducing prescribed pressures
subject to geometric constraints). The design formulation for
rotational flow is presented in this paper, but calculations and
engineering applications are deferred to future papers; here,
we concentrate instead on ‘‘analysis’’ problems solving for
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pressures induced by prescribed shapes satisfying Kutta-type
conditions that are more conveniently handled by potential-
like formulations (analysis problems prefer auxiliary con-
ditions described by potential jumps that control vortex
strength and lift, whereas design problems prefer shape
constraints described by stream-function discontinuities that
control source strength or mass efflux). In particular, we have
selected a very difficult analysis problem involving the in-
teraction of an external potential flow and an internal
rotational flow, a problem of significant interest in jet-engine
nacelle design not previously considered. Although our
numerical results are preliminary and, of course, subject to
improvement, what is demonstrated is the power, simplicity,
and flexibility of the superpotential approach. In the
following, the general theory, the required linearizations,
application, and numerical results are presented.

2 The Rotational Flow Equations

Let U and V be the full velocities in the streamwise (x) and
radial (r) directions, P be the static pressure, and p be the fluid
density. The governing momentum and continuity equations
for a steady axisymmetric flow without swirl are UU, + VU,
= —-P,/p, UV, + VV,= -P,/p,and U, + V, + V/r= 0.
A stream-function ¥ can be defined satisfying ¥, = rU, ¥,
= ~rV,and ¥, + ¥,, — V,./r = r{where { = U, — V, is
the vorticity. To obtain more specific information, we note
the dependence of {/r on ¥ alone, that is, {/r = f(¥) where
the function f, fixed for the entire stream surface, can be
explicitly written once the flow is known in any particular
region of space. Thus,

1
Vo + ¥, — T\I’,,:I‘Zf(‘l/) H

For simplicity we assume a parallel shear flow far upstream
with prescribed U = U,,(r) and V = 0. The stream function
for this mean flow ¥, (r) satisfies 7* f(¥,,) = V¥, Yom, /T
From this, the derivatives d"f(y,,)/d{}, are easily written in
terms of r and U,,(r). Now if our mean flow is slightly per-
turbed, a disturbance stream-function y satisying ¥ — ¥, +
¥ can be introduced which satisfies

1 B m
PP B AR R

¥
d 1 dfYm) 1, @ fYm
=y M) | L R | L ) )
d¥m 27 dvn 6 v
or, more explicitly,
1 Un _ Un >
¢XX+ lprr r ‘l/r - ( Um Umr ¢
1 U/// U// U/ 3U” U/ 2 ’
+ — < m m3 mo_ m2 + 3m 5 + 3 (jm3 > \//2
2 (]?nr Umr Wnr Umr (jrznr

+ i( Us 3UyU,  6Un Un?  3UnU2
6 \U}r? Uir? uirr  UAr? U, r?
noyu;, 15U, _ 30,3 _ 10U,,2 _ 15U, >\//3
uir uU;,r usr U r’

U4 r3
+ ... ()

m

Equation (2) explicitly evaluates the vorticity generation term
by expanding f in powers of ¢ with curvature-dependent
coefficients (small disturbance assumptions are implicit in the
use of Taylor series). )

A similar analysis applies to the Bernoulli ‘“‘constant’’ in the
usual pressure integral, which varies from streamline to
streamline. It is convenient to define a function J within a
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“true constant’’ by J'(¥) = A(¥). Then, the streamwise and
radial momentum equations and the definition of vorticity
lead to the Bernoulli equation

P/p+%(U2+V2)—J(‘I')=C 3)

where the constant C, fixed throughout space, does not
change from stream surface to stream surface (the “‘variable
constant’’ appears through J(¥)). J is easily determined in any
particular example. Suppose that U, (r), and hence y,,(r), are
given analytically upstream (this is not required in our later
work). This functional relation can be inverted to yield r =
g(¥,,), which is substituted in f(i,,) = U, (r)/r to provide the
required integrand in J = [¥ A¥) d¥. If we now write
equation (3) using conditions at infinity, we have

P Pu() 1

1 2 2y - Y

> +"2—r‘f(‘1’r+\1’x) J(¥) = 272 Vm JGm)
or,

P_Pm(r)
C,= 17 =

7PU?er
_ 2‘I/mr ¢r+¢12‘+‘//)2( 2¢ J(‘//ln+‘//)_'](‘//ln) (4)
U?efrz U%ef ‘l’

where C, is a nondimensional pressure normalized by a
dynamic head based on the reference velocity U, ;. Then,
replacing the derivative-like J term in equation (4) by its
Taylor series approximation lead to

o BB oy, g vty 20,
i 1 U2 U%efrz (j%efr
7[7 ref
Un U ) v
+ |- — + 5
( (]mr2 (]mr3 (]?ef ( )

In summary, equations (2) and (5) provide explicit working
equations with coefficients expressed in terms of known
upstream conditions; they were obtained using some invariant
properties of the stream function and the vorticity in
axisymmetric flow. The linearized equations and their con-
sequences are discussed next.

3 The Linearized Problem

In many engineering applications, simplifications are in-
troduced by applying boundary conditions along slits. For
these small-disturbance flows, the foregoing equations can be
linearized; then, it turns out, that the notion of the velocity
potential can be extended without difficulty (we will show
how existing potential flow algorithms can be simply
modified to handle strong shears). Let us now drop the
nonlinear terms in equation (2). It is almost remarkable that
the linearized equation can be cast in the conservation form

3 (U,,,wx>+ d (U,,,¢, _ UW):o ©)

5; rUref 5; rUref rUref

This implies the ‘‘extended Cauchy-Riemann conditions’’

* . _m . Zm v 7

¢X Uref r Uref r ( )
Un ¥x

= = 8

@7 Us 7 ®

where ¢*(x,r) is our “‘superpotential’’ (¢* derivatives are not
velocities unless U,, = 0). Equations (7) and (8) in turn show
that ¢* satisfies the ‘‘potential-like’’ equation
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Thus only minor changes to existing potential flow finite-
difference or finite-element algorithms are needed. The ¢;/r
term in irrotational flow, incidentially, couples the effects of
thickness and camber; here, we see that mean vorticity in-
troduces additional coupling. The corresponding tangency
conditions obtained from equation (8) are

U2 (R«

bR )= 2B (10)
Uref

where r = R is a suitable mean radius and F, (x) are

streamwise surface slopes. For bodies with trailing edges,
Kutta’s conditions is required and a formula for C, must be
obtained. The linearized expression for C, simplifies as
follows:

5 %

Uref
In summary, the Laplace-like equation (9) is solved together
with the potential-like tangency condition in equation (10) and
a trailing edge ‘‘potential jump’’ specified through a branch
cut as inferred from equation (11). The strong resemblance to
potential flow formulations allows us to “think ir-
rotationally’’ in algorithm development.

Flows in ducts, for example, can be trivially solved. In
contrast, flows through engine nacelles have constant U,
externally and nonzero U;,(r) behind assumed actuator disks;
here, a specific U, (r) is inferred from the radial blade
loading, and Kutta’s condition is handled ‘“‘irrotationally,’’
with the ‘“‘potential jump” [¢*] through the trailing edge
slipstream specified but as a functional of x and ¢* (the
discontinuous coefficients in the differential equation will be
addressed more completely later). This ‘‘analysis” for-
mulation solves for the surface pressure induced by a
prescribed shape subject to Kutta’s condition. In ““design’’ or
“inverse’’ problems, the shape that induces a prescribed
chordwise pressure subject to auxiliary shape constraints is
required. For nacelle flows, one might specify trailing edge
closure or edges with opened cusps to model displacement
thickness effects; a convenient dependent variable is the
stream-function, because the jump [{] controls gap and mass
efflux directly, while [y,] automatically controls the included
angle. These ‘“Kutta-like’’ edge constraints would be solved
with the linearized stream-function equation and the mixed
Dirichlet and Newmann boundary condition

Cp=- (an

U, (R+) 2U(R+) ~
22— VLR ¥r(x, R+ )+—WﬁR—¢(x,R=t)—C;‘(X) (12)

The requried surface coordinates are then obtained from
dF , /dx=-¥ /¥, = —y,(x,R£)/RU,(R)
F,(x)=—y(x,Rx)}/RU, (R=x)+constant

(13a)
(13b)

Similar remarks apply to design problems in annular or
coannular ducts and pipes (for a more complete discussion on
stream-function methods in aerodynamic design, the reader is
referred to the references previously cited). Applications to
these geometries are the subject of current research.

4 Application to Jet-Engine External Potential and
Internal Rotational Flow Interaction

We will examine the flow through a finite-length axi-
symmetric nacelle immersed in a uniform freestream. Without
power addition, the flow field is easily modeled by potential
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Fig. 1 Jet-engine external potential and internal rotational flow in-
teraction
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methods; here, the internal flow is irrotational up to an
assumed actuator disk, beyond which the flow is rotational
due to radially varying work imparted by the turbomachinery
(Fig. 1), Thus, the flow field is potential externally and
“superpotential internally’’ and in the downstream plume;
matching conditions at the disk and plume interfaces connect
both dependent variables.

For the external irrotational flow, subscripted ‘‘e,”’ the
superpotential is a true potential, and the oncoming
freestream is constant with U,,(r) = U,. We introduce the
nondimensional variables X = x/¢, 7 = r/c, and ¢, (X,r) =
dX(x,r)/Usc where ¢ is the semichord and take U = U.,.
Then the governing equations become

d_)el\;'\; + d;e,:,- + % (?Se,: =0 (14(1)
B, (5, R +) = FL() (14)
po= (P, — P}/ pU% = ~2de; (140)

Now consider the internal flow. So that our previous
linearizations are physically meaningful, U, is chosen as a
suitable “‘maximum speed.”’” Here we assume a prescribed
internal parallel shear flow originating at the actuator disk
(“‘upstream infinity”’ in the context of Sections 2 and 3) with a
horizontal speed that increases monotonically outward,
resulting in a maximum speed U found at the blade tips. With
U,er = U,,,(R) = U and a different normalization, namely,

é:i(x,")=¢; (x,r)/Uc and U,,(r) = U U(#), the internal elliptic
equations (subscripted *i’*) becomes

Bi by + (— 2 ) b = (150)
3, (R -) = Fi(9) (155)
Coy = (B~ P () 5 90" = =2, (150

F! and F/ being actual geometric slopes; also, we note that
other normalizations are possible, for example, U, in-
ternally, but the quadratic terms in C, would then be

retained. o )
Next, pressure continuity through the trailing edge plume

or slipstream is computationally applied along a mean radius
R for simplicity. Because C,, and C,. are normalized dif-
ferently, pressure continuity does not imply C, continuity.

Setting P, = P; along r = R and using equations (14¢) and
(15¢)lead to
I Y P°° "Pm(R) -
—¢i)g =~ 861 16
(d)e ¢1)x pUzo,, ¢'1x ( )
where (0/U,)? = 1 + 6. If we now denote [¢] = ¢, — ¢;
and ¢y, = 1/2(¢, + ¢;), we obtain ‘
_ Py —Py(R) b
[¢]:= 1 + 1 Baves an
UVL(1+ =36 T
pUs(1+ 3 ) 1+ 5 )
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Integrating with respect to x from the trailing edge X, to X,
the wake matching condition

Poo "‘Pm(R) _ _
——— (X—X7g)

[l = [Blisrp) +
1

+t — { d;avg(x_‘vR) - <i;avg(-)leE:R) l (18)

1+ 2 ]

is obtained for a ‘‘potential jump’’ with two ‘‘power
corrections’’ to the irrotational [@] (7 LETTIL This is not a true
jump, of course, since the superpotentials are normalized
differently, equation (18) merely describing a difference
between two variables to be enforced numerically; our
normalizations were in part motivated by the desire to keep
the computer algorithm as ‘‘irrotational’’ and original as
possible. For reference, specialized forms of equation (7) are
given; in the external flow, with U, (r) = Uy = Uy, we set
Vo = Uy Yo (%,7) so that

Y~
=g,

(19)

Internally, we reference y to U; then ¢, = ¢ U;(%,F) leads to

ue) 7

Ui, = ¢+ U; 7 (20)

r
Finally, we discuss actuator disk matching conditions.
Actuator disks mathematically idealize changes to flow

particular model is arbitrary and unimportant, because we are
interested more in the effects of power addition arising from
slipstream interaction. First, continuity of disturbance
stream function through the disk requires that y; = v,
/(1 4+ 8)12; then continuity of the horizontal speed ¢,/r (see
equation (7)) leads to the matching condition

Uf'—
U(t’ex - ‘l/e
r -

S——— 21
T @1

used numerically, where a ; was rewritten in terms of ,.
Equation (21) was motivated by a finite-difference column
relaxation solution method where lines of constant X are swept
from upstream to downstream. Knowing the external flow left
side, and hence the gradient (5,-)2 , allows us to march into the

rotational flow (Y, is obtained by integrating equation (19)
with respect to 7, from the centerline 7 = 0 where ¥, = 0).
This completes the analytical formulation; next, we review
some numerical issues connected with the discontinuity of
actual physical quantities through contact surfaces.

Because the ¢} coefficient in the governing field equation
changes discontinuously through the disk and the slipstream,
the usual potential-flow difference formulas must be
reexamined since certain smoothness properties are implicitly

« assumed. A continuous function f{r) with continuous first and

second derivatives at » = r; can be described using /=  (f;+)
=fi- /(g —rj—l)_andfj": Afi1 —2f; +fj—1)/_(rj+l T
)?. If fis discontinuous at r;, we cannot define a first
derivative unless it is continuous; then, f/ = (f;,., —f;—; — U1/

properties imparted by turbomachinery; for our purposes, the  (r;,; —r;_;) where the discontinuity [f] is subtracted out.
/I " 1"
A T/ | -0.7+"Cp y
“ / h \ //
[| A:f=0 / I B:f=1 e}&/
i ) I $7
I \\ I exte
’ ﬂ\ , \ rna/
it ! 7~/__j S
| (
| |
L.E. TE.
e 3
h &
Ipiteg I cite2
I I -
/! - N 7
1 = N ~
I — ! —
| I
, l

Fig.2 X = 2rotational flow solutions
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If, in addition, f/ is continuous, we can write f/ = ((f;. |
=S — 1)) = =S/ =Y 20 =12 1)-
These extended formulas allow discontinuities in f, provided
f' and f“ are continuous; they are commonly used to dif-
ference through aerodynamic wakes. In wing flows the
velocity normal to the wake is always continuous, but ‘‘¢,”’
and “‘¢,’" through an assumed flat wake is not—these
formulas are used only with the restriction to the weak
discontinuities allowed in small disturbance theory. For our
jet-engine problem we must be certain that the usual dif-
ference formulas used through the slipstream are not
physically unrealistic; f should be precisely defined and the
assumed continuities in f* and f* checked. Let us define f =
(¢., externally; ¢, internally) noting again that ¢, and ¢, are
normalized differently. In the slipstream b7,/ U and qS,?‘r/ U
both equal the streamwise plume slope; thus the non-
dimensional variables so defined allow for f’ continuity, as
required (f” continuity, related to smooth curvature, is also
assumed). When the customary ‘‘mean difference equation”’
is used in the wake for f,, = 1/2(¢,+ ¢;), the difference
approximations for the differential equation appear exactly as
they would in potential flow formulations, except that the
jump in f satisfies equation (18), more complicated, but easily
implemented.

5 Calculated Resutls and Closing Discussion

Our new approach for inviscid rotational flow allows a
simple ‘‘potential-like’” solution to those problems where
velocity shear is important. The ideas were developed for
cylindrical axisymmetric flows without swirl; but the same
approach, with similar results, extends to ‘‘mathematically
axisymmetric’’ flows for arbitrary, say body-fitted, three-
dimensional coordinate systems, using properties of vorticity
special to these systems. Our particular jet-engine problem,
because of the obvious complications, has not been examined
in the literature; thus, we insist on a simple streamwise nacelle
section, so that physical intuition can check anticipated and
unanticipated results. We will use an external profile
corresponding to the upper half of a symmetric unpitched 10
percent thick parabolic arc airfoil and assume a perfect cir-
cular cylinder internally, with a chord-to-diameter ratio of
two. Thus we qualitatively expect an ‘‘airfoil-like’” external
surface C, with stagnation peaks near both edges, and in-
ternal flow which, being energized by power, continues
straight more or less. The modified wake condition in
equation (18) shows that two nondimensional parameters are
needed to characterize the shear, namely, § = (U/U,)? —1
and A = (P, (R) —P,)/1/2pU% (the second is related to a
total pressure increase). For simplicity we assume that U,, is
proportional to 1 + fr (only the ratio U,,/U appears in the
governing equation), so that f, the strength, equivalently
measures § ; computationally, we take f = 0, 1, 2, and 3 with
A = +2 (i.e., the static pressure P,,(R) equals the external
total pressure plus one dynamic head). Our first set of results,
shown in Figs. 2(a-d) imply the streamline pattern in Fig. 3.
As f increases, the external flow expands more, with C,
becoming more negative near midchord; at the same time, the
internal leading edge lip flow expands less, indicating a
movement of the external lip stagnation point toward the left
as shown. Since the internal surface is flat, ¥ is constant; in
this case only, from equation (11), the C, is proportional to
the streamwise disturbance speed as in potential theory. As f
increases, this speed decreases consistently, since the total
pressure along the body streamline is fixed and the transverse
velocity is zero. The same computer code was run
irrotationally using f = 0 and A = 0, with and without ac-
tuator disk logic; calculated internal results showed minor
discrepancies since disk matching conditions occupied two
course meshes. Figure 4 shows two solutions for f = 0, the
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Fig. 4 Irrotational flow solutions with f = 0. Top: “flow-through
nacelle without power. Bottom: Constant radial energy addition

first with X\ = 2, the second with A = 0 (in the former case C,
uses a different normalization downstream of the disk). A
velocity slip is clearly seen in the powered flow. These finite
difference calculations were implemented using a modified
potential flow code on a coarse 60 x 60 mesh, with 20 over
the chord, and carried to convergence.

In closing we emphasize that the superpotential approach
requires only simple modifications to available potential flow
algorithms; yet, it is rigorous and founded on the exact fluid-
dynamic equations. The superpotential, we note, is a con-
sequence of linearization but without restriction to shear
strength; it is not the Clebsch potential often used to represent
rotationality, nor is it related to Lighthill’s ‘‘similar’’ pressure
function (e.g., see reference [3]), which is restricted to weak
shears. Its existence, incidentally, was motivated by some
mathematical constructions used in inviscid hydrodynamic
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stability theory. The particular application to jet-engine
external potential and internal rotational flow interaction, of
course, is not final; many code refinements are due before the
code becomes a working tool. Direct and inverse applications
to pipes and coannular ducts are currently in progress and the
general coordinate approach mentioned earlier is nearing

completion. Finally, general theoretical consequences to the

planar limit of our shear flow equations have been obtained
for thin airfoils, in both analysis and design problems
(references [4]), and are available from the author.
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Perturbation Procedures for

D. Nixon

Nielsen Engineering and Research, Inc.,
) 510 Clyde Avenue,
Mountain View, Calif. 94043

Nonlinear Viscous Flows

The perturbation theory for transonic flow is further developed for solutions of the

Navier-Stokes equations in two dimensions or for experimental results. The strained
coordinate technique is used to treat changes in location of any shock waves or large

gradients.

1 Introduction

A series of papers recently published [1, 2] concern the
development of a perturbation method for transonic flow
problems. A basic problem in transonic flow perturbations is
the treatment of possible movement of discontinuities (shock
waves) that can make the perturbation invalid. A means of
solving this problem, using a strained coordinate method, has
been derived [1] in which the location of the discontinuities in
the strained coordinate system remain the same throughout
the perturbation, leading to a final linear perturbation
equation for the perturbed unknowns. The final solution is
not linear because of the transformation from the strained
coordinate system to the physical coordinate system.
However, since the perturbation equation is linear, the
principle of superposition can be used, and the effect of
several different types of perturbations can be easily, and
inexpensively, estimated.

The most common application [2] of the method has been
concerned with extrapolating transonic flow solutions. For
example, given two transonic flow solutions for the same
airfoil and Mach number, but at two different angles of at-
tack, then the pressure distribution for any other angle of
attack can be found by simple proportion and the use of the
strained coordinate transformation. Applications of this
technique to two-dimensional, multiparameter flow solutions
and to three-dimensional, multishock problems are reported
in [1] and [2]. These examples are concerned with the physical
perturbation quantities, such as angle of attack, profile
geometry changes, etc.

For the present work the perturbation theory is concerned
with solutions of the Navier-Stokes equations. In particular,
the application of the perturbation theory to solutions of the
Navier-Stokes equations and to experimental data is in-
vestigated. In all cases the strained coordinate technique [1] is
employed to treat shock waves or large gradients in the
solutions.

First consider the perturbations of the Navier-Stokes
equations. The first step in deriving a perturbation equation is
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to write the governing equations and their associated
boundary conditions in such a form that only the basic
equations or only the boundary conditions contain the per-
turbation parameter, otherwise the correct parameter to use
may not be obvious. In the previous work for the TSD
equation [2] the perturbation parameter is contained only in
the boundary conditions. For the Navier-Stokes equations the
perturbation parameter appears only in the set of equations, if
these are written in a general body conforming curvilinear
coordinate system and the variables nondimensionalized with
respect to free-stream quantities. Both attached flows and
flows with shock-induced separation are considered.

The basic principle behind the perturbation theory is that,
relative to certain physical features of the problems, for
example, the geometric confines of the airfoil and the shock
location, the physical processes throughout the perturbation
are in some sense similar. For instance, if two solutions are
known (the base and calibration solutions) and have shock-
induced separation, then an interpolated solution will also
have shock-induced separation. Examples with attached flow
and with separated flow are calculated with satisfactory
results. However, in contrast to the earlier potential equation
work [1, 2], it is found in the present case that the base and
calibration solutions should not be too close, otherwise
numerical inaccuracies in the Navier-Stokes solution can
dominate the perturbation quantities.

2 Basic Principles of the Perturbation Theory

2.1 General Concepts. It is usually assumed in per-
turbation theory that the form of the perturbation parameter
characterizing the disturbance is known or can be easily
found. For example, in the earlier work [1, 2] on the per-
turbation theory, the transonic small-disturbance equation
was written in an invariant form and the ‘‘natural’’ per-
turbation parameters were easily discernible from a study of
the boundary conditions. In the present work, the strained
coordinate perturbation theory is to be extended to treat the
Navier-Stokes equations. It is unlikely that these equations
can be written in a form independent of the free-stream
conditions and consequently, the choice of the ‘‘natural”’
perturbation parameter for a perturbation in free-stream
quantities may not be obvious. Accordingly, it is proposed to
write the Navier-Stokes equations in a form where the
boundary conditions are invariant, and then examine the
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transformed equations to determine the correct choice of
perturbation parameters. A further simplification is to use the
thin layer [3] approximation to the Navier-Stokes equations.
This latter assumption is consistent, since these are the
equivalent equations solved in most computer codes, whether
explicitly coded or not.

If the reference values are free-stream quantities the steady
thin-layer Navier-Stokes equations for two dimensions can be
written [4] in a general curvilinear coordinate system as

oF + aF R as )
3 T e oy 1)
where R, is the Reynolds number, and (£, ») are the com-
putational coordinates which are functions of Cartesian
coordinates (x, y) with a transformation Jacobian J, given by

J=Emy, =&y =1/ Oy, —x,01) @
The transformation metrics are given by
Ex=Jy, ne=-Jy,

E,y==Jx, n,=Jx; 3)

and the contravariant velocities (U, V) are related to the
Cartesian velocities u, v by

U=tu+tv

V=nu+n,0 4
The vectors E, F, and S are given by

s B

oU

1
U
FeJ-l puU+&p 'YM%o
M,

(5a)
1

ppU+&,p —
s

L lee+p(y-DIU

oV

uV + !
Fe 14 V74 'YM%a

1

M,

(5b)

pvV+n,p

L leet+p(v—DIV J
[ 0

u
wlnd +nu, + 3 T (e +1,0,)

m
w(n2+n)v, + 3 M (et +,0,)

L

p, p, e are the density, pressure, and internal energy,
respectively. Pr is the Prandtl number, « is the conductivity,
and a is-the speed of sound of the gas. The pressure is related
toe, p, u, v by
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da?
Proly( ) S g‘m— DM, (2 + 2)(u? +v?),

I
+ 3rlr- DMZ, (1 +1,0) (n.u, +n,0,)

1
p=(7—1)p€~ip(u2+vz) (6)

where v is the ratio of specific heats. M, is the free-stream
Mach number.

The computational coordinates (£, 4) are chosen such that
the surface n (x, y) = 0 represents the body surface. The
boundary conditions are the tangency and no-slip conditions
and therefore, on 4 = 0,

V=0
U=0 7

The far-field boundary conditions are that free-stream
conditions, prevail.
Thus, at infinity

p=p=e=u=v=1 ®)

It can be seen then, that, with the exception of changes in
M., the basic equation set and its boundary conditions are
independent of the free-stream conditions. Changes in
geometry are transmitted through the changes in the matrices
£xs 55 Mys My and the Jacobian J.

The system of equations (1), (5), and (6) can be written in
the form

L(p.p,e,u,0,M2%, ,m)=0 ®)

where L( ) is a vector differential operator and m denotes
the metric terms. Now consider a perturbation about some
state or geometry denoted by a subscript o, and that the
perturbation quantities, denoted by the subscript 1, are
characterized by the parameter ¢. First consider changes in
geometry. An expansion of (9) for m then gives

OL[0osDo €05l Vo, M2, 1]
om
+6£[p[,p[,ei s U Uy ,M%o ,m[] ={

Am

(10

where L[ 1is a linear operator, related to L[ ] and which
depends on the zeroth-order quantities. In general, the metrics
are functions of the geometry of the airfoil and hence for the
small perturbations that are considered, Am is given by

om
me() 00w
where 6 is some geometry parameter such as angle of attack. It
can be seen from equation (10) that if (dm/08) ~ 0(1) then
the natural choice of perturbation parameter, ¢, is A#, i.e., the
change in the geometry characteristics. Hence, if two
solutions are known for two cases that differ by a one-

(5¢)

parameter variation then the solution for any other value of
this parameter can be found by simple proportion.

A similar analysis to the foregoing but for Mach number
variations indicates that the correct parameter to use for
Mach number changes is AMZ, .
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© Perturbation Result

Experiment °
——— Base Result,M_ = 0.82,a = -47.
——- calibration Result M = 0.82,
c a = =20,
P
-0.6

Fig. 1 Pressure distribution on the upper surface of a NACA 64A410
airfoil; M, = 0.82; « = —3deg

The perturbation equation, (10), will also model separated
flow since the physics of such flows are contained in the basic
equations. However, since separation (or reattachment) is a
discontinuous phenomenon, the derivatives in equation (10)
are valid only when the flow does not change type. A
separated flow cannot be determined from an attached flow
from equation (10). The perturbation parameter for separated
flow is an unknown function of M, and the geometry 6. The
perturbation parameter can, however, be approximated for
small perturbations by the relation of equation (11) if the
metric terms m reflect the separated flow zone. Since it may
be assumed that the Navier-Stokes equations describe the
physical flow, it follows that experimental data can be used in
the interpolation theory instead of numerical results.

2.2 The Strained Coordinate Method. The interpolation
procedure outlined in the preceding section is only valid for
smooth functions. A device for treating discontinuous func-
tions using a strained coordinate system has been derived in
previous papers (e.g., [1]), and the reader is referred to this
paper for further details.

3 Application of the Strained Coordinate System to
the Navier-Stokes Equations
3.1 Theory for the Navier-Stokes Equations. Consider the
set of equations, (1):
oE (&, oF (&, as(¢,
(&m) + (&m) —Re-! (&m)
a¢ an an
Let both the independent variables (£,7) be strained such that
the location of one or more discontinuities or rapid gradients

are held invariant. The new coordinates are denoted by (¢,
n') where

E=t"+edbl(En') + ...

n=n"+ebym(§',n") + ... (12)
where ¢ is the perturbation parameter, 6£, 6 are measures of
the movement of the straining points, and &, (£',7), 7,
(¢7,7n’) are (fairly arbitrary) straining functions.

Now let the dependent variables be expanded in a series in e.
Thus

E(E,m) =E(§m") +eE(E'm") + ...
F(&n)=Fo(§n" ) +eF(E") + ...
S(EM) =Se(En" ) +eSe(E75n") + . ..

Using equations (12) and (13), the perturbation equation for
(1) (the coefficient of ¢) is

(13)
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Fig. 2 Pressure distribution on the upper surface of a NACA 64A410
airfoil; M, = 0.82; « = 4 deg

©® Perturbation Result

Experiment

——— Calibration Result, M, = 0.81,
[0} o = 69. o
O

~———="Base Result, My = 0.82, a = 0.

0.5 1.0 X

Fig. 3 Pressure distribution on the upper surface of a NACA 64A410
airfoil; M, = 0.79; « = 10deg

IE, IE IF
Y <_<z oFo )
YL £ 6&’515'4_617’1’15'
+6Fl_6(3Fo | %, )
an’ 7 an’ 77171, 3t Eln,
aS as aS
=Re”(—'—5—° _ s 9% >
5 g, 0, (14)

Now since e is not contained in (14), it follows that a solution
to this equation can be applied to any value of e. As in the
previous work [2], the perturbation equation is not solved;
instead, the solution of the perturbation equation is assumed
to be the difference between two complete solutions, differing
only by a perturbation characterized by the parameter ¢,.
Hence, for example, if

E=E"+e. 0 £(En")

n=n"+e0n ni(¢n") (15)
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and, if for the velocity component, u (£, 1), the two solutions
are denoted by u, (&, ?7) (base solution) and u; (& 7)
(calibration solution, ¢ = ¢,), then, following the previous
work [51,

u(Em) =uo(E' 1) + — {ul(s ) —~uo(E' 1)) (16).
and

E=f e bk sl(s',n'>=s'+€i<s‘—s')

n=n'+e b mE L) =’ +— (h-1") an

60
The coordinates £, # are found from (15) by making the
straining points coincide. A similar relation to (16) applies for
all the dependent variables, the most useful of which is the
pressure coefficient C, (&, 7). Thus

C(&m=C, (£m7)
Cp, (1) = Cpy (£70)]

In the present work, only values on the airfoil surface (y=0)
are considered and only the { coordinate is strained. The
coordinate straining function £; (£, 0) is given by the
following equation or by a piecewise application of the
following equation, depending on the number of straining
points required.

+ 5 (18)
60

N
BE0= ) (o,
i=1
(885, —884,_) e o
W(E —EA_ NH(E —EL, )

XH(Ey, —¢) 05§ <1

where 6¢ Y denote the stralmng of the point £ 4 during the
perturbanon and H( )is the step function. Note that £4,
04 oo and 8¢, arezeroand ), = 1.

A further result can be obtained from equation (18) for the
lift and pitching moment coefficients C;, C,,. Consider the
lift coefficient C,, where

1
c.=| ac,s0a (19)

where AC, (£, 0) denotes the pressure jump between upper
and lower surfaces. Using equations (15), (17), and (18) the
lift coefficient is then given by

1
c.=| {ac, @09
+ = [AC,, (£,0)—- AC, (& ,0')]}
x [dg' += [dé—dg’]} (20)
€
Now the basis of the perturbation theory implies that
[Cpl (E_x 17,) - C‘p0 (‘E ':71')] ""’Q(f)
[@E—dE'] ~0(e)

and also that dé = d&’ + 0(e). Using these results in (24), it
can be shown that

1
C, = S [Ac,,o (£',0)dt’ +_—€f~ AC,, (£,0)df

c ) ) ‘
— ;:ACPO (&£7,0)dE ] 2n
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or

€

CL=Cp + o [Cr, —Cp,] (22)
o

where C; _, CL1 are the lift coefficients for the base and

calibration solutions, respectively. A similar result applies for
the pitching moment C,,, namely

Cm Cm + [C

- Cmo ] (23)

my

3.2 Some Comments on Applications to Separated Flow.
If the strength of the shock wave is too strong, the flow
behind the shock will separate and the shock structure will
probably change from a single shock to a bifurcated shock.
The separated flow may or may not reattach on the airfoil. If
separated flows are to be considered in the perturbation
theory, it is helpful to note the following features.

It is a basic premise of the perturbation theory that the
topology of the flow does not change during a perturbation,
for example, shock waves may not be generated or destroyed
during the perturbation. Since the appearance of a separated
flow region is a change in topology, a unified perturbation
theory that goes from attached to separated flow cannot be
constructed. However, a piecewise theory can be constructed.
Hence the emphasis here is on using the perturbation theory
separately for attached and separated flow regimes. The
Navier-Stokes equations are sufficient to model separated
flows, and the theory outlined in the previous section is ap-
plicable.

The appearance of separated flow can be regarded as an
additional perturbation to a perturbation due to viscous
effects for attached flow. It is of some interest to consider
how the flow behaves with, say, increasing angle of attack, as
the flow moves from attached to separated.

It is difficult to conduct an experiment just at the point
where shock-induced separation occurs. A simplified analysis
[7] indicates that the transition from attached to separated
occurs smoothly if the intersection of two C, - curves, one for
attached flow and one for separated flow, occurs at a point
that is demonstrably not attached or separated from other
evidence. If the transition is smooth then this intersection
point gives the separation point. A study of Stivers’ [6] results
seems to indicate that the transition is smooth.

3.3 Discussion of Results. A series of results of the
perturbation theory are shown in Figs. 1-3 where the base and
calibration data are taken from the experimental results of
Stivers [6]. The theory has been applied to data with an in-
creasing angle of attack. Since Stivers’ data do not give a
constant Mach number for each test, the data have been
corrected for Mach number effects using a second application
of the perturbation theory.

In Fig. 1 the pressure distribution around the upper surface
of a NACA 64A410 airfoil at M, = 0.82, o = —3 deg is
shown. This is an attached flow; the base dataisat « = —4
deg and the calibration solution is at &« = —2 deg. The
agreement of the present results with the data is excellent. In
Fig. 2 the pressure distribution at o = 4 deg is shown com-
pared to the data. The base data is at « = 0 deg and the
calibration solution is at 6 deg. This result is for a shock-
induced separated flow, and the agreement with the ex-
perimental data is again excellent. A further result for o = 10
deg using the same base and calibration data is shown in Fig.
3. The agréement with the data is fair; this result is probably
getting toward the limit of application of the theory. At « =
12 deg the experimental data indicate that the flow is
separated at the leading edge.

It was found that to obtain sufficient accuracy the base and
calibration solutions had to be further apart than is the case
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for the earlier potential flow applications. This is attributed to
the larger relative errors in the experimental data.

4 Concluding Remarks

The main object of the present work is to extend some
recent developments in perturbation theories of transonic
flow to treat solutions of the Navier-Stokes equations or to be
applicable to experimental data. The extension of the per-
turbation theory to solutions of the Navier-Stokes equations
is straightforward; the only additional fact to appear is that
the necessary base and calibration solutions should not be too
close together, otherwise the perturbation quantities can be
seriously degraded by the experimental error. The results
obtained by the present method compare favorably with
experimental data. Both separated and attached flows are
considered.
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Some Remarks on Transonic
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Potential Flow Theory

The validity of the commonly used transonic potential equation for flows with
Shock waves is examined. It is concluded that in such cases the potential for-
mulation is inconsistent with the basis assumptions of the theory because of the
nonconservation of momentum across a shock. The relationship of this momentum

source to wave drag is also discussed. Another topic examined is the rationalization
of means to make solutions of the transonic potential equation agree beiter with
solutions of the Euler equations.

1 Introduction

At present, the main means of predicting transonic flow
characteristics is by numerically solving either the full
potential equation [1, 2] or its approximate form, the tran-
sonic small disturbance equation [3, 4]. To justify the use of a
potential equation to describe transonic flows with shock
waves it is usual to assume that entropy changes through a
weak shock are negligible and hence, from Crocco’s theorem
[5] the flow can be considered irrotational. However, the
derivation of Crocco’s results requires that mass, momentum,
and energy be conserved, and since in the present transonic
potential, computer-codes axial momentum is not conserved
if there are shock waves in the flow, it is obvious that there is
an inconsistency in the model. This momentum error is often
used to define a wave drag of the airfoil. The present study is
concerned with examining the origin and effect of the in-
consistency of potential flow theory when shock waves are
present in the flow and also the relationship of the momentum
error to wave drag.

In Section 2, a perturbation analysis of the potential theory
through a normal shock is conducted and it is shown that the
momentum error produced by the potential formulation leads
to a ‘““‘wave drag’’ proportional to the shock strength, whereas
the correct result is the cube of the shock strength. Also, a
possible theoretical basis for modifying potential theory to
give more realistic shock jumps is described. In Section 3, the
effect of not conserving momentum on the irrotationality
assumption is examined and it is concluded that the potential
formulation is only valid for a free-stream Mach number
close to unity. An analysis is given which derives a consistent
potential theory but it is concluded that this theory would give
worse results than the conventional theory.

2 Comments on Isentropic Shock Waves

In this section the behavior of the flow through a one-
dimensional isentropic shock wave is examined.
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The isentropic density relation is
1

—1 a—
Lol (T -] @
Poo 2
where ¢ = U/U,,. The pressure relation is s
2 1o (5 o-e]
— =11+ — )ML(1- &l 2
oo 2 (1-¢% (2)

The pressure, density, and velocity are expanded as a series in
the perturbation velocity u. Let

g=1+u (3)

and expand the relations of equations (1) and (2) in powers of
u. Hence

2
p=pu{l-Miu-MLUI+G-2ME15) @

p=pw{1—vi\/liu—7—:31\/liﬂz} 5

where
B2=1-M>% (6)
Through a shock wave, mass, momentum, and energy
should be conserved. If this is not true then there are errors

E,, E,, and E; in the conservation laws of mass, momentum,
and energy, respectively. Hence '

B = 0V Up/ouUu= {810 ~ S 0212] )

Ey = (i +oUf D2~ 02 U3/ (0o + P U)
= «,Wm{ﬁzlu]t - (k_zﬁz >[u2]‘:}/(1 +yM2) (8)
E;=0 ©)

where subscript 1 denotes a value upstream of the shock, the
subscript 2 denotes a value downstream of the shock, and

k=M% [3+(y-2)M%] (10)

The notation [ ] defines the jump across the shock. The
energy equation is satisfied because the isentropic density and
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pressure relations of equations (1) and (2) are derived by
assuming that energy is conserved.
Since [u]* =u, —u, and [4?]* =u} — u3 it can be seen that

E, = &[62— %u} an
E, = ywmo{32—<k“ﬁz)ﬁ}/(1+ywm) (12)
where
o = U —i
) 13)
i = u +u,

Hence if the shock strength o is zero then there are no errors in
the solution. If the transonic small disturbance equation is
formulated as

(B —kuyu, +v,=0 (14)
where £ is a function of the free-stream Mach number, then
for normal shock waves the jump relation is

0=23/k 15)

Hence if &=k then the error in mass conservation is zero and
there is a momentum error

_ o
(ML) K

This is equivalent to an upstream force on the shock wave. If,
as is usual in transonic flow calculations, free-stream con-
ditions are enforced at the downstream boundary then a
contour integral of momentum around the flow indicates a
total conservation of momentum. Hence the momentum error
across the shock must be balanced by a pressure force on the
airfoil. This is sometimes referred to (erroneously) as the
wave drag. It is directly due to an inconsistency of the isen-
tropic equations through a shock wave. This conclusion was
obtained by Steger and Baldwin [6]. If the transomnic

parameter & in equation (14) is chosen to be (k—[?) then
momentum is conserved but there is a mass error

E, = —B*a/(k— %) amn
Note that since transonic small disturbance theory assumes
8% =0 the conservation equations are satisfied to the order of
approximation of the theory. However, the foregoing results
are also applicable to the full potential equation for which no
formal limit on B2 is required.

It can be inferred from the preceding analysis that since
transonic small disturbance theory has traditionally only one
flexible parameter, k, it is impossible to remove both the mass
and momentum errors across a shock. However, it may be
advantageous to choose the transonic parameter k such that a
linear combination of the errors is minimized. Thus, if an
error E is defined as

E=W1E1+W2E2 (18)

where w, and w, may be functions of u;, then E can be
minimized for a given u,. Thus

E= 0{62 [wl + i%]g;'—}z;wz]

- [kw, + ﬁ%wz(k— 62)] ﬁ}

If w =1, w,=0, this reduces to the conventional mass
conserving result. If :

E, (16)

(19)
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n
Vi

Fig.1 Sketch of a streamline coordinate system

w =32“(k262>ﬂ5; Wy = _<.32— ;ﬁb‘)

then E=0 if & is chosen such that u = ii; where i is the value
of u; +u, given by the Euler equations. To a first ap-
proximation

M (y+1)

ﬁE=u1 2— -

(7505 214250

ML (y+1)

0

Such a modified small disturbance equation is used by Nixon
(71

The existence of the momentum deficit through the shock
given by equation (16) is often assumed to be the drag. The
drag coefficient, Cp, is given by the relation

(poo +me2m)E2

1

"~ ooL]%o

5 14
whereas the formal limit of entropy producing drag as given
by Murman and Cole [8] is, in the present notation

Cp= =28% @

_+D
Cp= M

and which is third order in o in comparison to the linear
dependence on ¢ of equation (21). Note that to get the
complete drag, these drag relations must be integrated along
the shock wave.

o (22)

3 Comments on Momentum Deficit and Irrotation-
ality

In the following analysis it is assumed that mass is con-
served, since this allows a simple definition of the stream
function coordinate system. It will be assumed that there are
possible sources or sinks in momentum and energy. In Fig. 1,
s is the streamline direction and 7 is a coordinate normal to
the streamlines. The velocity u is in the stream-wise direction
and by definition there is zero flow velocity across the stream
tube. The conservation equations for mass, streamwise, and
normal momentum and energy are as follows.

aplU

— =0 (conservation of mass)

as @3)
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oU ap  9¢
ylY 9P 98 . .
p " % + s (conservation of streamwise  (24)
momentum)
RLA A tion of normal 25
0 % n n conservation of norma 25) .
momentum)
A+ U2/2) B . :
—_ = (conservation of energy) (26)

as as

where d¢,/0s, de;/dn, and 0Oe;/ds are the effects due to
sources in streamwise momentum, normal momentum, and
energy, respectively.

The entropy gradients in the streamwise and normal
directions are defined by

;95 _9n 1 3p

= 27
os as p 0s @7
aS oh 1 3
T 9% _1 % 28)
on an o on
Integration of the energy equation, equation (26), gives
h+ UP/72=ho(n) +¢; (1) (29)

where hg(n) is the reservoir condition. If the fluid is con-
sidered a calorically and thermally perfect gas, then

Y 14

y=1 p
where C, is the specific heat at constant pressure. Using
equations (25) and (29), equations (28) can be written as

h=CPT=

(30

1 662+¢_93

T— 31

an  on

p on on

A/ aUu a0
(o)

on os

The quantity (9U/dn — U3/ ds) is the vorticity, ¢, of the flow
and hence equation (31) can be written as

o0y (Lse o)

on on p an an
The entropy gradient in the streamwise direction can be
written, using equation (24), as

S _663 1 661

as as p 05
Thus there is a streamwise entropy production due to the
errors €;, €3. It is assumed that any shock waves in the flow
are sufficiently weak that the entropy production due to
physical phenomena is negligible.
Consider now the case where both normal momentum and
the energy are conserved with no source terms. In this case

(32)

(33

662
-0
on
(34)
9o _
on
and hence if the reservoir condition 4, is such that
oh
2 =0 35)
on

(this is usually the case for transonic gas flows) and if Vthe
entropy production gradient normal to the streamlines is zero,
i.e.,

2721 Vol. 50, JUNE 1983

as

— =0 3
on (36)
Then equation (32) gives the irrotational condition
¢=0 37

If €, €3, are expanded as series in terms of a perturbation
velocity u, [U= U, (1 + u)], such that

€] =€1(1)u+€2(2)u2 e

e3=€3(l)u+e3(2)u2 P

and if
T= Tm(l-f'OlT(l)U‘f‘aT(z)uz . .)
P=pol+o,Vu+a,®u? .. )
then
as 1
Pk o CRALZAE

du
(1 - a; My —(ap® — a;M2)y?) =

R
- — (G] M +261 (2)u) X

e

du
(1 -y Vu ()@ = o, V1) = (38)
s
where the subscript o denotes free-stream conditions and R is
the gas constant. Equation (38) can be integrated to give

1 1
AS=—— (63(”[14] N VR f) - Tar(')[uz] te

o o0

R R
- = (e,m[u]t +el(2)[u2]i> + @O0 e 0+ 0w

39

where A denotes a difference from some reference condition.
Finally, it should be noted that by using equations (27) and
(30,
» (v=1s
—=Ke R
pY
where K is a constant, If the free-stream conditions are the
reference conditions for equation (40) then

(40)

k=2
Poo 41

In an inviscid irrotational continuous flow it can be shown
[S] that the conservation of mass and energy, together with
the isentropic relations for p, p ensures conservation of
momentum. However, if there is a discontinuity normal to the
streamlines in the flow, then it is shown earlier that this set of
equations does not conserve momentum through the
discontinuity. In many transonic calculations this momentum
deficit is erroneously referred to as wave drag. Since the
isentropic approximation to transonic flow requires the basic
assumption that mass, momentum, and energy be conserved,
there is an obvious inconsistency in the overall theory. This
momentum error only occurs at a shock wave and from
equation (39) this error shows up as an entropy production
term. However, it is possible that a self-consistent potential
theory can be derived and this possibility is examined in the
subsequent analysis.

Consider now the case of a transonic flow that has suf-
ficiently weak shock waves that no entropy production from
purely thermodynamic means is significant. Assume also the
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shock wave is normal to the streamlines, thus ensuring
conservation of normal momentum. Finally, assume that
total enthalpy is conserved throughout the flow; this is
consistent with the isentropic model since the necessary
density/velocity relation is found by assuming conservation
of total enthalpy. .

In the remaining analysis the error e, is set to zero, implying
conservation of total enthalpy and the pressure/density
relation, equations (40) and (41) are written as

O/P)/(0/po)’ =148 (42)

where 6 is of order [#]*, the shock strength, from equations
(39) and (40). If it is assumed the shock waves are weak, then
powers of & greater than unity can be neglected. Substitution
of equation (42) into the energy equation, equation (29) gives

it puﬂ(ﬁ)y_l(l_,_a)

(’Y— 1) P P
Y Po U’
=— +U%°/2<1——> 43
v-1 po ( ) UZ, @3
In terms of the perturbation velocity, this is
! 1
1 — —
L {1 - 1;2——]\/120(2u+u2)} /(1 +8) ! (44)
Poo
An expansion to second order in u gives
0 u? 1)
— =1-Miu— — [1+ML (y-DIME— ——  (45)
Poo 2 Y- 1
The pressure relation is found by taking
p
2 o= ¥
P (1+0)(0/00)
P UMz, 3
—=1l-yMZy- —2F _
P YM5 u 5 P (46)

where 82 =1-M2% .

Across a normal shock wave the errors in the conservation
of mass, momentum, and energy are as follows: The error
terms €;,6 only contribute to the values on the downstream
side of the shock:

E s = Uy —py U, =po U(Bz[u] *

LULb
£ . @7)

- ;[:ﬂ]t) +

Emomemum =D +DPy U% _pz ‘PZU% =

meﬁo(éz[u]’_’ - U‘—:Z—Bz)[uz]t) + p:/Y%;ﬁ (HTJ:E) 8)

Eenergy =0 {49)
In the preceding equations, k=[3 + (y~2)M% IM%and [ ]*
denotes a jump across the shock wave. Note that the result of
equation (49) confirms the consistency of putting the energy
error equal to zero.

Now assume that the solution algorithm conserves mass.
Thus the error in equation (47) is zero and then the solution
has shock jumps given by

Uy = 1? (Bzi[(ﬁz—kul)z_ ;Zg_ﬁ_l} 1/2)

From equations (39)-(42)

(50)

Journal of Applied Mechanics

—(y—1
6= (77) {(e, D[]+ + e, Plu?]t)
—a,,(”el(‘)[uz]t } (51)
and since, by definition,
Emomemum = - (61(1)[11] Y+ €] @ [MZ] t) (52)
equation (48) may be written as
— (6O + e P[]t )
k[u?]* 8 ]
— 20,1+ _
L
2
LA PR
+ e @u?]* —ap(l)el(”[uzlf] (53)

Since from conservation of mass the first term in square
brackets in equation (50) is zero, equation (53) becomes

2
N (uel(l)_pw(ﬂmé. [#%]1f =0 (54)
4 2

Hence for a consistent formulation either the flow is con-
tinuous,

Uy =iy (55)
or the flow has a shock wave with the jump relation
up=—1u, (56)
or, in terms of the shock strength o= u; — u,
o=2u, 57)

To the same order of accuracy the conventional “‘isentropic’’
jump relation is
2p3?
g= 21«(1 - T
and hence for 82 #0 the consistent theory gives a stronger
shock than the inconsistent conventional theory. Since the
conventional shock is already too strong it is probable that a
consistent theory is too inaccurate for practical calculations.
From equations (50) and (56) the term & is given by

6= —26%u(y—1) (59)

for a flow with a discontinuity. The error ¢, is given by a
combination of equations (59) and (51); thus

(58)

O+ O]t — o, Ot e,V =2p,, 82,  (60)

The preceding discussion can be summarized as follows.

(a) The conventional potential theory is inconsistent
because axial momentum is not conserved.

(b) A consistent, irrotational, one-dimensional theory can
be derived if the shock wave is normal to the free stream.

(¢) It is probable that the results of using this consistent
theory are more inaccurate than results of the inconsistent
conventional theory.

In view of these conclusions, it is suggested that the con-
ventional theory can enhanced by the addition of variables
such as modifying the potential equation either by analytic
means [9] or nonconservative differencing [10]. Since both
conventional and modified theories are inconsistent, it would
seem that a modified theory is as valid as the conventional
theory.

For the irrotational assumption to hold the quantity
18] < <1 and hence from equation (59)
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Bru, < <1 61

Now to a first approximation

B2 —~ku,=1-M}
where M, is the Mach number just upstream of the shock.
Hence equation (61) can be written as

2
B - M) <<l (62)
k

It can be concluded that apart from its treatment of the
tangency boundary conditions, the full potential equation is
formally no more accurate than the small disturbance
equation since both require f2u; < <1.

In equations (11) and (12) it can be seen that if mass is
conserved then momentum is conserved only if

(W21t =0

which, in the case of conventional potential theory, is not
possible since [u4*]* is solely determined by the mass con-
servation equation. In the consistent theory, although the
same requirement of [#%]F is needed, there is an additional
parameter in the mass conservation equation, the ‘8"’ term
that allows this requirement to be satisfied. It should be noted
that even for very weak shock waves, the consistent theory
does not approach the conventional theory; this only occurs
for continuous flow.

Finally, it should be noted that since 6 <0 for equation (59)
the entropy due to the momentum change through the shock
wave decreases, which contravenes the second law of ther-
modynamics. Thus the consistent potential theory is not
physically plausible.

274/Vol. 50, JUNE 1983

Concluding Remarks

Several aspects of the transonic potential theory have been
examined and it is concluded that there are several in-
consistencies in the theory. It is also suggested that there are
some commonly held misunderstandings in the interpretation
of the results of potential theory calculations.
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the Aeroelastic Stability of a Panel’

The effect of a standing shock wave on the static and dynamic aeroelastic stability
of a flexible panel is investigated using a linear structural and aerodynamic

theoretical model. It is found that the shock is generally stabilizing. The lowest
critical dynamic pressures are associated with shock positions downstream from the
panel, where the panel is uninfluenced by the shock.

Panel Flutter, Introduction

The aeroelastic response of a flexible panel is known to
depend strongly on the flow Mach number. For most prac-
tical edge support conditions, the plate diverges (buckles) at
subsonic speeds and flutters at supersonic speeds [1].
Moreover, the critical speed, at which instability first occurs,
is generally smallest at transonic Mach numbers. According to
linear theory, in fact, the critical speed drops to zero at Mach
1 for a two-dimensional panel, since any static deformation
induces an infinite aerodynamic reaction (by the Prandtl-
Glauert rule).

In reality, of course, the panels aeroelastic response in the
transonic regime is also influenced by aerodynamic and/or
structural nonlinearities, boundary layers, and nonunifor-
mities in the flow field. This paper deals with one such effect:
the influence on stability of a plane shock standing on or near
the plate (see Fig. 1). This configuration can be viewed as an
idealization of a skin panel on a transonic wing, the shock
location and strength being determined (on a larger scale) by
the wing geometry and Mach number. We assume that the
surface curvature and mean flow nonuniformities (other than
the shock discontinuity) are negligible on the scale of the
panel.

If the shock stands far upstream, the panel will clearly
respond to a uniform subsonic stream (divergence). Con-
versely, if the shock lies downstream, the panel sees a uniform
supersonic stream and, accordingly, must flutter [1]. The
object of this investigation is to describe the transition from
divergence to flutter as the shock ‘‘moves’’ downstream, and
to deduce from this whether the shock degrades or enhances
the stability of the plate.
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Fig.1 Schematic of panel geometry

Equations of Motion of the Panel

The elastic deformation of the panel is governed by simple
beam theory,

Df" +m f=-ap )
where
Six,£) = vertical displacement of the plate
D = plate bending stiffness
m = plate mass/unit area
Ap = Dypper — Plower = Pressure difference across
plate
. af , of
A TR Al v

We consider the plate to be simply supported at both ends,
x=0, a, so that the displacement satisfies the homogeneous
boundary conditions:

JON=fa,n=f"0,0)=f"(a,5)=0 )
This choice is made primarily because of the simplicity of the
corresponding structural modes (sine functions). Other types
of fixed end support (e.g., clamped-clamped) should yield
qualitatively similar stability characteristics.
The aerodynamic load, Ap, consists of two parts: the static
load existing without deformation and the aeroelastic load
induced by the deformation, ‘
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Ap = Ap, +q, Alf], 3)

where

Apy(x) = given static load (uniform on either side but
discontinuous across the shock)
q, = 1/2 p, U} =upstream dynamic pressure

Al 1 = aerodynamic operator, to be determined.
If the operator A is linear then equations (1)-(3) have
solutions of the form:

S0 =10+ Relf (x)e™' ) @

where the static deformation, f;, and the complex dynamic
amplitude, f;, satisfy the independent equations:

Dfg" = — Apy — g, Aplfol (5)

Df"” —m o’f = —q1 AN, ©)
and

A lf1]=e " A[f e™]. )]

Each component, i.e., f; and f,, must satisfy the boundary
conditions, equation (2).

Equation (5) determines the static aeroelastic deformation
under the shock load. Equation (6) determines the stability of
the panel. Under the present assumptions of both structural
and aerodynamic linearity, the two problems are not coupled.
In practice, nonlinearities (of either type) can play an im-
portant role in the plate dynamics, in which case the two
problems are coupled. This point will be discussed in a
subsequent section.

Equation (6), with the boundary conditions (2), is an
eigenvalue problem determining the possible natural
frequencies and plate mode shapes of the combined fluid-
structure system. In general (since the system is non-
conservative) these eigenfrequencies will be complex,
representing either damped or divergent motion, depending
on the parameters of the problem (plate length, stiffness and
mass, fluid density, pressure, and velocity and shock
location). We will be concerned here only with those
parameter combinations that lead to neutrally stable
oscillations (/,, {w} =0), where flutter first occurs, or to the
onset of static instability (w=0) termed divergence.

Flutter Boundaries

The in vacuo normal modes and eigenfrequencies of the
plate are defined by,

2 a
DY —m e 4y =0, = | dx 4,00 b9 = ®)

For the simply supported case these quantities are,

D
¥, (X) =sin(nmx/a), wg, =4 } ——n*wl, Q)
ma

The deformation of the plate under the aerodynamic load can
clearly be expressed in terms of these normal modes,

L0)= Y ay $,00, (10)
where the coefficients sa”tizslfy (using (8), (10), and (6)),
ama, (w3, —wt)=—gq, E @y Qumr» H=12... (an
m=1
and where
Q=2 dx ¥, ) ALY, (12)

are the ‘‘generalized forces.” .
The system of equation (11) has nontrivial solutions only if
its determinant vanishes,
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D(w) = "am (w%)l - wz)bmn + ql Qnm " = 0 (13)

which is a complex transcendental equation for the eigen-
frequencies of the combined system.

The generalized forces are nondimensional functions of the
upstream Mach number, reduced frequency, and shock

-location,

Qun=Qun (M1, - 50/3), (14)

where s, is the distance between the leading edge and shock.
Consequently the roots of the characteristic equatlon (13) can
be expressed, formally, as

w m a
_=F,,(M,,so/a, —_ cd )
Wo1 pra D

The condition Im(w)=Im(F,)=0 defines a stability boundary
for each mode, expressed as,

a
DL N (M susa, ), = Fp (M sefa, ),
D p1a Woy 1a (16)

135)

Normally only the smallest such q,@*/D is of interest.

Divergence Boundary

The divergence or static stability boundary of the plate is
determined by the condition D(0)=0. The corresponding
roots, from equations (13) and (14), are clearly of the form,

q,a°
D

which, unlike the flutter boundaries, do not depend on the
mass ratio.

=}\r?(M1, So/a), 17y

Aerodynamic Analysis

We require the relation between the induced pressure and
the deformation of an infinite plane wall for the initial flow
sketched in Fig. 1. To simplify the analysis we shall suppose
that the perturbed flow is isentropic and irrotational,
although, in fact, the shock does generate entropy and vor-
ticity in the subsonic region downstream. This ‘‘potential
approximation’’ is widely used for transonic flows, where the
shocks are weak and nearly isentropic [2].

It will be assumed, moreover, that the flow is an in-
finitesimal perturbation of the piecework uniform initial (or
“mean’’) flow shown in Fig. 1. Mean flow quantities will be
designated by a subscript ‘‘0,”” with the convention “0=1"’
upstream and ““0=2’’ downstream from the shock. The
perturbation velocity potential ¢ (the full potential being
uy x+ ¢), then satisfies the linear wave equation,

6 ¢ 2 DO _ a 0
b Ve 5= o
where C, is the undisturbed speed of sound, which must be
solved subject to the outgoing wave condition at infinity and
the linearized flow tangency condition on the surface,
Dyf
¢, = Dt on y=0,
where f(x,f) is the displacement of the surface from y =0.

The density and pressure are related to the potential by the

linearized Bernoulli equation and isentropic relation

Dy¢
Dt '

(18)

19)

P—Py=Cj(p~po)=—po (20)

To complete the formulation we must specify how the
solutions of equation (18) in the supersonic and subsonic
regions are connected across the shock. The usual shock jump
conditions, conservation of mass, momentum, and energy
provide four relations between the flow variables and shock
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geometry. Within the linear approximation the conservation
of energy is automatically satisfied by the Bernoulli equation
(20). Conservation of transverse momentum implies con-
tinuity of the velocity component tangent to the shock, which
is satisfied in the potential approximation by taking the full
potential to be continuous. To maintain this condition in the
linearized theory, the perturbation potential must be
discontinuous across the mean shock with a jump propor-
tional to the shock displacement.

S‘—50==A0¢/A0U0. (21)

where x=s(y,!) is the instantaneous shock location and 4; is
the difference across the mean shock.

The final two conservation laws, mass and normal
momentum, take on the following forms after linearization
and use of equations (20) and (21),

(mass) Ao[Uiou—M%)qsx— (52—2 + 7}@)@] -0
@2)

Normal 1

(momentum) 8| (1Mo, — o (1+MDo,| =0, (23)
0
where M, = U,/C, is the mean flow Mach number.

Each of these equations is a compatibility condition relating
the potentials on the subsonic and supersonic side of the mean
shock. However, only one such condition can be imposed on
the solution: either mass or momentum, but not both, can be
conserved across the shock in the potential approximation. It
is conventional to impose mass conservation (see, for
example, Jameson [2]), although the other choice is equally
consistent and both yield asymptotically equivalent results for
weak shocks. Formally the difference between solutions
obtained using the two conditions should be indicative of the
error introduced by the potential approximation itself.
However it will be shown that there is good reason for the
conventional choice (mass conservation) in the present
problem: the solution obtained using momentum con-
servation becomes unbounded in the steady limit.

We shall obtain the solution for the case of simple har-
monic motion f~ ¢ ~ e (now using f{x) and ¢(x,») to denote
the complex harmonic amplitudes). The analysis is similar to
that of reference [3], with two main differences: (1) we
consider the nonlifting problem here (as opposed to the lifting
problem in reference [3]); and (2) we deal with the linearized
full potential equation here (as opposed to the linearized
transonic small disturbance equation in reference [3]).

For brevity we introduce the following notation,

M3 w
NTMZ=11, N= — 2 =
o 070 ML ToME T G

d iw
0 =( g+ ) S0, 4)

Upstream Solution. In the region x<s, the flow is
supersonic and therefore uninfluenced by the shock. The
potential field, therefore, is given by classical supersonic
linear theory (equations (18) and (19) and the radiation
condition),

U, x=B1y )
dx,y)=— B—S dxl Q(xl) eiMx—xy)
1 — o
Jo(rVx —x))? = B2y?),

y>0
where Jj, is the zeroth-order Bessel function.

25)

X <Sg,

Downstream Solution. The flow in x>s5, is subsonic and
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therefore determined by the shock compatibility condition, as
well as the radiation and surface tangency conditions. The
shock relation (either (22) or (23)) can be written in the form,

¢x—2i0,0=q(y)/B3 on x=s§, y>0 (26)
where, using the upstream solution (25),
CI(.V) = - B% ) UZ/UI'N),\‘ - 2i01 d’]x:so_ (27)

U, _s0-8» .
- 2 55 dx e:)\l(so—x)JO

1 -

d .
1 VGso — 27 = 8077 5 20 ) )
dx
the coefficients 5,6 depend on the choice of mass or
momentumn conservation,

(mass, equation (22))
wU, -
200=T_—A‘/’[%(1/cg+1/uluz), 5=1

(momentum, equation (23))

w L+M; <
— ——, 6=U,/U
Uy 1-M? 1

As in reference [3], the potential that satisfies the surface
and shock boundary conditions is constructed by distributing
singularities along the axes of an image plane (—o
<xl <°°)_®<yl <m)a
iU,
283,

200 = 28)

s =22 |7

eM=x1) HP (v, (e —x, )2 + BE ¥)

,‘ oo
+ﬁ5 dy, g(1y, 1) Gi(x—s0, y=¥1), Xx>50,y>0,(29)
P — o
where H is the zeroth-order Hankel function and

¢
Gl(E,n)ES di etioal-ED+iN ks

% HP o NETE . (30)
1

This potential satisfies the wave equation (18) and the
radiation condition for arbitrary source distributions w and q.
Since the second term in (29) is symmetric in y, the surface
tangency condition (19) is satisfied if we take

w(x) = Qx), x>s;. 3D

Finally the shock boundary condition (27) is satisfied iden-
tically if we take the quantity [w’(x,) — 2ia, w(x;)]e2%0 -x1)
to be antisymmetric about x;=s,, which provides the
required definition of w for x; <sy,

w(x) = eM20=50) Y2s) —x) +2i(\, ~ 20,) e¥o2¢=50)

So .
S dx, X2 =201 =50 (25, —x)),
X

X <S8y (32)

Surface Potentials. The potential on the surface y =0 will

be split into three parts,
#(x,0) = H(so —x) ¢! (x)
+ H(x—50) [69 (x) + ¢ ()] (33)

The first part is the disturbance upstream from the shock,
from equation (25),
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U
¢V (x) = - ——
B
The second part is the downstream disturbance generated
by downstream motion, from the first term in equation (29),

@ v, t°
() = 22 |~

dx, e™2*t HY (v, 1x,1) wlx—x;)

Sodx, Qxc—x,) eM¥t Jo(n,x,).  (34)

(35

(where w is defined by (31) and (32)).

The third part is the downstream disturbance generated by
upstream motion, from the second term in equation (29).
Using equation (27) to eliminate the source strength, g, we
find that

¢ (x) =i U, B/k 5/{325 dx, Qx,)

So“‘xl x—SO
G(——, ), 36
5 (36)
where the kernel G is defined by,
Gk, £y) = eMiP1LEL +Mab2kp)
Ii}
[55— +iBi (N — 201)]
0 . a
[ aremer 2 x5 -0 G7)
£
X1 k)= | az 1
(n28,VEF +22) (v, BV E} —27) (38)

In practice the evaluation of each of these expressions is
considerably simplified if the Bessel functions are replaced by
their corresponding integral representations,

1 1 elxr
Jo (x g
o (x) = \/1
2 - 00 eXI
H,? (x =—§ dt ——. 39
o (x) ) I o (39
Thus equation (34) becomes,
U, g 1
) =— — — 40
B () = - - | =L (0) “0)
where
L@#tx)=— SO dx, Qx—x;) e+, 41)

Similarly equation (35) becomes (using equations (31) and
(32) for w),

U, S“” 1
O(x)= —2\  dt———u0 L,(t,X), 42)
¢ (x) wBy d-i T N1+£2 2
where
X .
Lz(t,x)=ZS dx, Qx,)e™2*=*1 sinh vy t(x—x;)
R ¢]
[Mﬂewzz +iNg)x=50) 4 gl = vzf)tx—so’] @3)
iy — M) — vyt

. ,
S dx, Qsg +x)et2!~M2)x
0

Simplification of the third potential requires a preliminary

278 Vol. 50, JUNE 1983

result, an integral representation of the function X defined in
(38). It is easily shown that this function satisfies the
Helmholtz equation

3? 62
(55 + 57 +761+9363) X (61,62)=0 (@)
3&1 a3
and boundary condltlons
X(0,8)=0, ag (0 £)=HP (16,£,). (CS))
1
Thus an alternative definition of X is (using equation (39)),
2 (~=  enfba! §inl'E,
X(&1,8,) = —~S dt — ——= 46
R I (46)
T = Vil +363(1+1%).

When this representation is substituted into equations (37)
and (36), we find that

D (x) = LI]3 ‘S‘m dr - te(,)\2+u21)(x S0 L4 (1) (47)
2 +
where
L =Q28&——
3 (t) ( )t—2i02/V2
So dx, sy —x,)e™M~1
iB } I‘xl]
+— A —20;)sin— |. 48
[cos 57 + 2200 ~20,3sn 8)

The formulas (40)-(48) involve only elementary functions
and are, therefore, relatively easy to evaluate. In fact, for
sufficiently simple displacements (i.e., Q(x)) the integrals L,
can be evaluated explicitly, leaving a single quadrature (for
each potential) to be performed numerically.

These forms are not, however, useful in the steady limit
(w=0), because the corresponding integrals are then poorly
converged. We shall, therefore, consider the steady solution
separately.

Steady Limit. We consider the behavior of the solution in
the limit w—0. Upstream from the shock we obtain from
equation (25) the simple relation

U
)= = S =B +0), X<so. (49)
1
Downstream from the shock we find from equation (29) and
(30), using the asymptotic behavior of the Hankel function,

o(x )—ism dx, w(x,) In
WY B, ) - 1 1

(NG =X+ B3 - y,)?

1 -]
+— S,m dy; q(ly, 1) in

B,
(N =5 + B0 -2, x>s 50)
where, to lowest order in frequency,
wx) = wW(2sq—x)=f"(x), x>s5¢
qQ) = 61U25f’(30—51y)- €28)

Thus the potential on the subsonic side has a bounded steady
limit only if the net source strength vanishes:

_dn gy =2U,(6— 1) fise) =0.

oo

S: dx; wix,)+ Si (52)
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This condition is met (cf equation (28)) if conservation of
mass is imposed, but not with conservation of momentum.

it will be noted that the divergent term (1nv,) in equation
(50) is a constant and therefore has no effect on the velocities
or pressures (whether or not condition) (52) holds). However
the shock displacement, as given by equation (11), is
proportional to the potential and so has a bounded limit only
if we impose conservation of mass.

If we impose condition (52) the steady-state surface
potential may be written in the final form,

-~

—U\/B, fIx) x<sp

(x,0) = < o (53)
—U—ZS dx; f(x)) ln 1(x—s0)*
By J -
+(x, —80)%elx; —~sp)|, x>5,
L
where
~1,£>0

)=
B3/B%, £<O

Generalized Forces. In computing any integrated load
(such as a generalized force) the shock displacement must be
taken into account. The additional load due to the shock
displacement appears in the linear approximation as a con-
centrated force. To show this we consider the Bernoulli
equation (20) in the form,

Dyo
Dt
with the mean pressure jump occurring at the instantaneous
shock location s. Taylor expanding H about the mean shock

position s, and eliminating the shock displacement by
equation (21) gives,

P=P;+Hx—~s)(P,—P)—pg—— (54)

Ay
H(x—-s)=H(x—s;) +
AU

Using this result and the Hugomot relation AP,/ Ay U,y =
—po Uy in equation (54) gives the required result,

(5%

6(x So)+ ...

dJ .
P=Py—p, Dot ooUp Ay & 8(x—s5p)- (56)
We now consider the displacement amplitude f{x) =y, (x)

corresponding to the nth structural mode of vibration, and
denote the induced surface potential by ¢(x,0)=1/2U, ¢, (x).
It follows from equations (3), (7), and (52) that

aul=-2(2

and thus that the generalized forces as defined in equation
(12) are given, after an integration by parts, by

iw
+ Uo > b, (x) =240, 6(x—s5), 67

a

Q=4 dx 8, (1) 97 (1) (58)
where (cf equation (24)) Q,, (x) =y, +iw/U, ¥, and QF is its
complex conjugate. We observe that the shock point load does
not appear explicitly in the generalized forces when expressed
in terms of the potential.

The evaluation of the generalized forces is further sim-
plified if we make use of the potential splitting introduced in
equation (33) and the integral representation, equations (40),
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(42), and (47). For nonzero frequencies, then the generalized
forces can be evaluated from,

QI”H = Qslllg’l + Q&'pzrar + Qs?gl (59)
where
4 ! 1
o= |, g 28 0, 06
-2 7°°dt—;~ z% o (60)
By i N1+
j:2!3’
and
So X
anz;l (t) = SO deO
dx; QF(x) Q,,(x,) €1t rie=xp) (61)
U, rd x
=2,
dx 2, (x) Q. (x)) eM2575D sinh pyt(x —x|) (62)
2 [_l()\z - 202)/1’2 ]
+—=K, (¢ [ - Kr(H)y+ K (—t
U, (1) t+i\y —205)/ v, () (=9
Zo (1) = LK*(I) 1, (1) (63)
nm Ul t‘_zlgz/Vz n m
a .
K, (1) = S dx @, (x)etr2!~ir2)x=sp) (64)
S0
0 .
I.(t)= So dx Q,(x) e?ribo—
T (s, —
[co IS0 %) &0\1 “20) sin SS0TY (g5
B B
The zero frequency case, required for divergence
calculations, is best treated from equations (53) and (58),

from which we find that,

4
lele =" X dx \I/m (X) llbll (X) (66)
8
U, 1 (7 a
(2) s -
=205 S o Sso
dxy ] () Ymx)) 1l (e —50)% — (x) —5¢)? 67)
4 U, 1 S
@) = T2
o= = =5 ). ax,
dx, ¥, (X)¥,0e)) 1nl(x—s50)? + B3/B (x| —50)* | (68)

As in the unsteady case, these can be reduced, for the simply
supported plate, to single quadratures.

If the shock is downstream from the plate, s, >a, then

51231 = Qﬁ?:zr =0and Q,, = Qﬁ:l;gz is given by equations (60) and
(61) with sy=a, i.e., the “‘classical’’ supersonic result is
recovered. If the shock is upstream from the plate, s, <0, then
QN =08 =0 (since there is no disturbance in the supersonic
zone) and Q,,,, = Q%F), is given by equations (60), (62), and (64)
with s, =0 in the integration limits. The generalized force, in

this case, does depend on the shock location (through the
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Fig. 2 Variation of divergence dynamic pressure with shock location,
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Fig.3 Flutter dynamic pressure versus mass ratio Sp/a =1.0, My = 1.1

exponential factor in equation (64)) because acoustic waves
can reflect off the shock back onto the plate. The contribution
of these reflected waves (given by the term proportional to
K, (t)'in equation (62) decays rapidly as s, —~ — o, leaving the
“‘classical”’ subsonic result.

Results

Calculations have been performed for an upstream Mach
number M, = 1.1. For simplicity only the first two terms have

280/ Vol. 50, JUNE 1983
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Fig. 4 Flutter dynamic pressure versus mass ratio Syla=0.95,
My=11

been retained in the modal expansion, equation (10). When
the shock is upstream or downstream from the plate it is
known that the first instability occurs predominately in the
first structural mode [1]. It is expected, then, that two modes
should be adequate to describe, at least qualitatively, the
variation of the stability boundary with shock location.
Figure 2 shows the variation of divergence dynamic
pressure with shock location according to the one and two-
mode truncations. It is apparent that the divergence occurs
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Fig. 5 Flutter dynamic pressure versus mass ratio Sg/a=0.85,
M1 = 1.1

almost entirely in the first mode for shock locations upstream
of the panel quarter-chord, but that the second mode content
becomes increasingly important as the shock moves down-
stream. The shock is slightly destabilizing for positions up-
stream from the panel but generally stabilizing when the
shock sits on the panel. In the two-mode approximation the
plate is statically stable for shock positions downstream from
the 80 percent chord point. With only one mode, divergence
can occur (but only at increasingly larger dynamic pressures)
for any shock position forward of the trailing edge.

In fact, though, the panel stability for these downstream
shock locations is controlled by flutter, not divergence. Two
mode flutter dynamic pressure variations with mass ratio and
shock position are illustrated in Figs. 3-7. These boundaries
generally consist of two distinct branches corresponding to
the two possible flutter modes. When the shocks are at or very
near the trailing edge (Figs. 3 and 4) both the first and second
structural modes (individually) are unstable at low mass ratios
(heavy plates), although the second mode becomes stable at
higher mass ratios. In fact, though, the second mode is
unimportant: the panel flutters in the first structural mode at
all mass ratios. When the shock sits further upstream,
however, (Figs. 5 and 6), the single-degree-of-freedom, first-
mode flutter is lost. In this case the panel experiences single-
degree-of-freedom, second-mode flutter at low mass ratios
and coupled mode flutter at high mass ratios. The coupled
mode instabilty (characterized by insensitivity to mass ratio),
occurs at relatively high dynamic pressures. Shock positions
yet further upstream (Fig. 7) the flutter boundaries remain
much the same, buat the stability at high mass ratios becomes
dominated by divergence. Only at very low mass ratios is
flutter (in the second mode) of any importance.

The foregoing results are summarized in Figs. 8 and 9,
which show the stability boundary (dynamic pressure and
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Fig. 6 Flutter dynamic pressure versus mass ratio Sgla=0.75,
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Fig. 7 Flutter dynamic pressure versus mass ratio Sgla=0.65,
My=1.1

frequency) as a function of shock position at fixed mass ratio.
It is apparent from Fig. 8, that by far the lowest critical
dynamic pressures occur when the shock is downstream from
the trailing edge and so has no effect whatsoever on the panel.
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Conclusions

The results obtained from the present simple model clearly
demonstrate that the presence of a normal shock (and its
associated mixed supersonic-subsonic flow regimes) does not
have a deleterious effect on the aeroelastic stability of a flat
panel. The shock does strongly influence the mode of in-
stability in a manner depending primarily on the shock
location relative to the panel. However, the critical dynamic
pressure in all cases was higher than it would have been in a
uniform supersonic flow at the preshock Mach number.

The numerical results are, of course, limited by the use of
only two structural modes to represent the actual aeroelastic
deformations. This truncation is probably not adequate in
those cases (associated with moderately aft shock locations) in
which second-mode or strongly coupled mode flutter oc-
curred. However, the analysis shows a dramatic increase in
critical dynamic pressure in these cases, which is undoubtedly
correct qualitatively, if not quantitatively.
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It should be noted, furthermore, that the present analysis
neglects structural damping, which can have a significant
effect (generally stabilizing at Mach numbers considered
here). For example, the second-mode single-degree-of-
freedom flutter observed here in some cases at low mass ratio
may be eliminated entirely by a small amount of structural
damping [4]. It would be surprising, though, if the addition of
damping were to alter the general conclusions of the study
regarding the influence of the shock on stability. )

A final word of caution is in order. It is well known that the
stability of a panel in uniform flow is strongly influenced
(generally in a beneficial way) by preloading, as occurs, for
example, where there is a finite static pressure differential
across the plate. (This effect is important, for rigid supports,
whenever the static deformation is larger than or comparable
to the panel thickness.) For the shocked flow considered here,
the plate is necessarily preloaded since the (uniform) un-
dersurface pressure cannot simultaneously balance both the
preshock and postshock upper-surface pressures. If the plate
is pinned at either end to rigid supports, the nonuniform static
load will generally induce large tensile stresses in the plate,
which in turn will alter the plates apparent rigidity and, hence,
its stability. This effect (which is clearly stabilizing) should,
strictly speaking, be included in the analysis. Neglecting the
effect, as we have done, is justifiable if we imagine the plate to
be pinned to elastic supports with sufficient play to eliminate
the induced tensile stresses.
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Magnetoelastic Plane Waves in
Infinite Rotating Media

A study is made of the propagation of magnetoelastic plane waves in an electrically
conducting, infinite elastic solid permeated by a primary uniform magnetic field
when the entire medium rotates with a constant angular velocity. A more general
dispersion relation is obtained to investigate the effects of rotation and the external
magnetic field on the phase velocity of the waves. This analysis reveals that when
the applied magnetic field has both longitudinal and transverse components, the
coupled magnetoelastic waves are dispersive and damped in an infinitely conducting
medium in contrast to the nonrotating medium where the coupled waves are
dispersive, but undamped. In the case of finite conductivity, the waves are
dispersive and undamped in the absence of the applied magnetic field. At low
Jrequency w, the phase velocity of the waves varies as w'/? for finite conductivity,
and is independent of the external magnetic field and rotation; while in the
nonrotating case with low frequency (when the applied magnetic field has either
longitudinal or transverse components) the phase speed is less than that in the
rotating medium and is found to depend on the applied magnetic field. Also in both
rotating and nonrotating cases, the phase velocity becomes very small for finitely
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conducting material with a very high magnetic permeability.

1 Introduction

The study of the propagation of elastic waves in a
nonrotating electrically conducting medium under the action
of a magnetic field was made by several authors including
Knopoff [1], Kaliski and Petykiewics [2], and Dunkin and
Eringen [3]. In his recent books Parkus [4, 5] has given all of
the major general information and recent developments of
magnetoelasticity and magnetothermoelasticity in
nonrotating elastic media. Schoenberg and Censor [6] have
investigated the propagation of elastic plane waves in a
uniformly rotating medium and obtained interesting results
concerning energy flux, slowness surfaces, reflected waves,
and the generalized Rayleigh waves. They have shown that the
rotation causes the elastic waves to be dispersive and
anisotropic. Their study also included some discussion on the
free-surface phenomenon in a rotating half space.

It seems from the preceding discussion that little attention
has been given to the propagation of magnetoelastic plane
waves in a rotating medium in the presence of the external
magnetic field. In view of the fact that most large bodies like
the earth, the moon, and other planets have an angular
velocity, it is important to consider the propagation of
magnetoelastic plane waves in an electrically conducting,
rotating elastic medium under the action of the external
magnetic field. It is very likely that rotation will have some
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important effects on the propagation of the magnetoelastic
waves.

The main objective of the present study is to investigate
magnetoelastic plane waves in an electrically conducting,
infinite elastic solid permeated by a primary magnetic field
when the entire medium rotates with a uniform angular
velocity. Special attention is given to the interaction between
the electromagnetic field and rotation and their effects on the
principal features of the elastic waves.

2 Formulation of the Problem and the Basic
Equations

We consider an infinite, isotropic, electrically conducting,
elastic solid permeated by a primary magnetic field B, = (B,
B,, B;). The elastic solid is characterized by the density p,
Lamé’s constants A, p, and is uniformly rotating with an
angular velocity € = Qw, where w is the unit vector
representing the direction of the axis of rotation.

The displacement equation of motion in the rotating frame
of reference is

o+ X (@ Xxu)+22Xu]=AN+p)V(V-u)
+uViu+JIxB, 2.1

where the dot denotes differentiation with respect to time ¢, u
is the displacement vector, J is the current density, and B is
the total magnetic field so that B = By + b, b = (b,, b,, b;)
is the perturbed magnetic field.

The equation of motion (2.1) has two additional terms:
centripetal acceleration, £ X (2 X r) due to time-varying
motions only and the Coriolis acceleration, 22 x u where u is
the dynamic displacement vector measured from a steady-
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state deformed position and the deformation is assumed to be
small. These two terms do not appear in the equation of
motion for the nonrotating media. In addition, the Lorentz
force term J X B is included in the displacement equation of
motion to incorporate the electromagnetic field effects. As we

look for the time-varying dynamic solutions, the time- .

independent part of the centripetal acceleration 2 X (2 X w)
as well as all body forces will be neglected. The effect of time-
independent centripetal acceleration should in effect make the
elastic medium anisotropic. We shall take into account the
time-independent part of the electromagnetic body force.
Finally, the study of magnetoelastic plane waves will be made
within the scope of the linearized theory. We assume that u, b,
the second-order terms on the right-hand side of (2.1) in-
volving u, b and their derivatives are small in order to justify
linearization.

In view of the fact that frequencies associated with the
vibrations and mechanical waves are much smaller than the
frequency of the electromagnetic waves with the same
wavelength, the electromagnetic fields may be regarded as
quasi-steady. The electromagnetic fields are governed by the
Maxwell equations with the displacement current and charge
density neglected [10]:

B .

curlH=J, curlE=— e divB=0, (2.2a,b,0)

where B = u,H, yu, is the magnetic permeability and E is the
electric field.

The generalized Ohm’s law is

du
Jza[E-}-(W +Q><u)><BJ, 2.3)
where the time-independent part of @ X wu is neglected, ois the
electrical conductivity, and du/a¢ is the particle velocity of the
medium.

3 Plane Wave Solutions and Dispersion Relation

We consider the propagation of plane waves in the con-
ducting rotating elastic medium in the x-direction so that all
field quantities u, J, b, are proportional to exp [/ (kx— w?)]
where & is the complex wave number and w is the real wave
frequency so that w/Re(k) represents the phase velocity of
the waves. Thus we can write all field quantities in the form

u = @) = (Po,gosro) expli(kx—wn), 3.1
I = U ,0) = (1,J2,05) explitkx—wi)], (3.2)
b = (b,by,b;) = (by,by,b3)expli(kx—wt)], (3.3)
E = (E..E,,E;) and 0=(Q,,0,,%), (3.4a,b)

where pg, go, 793 J1, 2, J3; and Q;, Q,, Q5 are all constants.

It follows from (2.2¢) that div b = 0 which implies that b,
= 0, since initially b = 0. Also, it follows from (2.24) that u,J
= curl b so that

ik

7
by, — b,) 3.5
He He

5=(0,~
and
ik
He

ik

(3.6)

The term J X B in (2.1) will be replaced with J X B, given by
(3.6).

ik
IXxB=JxBy= [~ (b,B; +b,B,), ~— b,B,,
e

€

ab
The equation curl E= — m implies that

L~ = by). 3.7)

- (5.
ok k

284/ Vol. 50, JUNE 1983

Making use of (3.1) and (3.7), and neglecting the product
terms, the generalized Ohm’s law with B, in place of B gives

Jy = olE,—iw(gB; —rB,)

+B;(p; —rQ)) - B, (g% —ph)], (3.8)
J, = 0[ % b, —iw(rB, —pB3)]_, 3.9
w .
I = o] = % by—iw(pB, ~qB)
+ By(@yr—q0) ~ By (6, ~ 1) (3.10)
Elimination of J from (3.5) and (3.8)-(3.10) gives
olE, —iw(qB; — rBy) + By (ps — rS;)
- B,y(q€l, —p)]=0 (3.11)
w .
0[ A b, —iw(rB, — pB;) + B\(qQ, — pl;)
ik
-—Bz(er—qﬂg)] =— % p, (.12)
e
@ .
o| = 2 by~ iw(pB, ~ 4B+ B0 — g)
ik
- B, (o —rQ,)] =" p, (.13)

e
The equation (3.11), in turn, determines E, .

We next substitute for p, ¢q, r from (3.1) into the basic
equation (2.1) with J x B given by (3.6) to obtain the
following equations for py, go and ry

Polo (2% = 0% — ) + (N+2p) 2]+ qo [0(2F 023 + 21 D,)]

+rlo (2 Q3 —2i wy)] + [ik (B3;b; + B,b,)=0, - (3.14)
e
Polp (% —2i w3)] + Golo(Q;* — QF — w?) + uk?]
+rolp (9,9, +2i 08,)] - ~F b,B, =0, (3.15)
(-4
Polo (R, +2i wQy)] +qole (2203 —2i wil))]
rolp (% — 0 — o)+ k] — —X B b, =0, (.16)

e

‘We also rewrite (3.12) and (3.13) in order to express them in

terms of pg, gy, and ry as

Polplin By — B, D)) +qolo(BQ; + B3 23)]

ik
+r0["‘0'(i0)Bl +B3 Qz)]+b3[ ! +£,,%o]=0, (3.17)
He
po[—q(inz +B, )]+ qolo(iw B, — B, O;)]
ik
+rolo(B, ©, + B, 91)]—1;2[ ! +%’]=0. (3.18)
e

Equations (3.14)-(3.18) constitute a system of five equations
with five unknowns py, g, 7y, and the perturbed quantities b,
and b3 .

Since b = (0, b,, b,) and b-field is normal to the x-axis, we
then choose the y-axis and the z-axis such that b-field is along
the y-axis. Thus b, = b; = 0 and b, # 0. Also, invoking an

additional assumption, €; = Q, = O and Q; = Q # 0,
equations (3.14)~(3.18) take the form
Pol—p (e + Q2+ (AN +2p) k2] +2iw pQR g,
ik
+ % B,b, =0, (3.19)

€
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Pol—2iw pQ) +qo[— p (9 +w?)
ik
+uk?1- 25 B, b, =0, (3.20)
. e
ro(—pw’ + pk?) =0, (3.21)
Doiwa Bs +qo0Q By — rocie B, =0, (3.22)
Pol—oliwB; + B, W] +qolo(iv B, — B, W)
ik
~by] - + 2] =0, (3.23)
He k

In view of the inherent rotation of the earth, the additional
assumption has important geophysical implications. It
follows from (3.21) that ry = 0 provided uk? — pw? # 0and
then (3.22) implies that B; = 0. Thus, if the applied magnetic
field B, = (B,, B,, 0) and the perturbed magnetic field b =
(0, b,, 0), then equations (3.21) and (3.22) are satisfied.

This leads to three homogeneous equations (3.19), (3.20),
and (3.23) with three quantities py, go and b,. Eliminating
these quantities, we obtain a dispersion equation in the
following form involving a determinant:

It follows from the dispersion equation that the significant
effects of the rotation on the phase velocity, Re (w/k) are
reflected through the terms involving .

In a nonrotating medium (2=0) without thermal effects,
the dispersion equation (3.24) reduces to that of Wilson [7].
Also, Paria’s [8] results follow from the present analysis when
Q 0, B, 0. Purushothama [9] investigated the
propagation of magnetothermoelastic plane waves in the
presence of uniform thermal and magnetic field. Although he
extended the works of both Wilson and Paria, the results of
the present study are consistent with his results in a
nonrotating case with special choices of the angle of orien-
tation of the magnetic field and the thermal effects neglected.
However, the dispersion relation (3.24) gives a fairly general
result in the theory of magnetoelastic plane waves.

v . P .
v=(p,ow) "} = ZH , and vy = (op,) ~! is the magnetic viscosity.

Expanding the determinant, we obtain the equation of
degree three in k2 as

Q2 02 40292
(62 - 222
(1 +ivk?) 0 ) 26,2

2 iR; B
+k2(k2—012—9—)(RL+l L E)
c? B, w

2UCR 1yl

Q /R ] R
Lot 08
Cy Bl w

k2R e QB
Rl (k2—022——2) (iB2+ ——l>
2 Cy w

=)

(3.27)

Byc,?
=0.

This represents a general dispersion relation, and shows
that if the primary magnetic field has both longitudinal and

ik B
—p(a? + Q)+ (A +2p) K2 2iwpQ e

e

ik B
— 2iwpQ W —p(?+02) - o2 =0.  (3.24)
Ue
. . ik ow
¢(QB, +iwB, 6(Q B, —iwB,) (_+7?)
(4

transverse components, then the displacement fields p, g, and
the perturbed magnetic field b, are linked together. It also
follows from (3.27) that the significant effects of rotation on
the phase velocity of the waves are reflected through the terms
involving Q. The coupled magnetoelastic waves characterized
by the dispersion relation are damped and dispersive.

4 Infinite Conductivity

In this case, s—o so that vy and » tend to zero. The
corresponding dispersion relation can be obtained from (3.27)
and has the form

RyB, )]
B,

Q /R, B
k4[1+RL+RH+’—( L2

Introducing a new quantity ; = w/c;, i = 1, 2; the ? iR;B,
eversi : ; ; k(02 + — ) (1+R, + —L2 0 =
dispersion equation (3.24) can be expressed in the following g1 c,? L B @
form 1
Q? 2iw) ik R
kg2~ — ‘*’2 H
¢ ¢ B,
2i6Q , ., ¥ ikR,
_ g2 —r =0, 3.25
(_’22 k (1)) sz Bl ( )
B0 .
k(132+@) k(—iBl+ —2~> 1 +ivk?
w
- 2 ]
where the nondimensional pressure numbers R, and R, are + (622 + 9_2) [1 _iRy (,' B, + EL(_))}
defined [10] by &) B,
1 B 2 B 2 P
(Ry,R.) = (_22_‘2> (3.26a,b) _2_‘.*’9<’_&£2,+ 9RL>
- e NC1T 0 » ¢ ? B, w
’ +2 j 2 2
¢ = MF2p is the dilational wave velocity, + 20 (ZB‘RH - %)] + (012 + Q_> (022 + Q_)
0 . C22 B2 w C12 C22
202
Cy=4) £ is the shear wave velocity, _ Al =0. “4.1)
0 ¢, 2c;,2
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Thus, if the applied primary magnetic field has both
longitudinal and transverse components, then the
longitudinal and transverse components of the displacement
field are coupled, and modified by both rotation and elec-
tromagnetic field. Both the waves are dispersive and damped.
In the case of nonrotating medium (€ =0), result (4.1) reduces
to that of Nowacki [5], and all conclusions of Nowacki can
readily be obtained from our analysis.

If the primary magnetic field is absent, that is, if B, = B,
= 0 so that R, = Ry = 0, the dispersion relation (3.27)
simplifies to

0?2 02
k* _k2[(‘012 + c—l"i*) + (0’22 + C—ZE')]

0? 0? 402 Q2
# (o7 ;1—2) (o2 + a‘) ol o @D
The roots of this equation are

1 1
2k1’22=0'12+0'22+92<——2+"7) :l:\/b’ (43a’b)

¢y (%)

Q2 Q2 2 162Q2

D=[< 24 )—< 2+—>] +———>0. (4.4
0y Clz (4} C22 C12022 ( )

Also, since 6,2 + ;2 + Q2 (% + —17) >VD,
Cy &)
the roots are real and so the waves are dispersive, but un-
damped.
In the nonrotating medium, the equation (4.2) factorizes
into two parts:

(k% — 0,2 )(k?* ~ 0, %) =0. 4.5)

This corresponds to both the dilatational and the transverse
elastic waves. However, for the rotating medium (20), the
roots of (4.2) correspond to the dilatational and transverse
elastic waves modified by rotation.

If, on the other hand, the primary magnetic field has a
nonzero transverse component (Ry # 0, R; = 0), then the
dispersion relation (4.1) simplifies into

~

. Q
K +Ry) k2 [012+(1 +Ry) oy + ot

QZ (wz _ 92)2
+(1 RH)c22]+ e 0. 4.6)

For the case of weak electromagnetic field (0 < Ry < < 1),
the quadratic in k% has either two positive roots or two
complex roots. This means that the magnetoelastic waves are
dispersive, but may or may not be damped depending on the
rotation and the applied magnetic field.

Again, in the nonrotating case, the dispersion equation has
the form

k2 — o)A+ Ry )k? —0,2]=0. 4.7

This corresponds to a transverse elastic wave propagating
with the phase velocity ¢, independent of the electromagnetic
field, and a longitudinal magnetoelastic wave traveling with
the phase speed ¢; V1 + Ry. Since Ry >0, this phase speed
increases with increasing Ry which implies an increase in
solidity of the elastic material.

If the applied magnetic field has a longitudinal component
only, then R;; = 0and R; # 0. The dispersion equation (4.1)
in this case reduces to

92
k4(l+RL)“‘k2 [022+ c—2 +(1 +RL)012
2 .

2 2 __02)2
+(1-R;) 0 ]+u),_

—5 =0. 4.8
Clz C,2C22 ( )
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For weak electromagnetic field, 0 < R; < < 1 and so con-
clusion similar to that of the foregoing case, 0 < Ry << 1,
can be drawn.

In the nonrotating situation, the equation (4.8) becomes

k2 — a1 +R,)k*— 0,2} =0. (4.9)

" This leads to the longitudinal elastic wave propagating with

the phase velocity ¢; and to the transverse magnetoelastic
wave traveling with the phase speed ¢, V1+ R, .

If the initially applied magnetic field has both longitudinal
and transverse components (Ry # 0 and R; # 0), then the
longitudinal and the transverse waves are coupled. These
waves are modified by the electromagnetic field and rotation,
Since the roots &, ? and &, 2 of (4.1) are complex, the waves are
dispersive and damped. The dispersion equation (4.1) for the
nonrotating case has the form

KA+Ry+R,)—k*{c,2(1+R})

+0,2(1+Ry) ) +k,2k,2 =0, 4.10)
with the roots
2k 22 =(1+R, +Ry) ‘o)X (1+R,)
+ 0,2 (1 +Ry) £ VD, (4.11a,b)
where

D={g2(1+R,) — 0,21+ Ry))?
+40120'22(RL +RH) >0.

Since 6,2(1+R;) + 0,>(1 +Ry) > VD, the roots k, and k,
are real, and therefore, the longitudinal and the transverse
waves are dispersive, but undamped. This shows a striking
contrast between the nature of the waves in the rotating and
the nonrotating media.

5 Finite Conductivity

The dispersion relation for the case of finite conductivity is
given by (3.27) and corresponds to the coupled waves. In the
absence of the magnetic field (R, = Ry = 0), the equation
(3.27) assumes the form

Q2 Q2
(1 +I.Vk2),:<k2"'0'12—"—2> (k2~022_*-‘2~>
€ %)

4% Q?
)
(SIS
The first factor of (5.1) represents quasi-static oscillations of
the ‘electromagnetic field, but it is not coupled with the
displacement field. The second factor leads to coupled
longitudinal and transverse waves with the phase velocities
modified by the rotation of the medium. Since the roots of
(5.1) corresponding to the second factor are real, the waves
are dispersive and undamped.
In the nonrotating case, equation (3.27) reduces to

(I +ivk2)K? — 0 2)(k? — 0,2)
FE2R, (K2 = 6,2) + k2R ; (K2 — 0,2) = 0. .2)

This corresponds to three coupled waves that are dispersive
and damped in nature.

If the applied magnetic field has a transverse component
(Ry # 0and R; = 0), then (5.2) takes the form

(k2 — 0, D)[vk* — Kk (vo, 2 +i(1 +Ry) ) +i0,%]=0. (5.3)

The first factor corresponds to the elastic transverse wave,
while the second factor leads to the coupled waves with an
interaction between the longitudinal displacement field and
the induced magnetic field. Thus the coupled waves are
dispersive and damped.

To discuss the waves with small frequency, we replace v
with vy /w in the second factor of (5.3) to obtain

(5.1)

Transactions of the ASME

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



i3

+z‘w(1+RH)}+'c‘"—2=o, (5.4)
1

YH

vkt —k? {wzo 3
¢
|

and set k2 = i aw + 0(w?) where a is an unknown constant,
andk = Owhenw = 0.

To determine a, we next substitute the value of k2 into (5.4)
and ignore the terms of 0(w?). This leads to the value of a =
(A+Ry)vy ™",

1+R 2
k:{i——ZM] 2 (141, (5.5)
and the phase velocity c,; as
!
en={ )2 5.6)
AU R ¢

This implies that the phase speed varies as »” and p, ~” so
that c,; becomes very small in a material with high magnetic
permeability. For a weak electromagnetic field, the phase

speed becomes
1
2w ) 2 < 1 )
= — 1--Ry).
Cp < on, R

On the other hand, if the applied magnetic field has only a
longitudinal component (R, # 0, Ry = 0) then the
dispersion equation is

(k? — 0 D) [vk* — k2 (v P +i(1+R,) } +icy?] =0,

5.7

(5.8

leading to pure longitudinal elastic wave, and the interaction
of the transverse displacement field and the induced magnetic
field produces coupled waves. The phase velocity of the
coupled waves is

1
2 5 1
w=(2)" (1)
Olho 2
for the case of a low frequency and weak electromagnetic
field.

Finally, in the rotating medium with finite electrical
conductivity, the dispersion equation (3.27) can be written as

(5.9

11
i vk + K [(1 +R, +Ry)w—ivy(o? +92)(— + “)

Cy Cy
. B,
+IRLQ(B_1> —IRHQ<BZ>:|
5)
¢t

(w*+ Q4 —2020%)

1
+k2[—w(w2 +Qz)(c—7 +
1

+

C12C22

R, , ( . Bz)

+iQ =
¢ ? ACHL B,
ZwRH
Byc,?

(iwB; —

20QR, /iwB
+ 2 L("" 2+Q> B,0)

2
Cq B,

+

R
z; L (o +92)(i32w+319)]
242

+ (0* = 26202 + Q%) =0. (5.10)

ke’

This shows the interaction between the displacement and the
induced magnetic fields, and corresponds to coupled
magnetoelastic waves which are dispersive and damped.

For the case of small frequency, we set k> = ibw+0(w?)
where b is a constant to be determined by replacing &2 with
ibw in (5.10). This leads to the values for » and & as
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oWk,

2

1
and k=(1+i)( )2, (5.11a,b)

YH
so that the phase velocity is

1
( 2w> 2
Cpy=\|—
P3 o,
This means that the phase speed is independent of both
rotation and the initial magnetic field, and becomes very

small for high magnetic permeability. It is interesting to note
Cpr < Cp3 Wherer = 1, 2.

(5.12)

6 Conclusions

A general dispersion equation for the magnetoelastic plane
waves is derived to explain the important effects of rotation
and external magnetic field on the waves. Special attention
has been given to special cases of the dispersion equation in
various problems of physical interest. The phase velocities of
the waves are obtained in explicit form with physical
significance. The nature of the waves is investigated in Sec-
tions 4-6.

When the applied magnetic field has longitudinal and
transverse components, the coupled waves are found to be
dispersive and damped in an infinitely conductive medium.
This is in contrast to the result in a nonrotating medium where
the waves are coupled, dispersive, and undamped. For the
case of finite conductivity, the waves are dispersive and
undamped in the absence of a magnetic field. At low
frequency w, the phase velocity of the waves varies as »” for
finite conductivity, and is independent of the external
magnetic field and rotation; whereas in the nonrotating
medium with low frequency (when the applied magnetic field
has either longitudinal or transverse components) the phase
speed of the waves is less than that in the rotating medium,
and is seen to depend on the applied magnetic field. Also, in
rotating and nonrotating cases, the wave velocity becomes
very small for finitely conducting medium with a very high
magnetic permeability.

Finally, it has also been shown that results of the present
analysis are in excellent agreement with those obtained by
several authors [1, 7-9] in a nonrotating conducting or non-
conducting elastic medium.
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perimentally. The application presented in the paper is related to a study of discrete,
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or granular, media. '

Introduction

In the mechanics of soils and rocks the analyzed media are
frequently considered as discontinuous, or granular. It is
possible to use then physical models made of spheres, or of
disks loaded in the plane, to better understand the distribution
of loads between grains. The models can be observed
photoelastically. For the analysis of such a system a
numerical method is proposed here which simplifies in many
cases the determination of the forces applied at the points of
contact between disks.

R. Marsal [1, 2], J. Alberro [3] and M. Mendoza [4] have
contributed several theoretical and experimental papers to the
study of this subject. An attempt is made in these in-
vestigations at the determination of the distribution of stresses
in each of the disks of a system of loaded disks. This
knowledge would permit the determination of the loads
applied to each disk at the points of contact with the other
disks. An independent contribution to the three-dimensional
simulation of the granular medium using spheres can be
found in [5].

The isochromatics corresponding to a system of disks are
shown in Fig. 1. It can be seen that the distribution of stresses
at the contact between disks is complicated. It can also be seen
that since the size and the order of the disks are more or less
arbitrary, the position of the points of contact between disks
also is arbitrary. It is also difficult to know beforehand the
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number of points of contact in each disk. If it were possible to
determine the intensity and the direction of each of the loads
acting on each disk, the analysis of the system of the disks that
simulates the medium would be feasible.

It is possible to determine the loads applied to the disks
from photoelastic isochromatics using Hertz’ equations. This
would require the measurement of the width of the surface of
contact, or of the position of the maximum shear stress, or of
the value of this stress, etc. This method, however, has
limitations and one of them is requirement of a high
resolution in the photographic recordings. Frequently, the
method desciibed here will give more precise results. It is
planned to publish the results obtained using Hertz’ approach
in another paper.

The method to be presented requires: (1) the knowledge of
the maximum shear stress 7., at points in the field of a
typical disk when unit loads are applied at arbitrary points
along its border. This relation between the stress and the load
is what will be called a coefficient of influence, and in the
specific case of the circular disk, it is known from theory from
Michell’s equations [6]. In the general case of bodies of ar-
bitrary geometry this relation could be obtained ex-
perimentally if no theoretical solution is available. (2) A
photoelastic test of the system of disks and the determination
of 7,..x at a sufficient number of points in the field of each
disk to compute the intensity and the direction of the desired
loads.

For convenience the expression, isochromatic fringes, or
more simply isochromatics, will be used to identify the loci of
points that have the same value of 7,,,, whether these loci
have been determined photoelastically or mathematically.
Isoclinics are those fringes that give the direction of the planes
on which the principal stresses act. The word isobar will be
used to identify the loci of points that have the same value of
normal stress, o.
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Fig. 1
contacting disks

‘1 The Principle of Superposition of Isochromatics and
the Coefficient of Influence

1.1 Superposition of Isochromatics. The basic law of
photoelasticity can be expressed as [7]:

(1-1

- Tmax t n
where ¢ is the thickness of the model, » the isochromatic
order, and f the fringe value expressed in terms of stresses.
‘The fringe value is a constant depending on the material of the
model and independent of the length of the path of light in the
model. The units are psi-in.-fringe or lbs/in.-fringe or kg/cm
fringe, or in the S.1. system N/m-fringe.

In these equations there is a linear relationship between the
isochromatic orders and the maximum shear stresses. But, in
general, the maximum shear stresses at a point and the loads
applied to the boundaries are not related in a linear manner
because for a load F;

Oy, — 0y, \ 2
— J J
Tmax j _\/(_.__~2__> + T,%'yj

= ”Xf—any1+( 27, )2 (1-2)
2 Ox; = 0y,
When subjected to several simultaneous loads, the
maximum shear stress is
Yo, —Lo,;
Tmax = E'Tmaxj = Exji“_& (1'3)
provided:
Tyt =Txy2 = « + o« =Ty =0 (1'4)

This means that at every point the principal planes should
be the same for the stresses produced by all the loads that will
be superimposed. Then the principle of superposition of
isochromatics can be expressed as follows: If the applied loads
are smaller than the ones that may produce plastic strains and

Journal of Applied Mechanics

Simulation of a loaded granular medium using a system of

Fig. 2 Disk loaded on its boundary by four concentrated forces. The
forces are split in six pairs following the direction of the chords.

provided that the planes on which the maximum shear stresses
act are the same for all the loads, or approximately the same,
the fringe order at a point of the model is given by the sum of
the fringe orders corresponding to each of the applied loads,
i.e., the fringe order in a generic point is

n
n;= E”ij
j=1

where n; = fringe order at point i; n; = fringe order at point
i, produced by the load F; only.

It will be seen later that although it is not common that
maximum shear stresses act on the same planes when they are
associated with different boundary conditions, in the par-
ticular case that will be studied, this does occur and it also

(1-5)
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occurs that the problem gets further simplified because one of
the principal stresses is constant.

1.2 Coefficient of Influence. The fringe order g; at point i
when the load F; = 1 will be called the coefficient of influence
of the isochromatics. Equation (1-8) can then be written:

n
n= Y g F (1-6)
j=1

The coefficient is related to the photoelastic properties of the
model and the position of point / with respect to the load.
Using the concept of coefficient of influence of isochromatics
the determination of the loads applied to the border in the
plane problem is equivalent to the solution of the integral
linear equation:

ni= w0 ax(Q)

where g (/,Q) is the fringe order at point / produced by a unit
load applied at the position Q at the border, w(Q) is the load
applied at the border, and #; is the fringe order at point i.

The previous considerations will be applied to the case of
the disk shown in Fig. 2. Each one of the forces applied at the
border will be split in the directions of the chords that connect
the points of application of the loads. The disk is therefore
loaded by pairs of forces applied at the ends of the chords. In
Fig. 2 the disk has four points of contact. The loads are split
in six pairs of forces. Then the isochromatic order at point / in
the disk is:

1-7)

(1-8)

6
m= )8 F
J=1

In general if the disk has r points of contact the applied
forces are split in S pairs of forces

r(r—1)
S= 5 (1-9)
The general equation therefore would be
s -
=28 F, (1-10)
j=1

Equations represented by (1-10) are linear. »; is determined by
the experiment. g; is computed theoretically as will be shown
in what follows. The restrictions already mentioned indicate
that it is necessary to select points i so that 7, act ap-
proximately on the same plane for all the loads considered.

2 Coefficient of Influence of the Isochromatics in the
Disk Loaded at the Ends of a Chord

To determine the stresses taking place in a disk subjected to
two opposite loads, in the direction of a chord (Fig. 3), it is
possible to use Michell’s [6] equation which can be obtained
from those corresponding to the problem of the semi-infinite
plate subjected to a concentrated load (Fig. 4). The stresses
are given by:

2F cos 0, A .
Url = — E rl + N (701 —-0, Trlol =0
2F cos 6,
0,2 = — ;‘—t r2 +A; 0'92 =0; Tr202 =0 (2-1)
where
2F
A= ——sin(6,+90 2-2
Dt in (6, 2) (2-2)

It is important to observe that the direction of the chordis a
principal direction of stress. In local polar coordinates when r
is the distance from the point considered to the point of
contact of the force on the disk and 4 is the angle between the
radius going through the point and the direction of the force,
Michell’s equation can be expressed as:

2F cos @
gg =0, =0; 0,=02:—E e
g, —0oy £ cosé
=712 =05 Tmax === (2-3)

This means: (1) that the isostatics are radial lines and
circumferences, as shown in Fig. 4, and (2) that the normal
stress, oy, which has the direction of the tangent to the cir-
cumference and is ¢, is zero everywhere.

(ANGLE 5 MUST BE MEASURED FROM
THE DIRECTION OF THE FORCE)

Op * Oy =0
__ 2F cos §
Gr = 0'2 =TT T
Tlm'n= Tl'2= °
_ %% _ F cos 8
7,9 ) v T
ISOSTATICS:

FOR F0 OR Fay LOADS

Fig. 4 Semi-infinite plate to a concentrated force on its boundary. The
isotatics are circles concentric for any direction of the force.
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6
[} o= 0
" B
%2
ISOCHROMATICS AND ISOBARS
Py % (FOR LOAD Fo)

G =0y = o]
LA A % L“l,i

7

F&_T
300
6 o
5 8
%
ISOCHROMATICS AND ISOBARS
o, (FOR LOAD F30)
25 Og =0y =0
o =o_z=_2'_r co-'o
T
\__/

7

Fig. 5 Semi-infinite plate subjected to a concentrated force on its
boundary. (a) Perpendicular to the boundary; (b) making 30 deg with a
normal to the boundary. Isochromatics and isobars o, are the same in
the two cases, when referred to the direction of the force as axis.

Isochromatics for the case of the load perpendicular to the
tangent at the point of contact are shown in Fig. 5. All are
circumferences tangent at the point of contact, with centers on
the line of action of the load. Isochromatics corresponding to
the case of the inclined load are also shown in Fig. 5. They are
represented by the same equations (2-3) provided the direction
of the force is taken as origin of the angles. Therefore (1) the
isostatics in Fig. 4 are applicable to forces of any direction; (2)
the isochromatics for forces of any direction are also isobars
0,; and (3) it is possible to add arithmetically the stresses
corresponding to forces of different directions applied to the
same point of the border. This is shown graphically in Fig. 6.

This idea can be applied to the case of the disk. It is con-
venient then to express equation (2-1) using x coordinates and
Fig. 3.

2F [ cosh cosé
g,= — = (Sors—lsinzﬁl 4+ 202 2 02> +A
1

wt r,
2F 0 s
g,=——= (&coszﬁl + 50 o2 02> +4
Tt r ry
2F /cos®f, sinf; cos®6,siné
ry=- o (SFOSRA_CEEEE) o9
t " r

From this equation it is possible to obtain the expression
giving 7,,, at any point:

T%nax=(£>2 (cosjfh +

wt ry

cos2f,

2cosf, cosf 2(0, +6
+ cosf, cosbcos (6, 2)) @2-5)

rnr;

Replacing 7., from equation (1-1) into equation (2-5), and
if F = 1 then the coefficient of influence at the point / is:

Journal of Applied Mechanics

ISOCHROMATICS AND ISOBARS oy
(ANRITION OF LOADS F AND F30)

Fig. 6 Semi-infinite plate subjected to a concentrated resuitant force
on its boundary. The stress ¢, acts on the same plane for the two
components. They can be added algebraically.

1 [cos?f; cos?6, 2cos, cosd, cos2(f, +6,)
&= —; 5 + 3 +
nf ry r; rr
(2-6)

Calling D the diameter of the disk, d the length of the chord,
corresponding to the force j and:

27

and recalling that

ry cos@, +r, cosdy =d; ry sinf) —r; sind, =0 (2-8)

the following equation is obtained to compute the coefficient
of influence:

1
where
’ 2lm-1
kU-:m 1+ m for 61 :02 =0 (2'10)
ko= L o 6,=90de @-11)
iT Trmpz O hTVAeE -

sin26, \ ? sin26
G=m cosehf sin20, + sin20, cos 2(6, +0,)

for 0<6, <90deg (2-12)

sin 8,
0, =tan"! (——->
2 Im —cosb,
It can be seen that g;; is a function of the constants D and f
of the model and of the local coordinates (/, m, ;). When

parameters /, m, 8, are known the value of k; can be deter-
mined using tables like Table 1 prepared for m = 10.

(2-13)
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Table1 Coefficients of influence &, for points located at m = 10, and for different angles 6,

04 0.40 0.55 0.60 0.70 0.80 0.85 1.00
0 13.333 12.222 12.000 11.667 11.429 11.333 11.111
5 13.221 12.140 11.923 11.598 11.365 11.272 11.054
10 12.889 11.897 11.696 11.393 11.175 11.087 10.883
15 12.353 11.500 11.324 11.056 10.863 10.784 10.601
20 11.637 10.962 10.818 10.597 10.435 10.369 10.214
25 10.771 10.298 10.193 10.026 9.902 9.851 9.729
30 9.786 9.527 . 9.462 9.356 9.273 9.238 9.154
35 8.717 8.669 - 8.645 8.600 8.561 8.543 8.499
40 7.595 7.743 7.760 7.775 7.779 7.778 7.774
45 6.448 6.770 6.823 6.895 6.939 6.956 6.990
50 5.300 5.767 5.853 5.975 6.057 6.088 6.158
55 4.171 4,752 4.864 5.029 5.143 5.188 5.290
60 3.077 3.738 3.871 4.070 4.211 4,266 4.396
65 2.028 2.738 2.886 3.110 3.271 3.335 3.486
70 1.032 1.763 1.919 2.159 2.333 2.404 2.570
75 0.094 0.820 0.979 1.225 1.407 1.481 1.657
80 0.782 0.084 0.072 0.317 0.500 0.576 0.755
85 1.598 0.945 0.796 0.560 0.381 0.307 0.129
90 2.353 1.760 1.622 1.400 1.231 1.160 -
I =d/D;m=D/r|
-]
3
3
3
Fig. 7 Every chord is subjected to two opposite forces applied at its D=9.8 cm
ends, in the direction of the chord. The isochromatic orders have to be
determined at as many pairs of points as there are chords.
Fy Fy
3 Examples
To determine the value of S components of loads applied to
a disk all that is necessary according to equation (1-9) is to

select S points in the field of isochromatics, at which the
principal directions do not change or change little with the
loads to be considered, and to determine for each one c¢f those
points the coordinate and the fringe order. To make the
computation easier it is convenient to select the points on the
lines of application of the forces at a distance D/10 from the
points of contact (m = 10). .

The following rules make the interpretation easier: (1) on
each chord only a pair of opposite forces act (Fig. 7) and their
direction is the direction of the chord; (2) on each chord two
points are selected to which the same number is assigned and
this number is the same as the one of the component of the
force which acts in the direction of the chord. When the fringe
order is not sufficiently high and it is possible to observe the
model in the polariscope it is possible to increase the precision
using a method of compensation. The coefficient of influence
at a point is the result of the addition of the influence of a
particular force on the two points that have the same number.

The fringe value of the material used can be determined
from a disk diametrically loaded. At the center of a disk

4F

/= wD n, $-D

where n, is the isochromatic order. Using ‘‘Homalite 100,” f
= 7.82 kg/cm-fringe.

If the examples that follow the applied loads are known by
statics which permits a verification of the computation and an

292 /Vol. 50, JUNE 1983

¢ o

1=8.75 cm m=10 l=—',m=

r

Fig. 8 Disk loaded at three points on the boundary at the same
distance from each other

estimate of the precision. Different details of the procedure
will be used in each of the examples to be shown.

3.1 Disk With Three Symmetric Points of Contact.

3.1.1 Making an Equilateral Triangle (and Using
Birefringence Compensation). The length of the three chords
are the same (Fig. 8). Following equation (1-10), the regular
equations are

n =guF) +g,F, +813F;

Ny =g Fy +gpnfs + 8235

ny =gl +83F, + 8531, (3-2)
and from equation (2-9): ki =g, wDf.
Equation (3-2) can be written as a matrix:

Lk} {F) = =D f{n) (3-3)

The forces are then:
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Table 2 Computation of the loads applied to a disk with three symmetric points of contact (neglecting the far-

away load)
Experiment
(Tardy’s
Compensation) Computation Relative Error
No. of Load :
Order P(kg) "y ny n3 F F, Fy P,  (P—P,,)/P(percent)

2 28.85 1.85 2.08 1.14 15.16 18.18 5.84 28.87 + 0.00

3 43.35 2.96 2.75 2.07 24.86 22.10 13.17 40.69 - 6.14

4 57.85 3.76 . 4.15 2.37 30.86 35.98 12.61 57.88 + 0.00

5 72.35 4.63 5.05 3.13 37.73 43.25 8.04 70.13 - 3.07

6 86.84 6.00 6.05 3.99 49.90 50.56 23.52 87.00 + 0.00

1,2,3° SELECTED POINTS

( )° ISOCHROMATIC ORDERS AT
THE SELECTED POINTS

&
3(1.35) 3 3{1.29)

Fig. 10 Sketch to determine the forces applied to a disk with three
points of contact (isosceles triangie distribution)

Fig. 9 Isochromatics in a disk subjected to one vertical load and two

gt

oads inclined at 30 deg 0, =60deg kyy=1x4.283
{F) = nDf{k} " {n) (3-4) and for points 2 and 3:

When the influence of the forces located far away from the k2 =4.283 ky; =4.283 kyy =22.61

point considered is neglected, for instance the influence of Ky =4.283 ky =4.283 ki =22.61

force F; on the points A, and 4, and of the force F| on the
points B, and Bj, etc., then the principal planes at the points  Therefore, the matrix for coefficient of influence is:
under consideration are the same for each of the loads con-

sidered. 22.61 4283 4,283
For the disk with three symmetric points of contact ac-
cording to equation (2-7) [, = I, = /3 = 0.866 D/D = 0.866. [k} = | 4.283 22.61 4.283

Coefficients k; are obtained from Table 1. Every coefficient
depends on three parameters m, /, §. Parameter m has been
fixed and is equal to 10. It is only necessary then to consider /
and ¢

4.283 4,283 22.61

The inverse of { £} is:
Point 1: Component 1:/, =0.866

8, =0 K =2x11.305
Component 2: /, = 0.866

0, =60deg K, =1x4.283
Component 3: /; =0.866 Replacing {4} ~! in (3-4):

0.04707  —0.007496 —0.007496
{k}~1 = | —0.007496 0.04707  —0.007496
—0.007496 —0.007496 0.04707
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Fig. 11
0.04707  —0.007496 —0.007496
{Fl=xDf | —0.007496 0.04707  —0.007496
—0.007496 —0.007496 —0.04707
" (3-5)
n
N3

Since the matrix {k} depends only on the coordinates of the
point of contact equation (3-5) can be used for any disk with
three symmetric points of contact.

The results are shown in Table 2 where P is the vertical load
applied at point A (Fig. 8) and P,, is the load computed from
{n} which was obtained for several load levels using Tardy’s
compensation.

For a disk with D = 9.8 cm and f = 7.82 the solution for
{F} and P, is the following

F, 11.33  -1.80 —1.80 ) (7,
F, v=| —180 —11.33 -1.80 |{n, (3-6)
F; ~1.80 -1.80 11.33 ) |,

and
P, =(F, +F;)cos30deg

3.1.2. Making Isosceles Triangle (and Interpolating
Isochromatics). In this case the values of » have been ob-
tained by interpolation between the fringes of a photograph
(Fig. 9) and are shown in (Fig. 10). The parameters are D =
6.0cm, /!, =1, = 0.924, and /3 = 0.707. Using Table 1 it is
possible to obtain the elements of the matrix {k}:

atpoint 1: k;; =2x11.22; k, =6.977; k|3 =2.634
at point 2: kz] :klz =6977, k22 =k“ =22.44; k23 =2.634
at point 3: k3, =2.949; ki, =2.949; k33 =23.32

Using the photographs
isochromatics it is found that

and interpolating between
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Isochromatics in a disk subjected to five loads

n; =4.05+2.65=6.70
n, =4.00+2.75=6.75
ny=1.35+1.25=2.60

and replacing these data in equation (3-4)

2244 6977 2.634 \ (F, 6.70
6.977 2.244 2.634 |{F, \‘=aDsl6.75
2.949 2,949 2332 ) |F, 2.60
The results are:
F, 0.2220
F, t=aDf { 0.2252
F, 0.05521

Giving to the parameters the values: D = 6.0cm, f = 7.82

7 32.72
F, + =1 33.20 ‘kg
F; 8.14

The computed vertical load at the point of contact A4 is
P, =(F,+F,;)cos22.5deg = 60.90 kg

The applied load was P = 63.24 kg, then P—P_,/P = — 3.79
percent. Then the normal and tangential forces at each point
of contact are:

Normal load

Point of contact Tangential load

(kg) (kg)
A 60.90 0.18
B 35.98 6.7
C 36.43 6.95

3.2 Disk With Five Points of Contact (One Axis of
Symmetry). The distribution of the isochromatics is ap-
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proximately symmetric and the forces to be determined are
only those identified in Fig. 11. The applied loads in this case
are not known and therefore no verification is possible.

The geometric parameters are:

2D/2 sub 36 deg
|= TR 0.8
2D/2sin72d
12=~/—S;;~£=0_951

1, =0.951;

(@) Some of the k; will be computed using equation (2-6)
and (2-9) because the values given in the table are good only
for 6, smaller than 90 deg. For k5 = ks = ksg = kgs the
parameters are: / = 0.6; m = 1.6; §, = 8.74 deg and 6, =
1.08 deg. Theresults are: ks = ks, = ksy = kgs = 5.894,
The other coefficients of influence can be obtained from
Table 1.

1,=0.951; [5=0.588; /5=0.588

Particular Cases of Application of Michell’s Equations

Coefficients of influence at Formula for the loads n; =
particular points £; order of isochromatic
ka=ks=1.92 p= Lffn,
k. =4.0 i=A,B,C
4D
ki=—
A d
2V2d -
k.= ""—+I+cos46
D wD f
P=
2v2 cos O T eosd i
e — COs P —
VTt 12420 ’ 1=A.B,C
tan 4, 24 tan ¢ 2
= —, tanfp= —
‘T d P d
4D 2V2cosf -
ky=kpy= — + 2 JT+cosdfy
d  Ji+124*/D?
N2d -
=27 D
k.= D NT+cos44, p= fn,
ki
tan 6 2a i=A,B,C
anf. = —
d
a
tan 0[3 = g
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1 2 3 4 5 6
112610 8362 8.362 2205 5.89% 0 |
2] 8.468 2237 0 8362 8.468 1.419
3| 8.468 0 11195 8362 1419 0
4 1.419 8362 8.362 22.37 1419 8.468
5| 5.894 8362 2.205 10.567 24.00  5.894
6 0 2205 0 8362 5.8%4 12.05
L A

(b) The matrix {n} can be obtained from the isochromatics
and the sketch shown in Fig. 11.

(7.0+40.8+1.0+6.0) ) (74 )
(5.7+0.9+3.15+1.10) 5.425

{n}=3 J(8.5+9.5) | 9.00 i
2 1(9.0+3.0+4.65+9.0) 8.64
(7.75+5.7+6.0+2.65) 11.05

L(2.25+2.0) ) L2125

(¢) Using the equation giving the forces [K1{F} = =Df{n)
the six components are:

FFI ] [—0.129196
F, 0.150270
Fy 0.845580

= [1Df < v
F, 0.016028
F; 0.365688
| Fy | | —0.039747 |

(d) Therefore the normal and tangential forces are:

Point of contact Normal loads Tangential loads

A 0.134 «Df ~0
B 0.957 xDf —0.143 #Df
B! 0.957 «Df 0.143 #Df
C 0.348 Df 0.370 =Df
C! 0.348 «Df —0.370 =Df

4 Particular Cases

The equations of Michell can be expressed in simple form
for certain special cases of distribution of loads. It is not

296/ Vol. 50, JUNE 1983

necessary then to follow the procedure explained in the
foregoing. Loads can be determined directly from the fringe
order at a selected point of the disk. Some of these cases and
the corresponding equations have been tabulated.

The general equation (2-6), where ry = r, and 8, = 0,
becomes:
k=~2m2cos?0 ~1+cos4o 4-D
and the applied load is given by:
D
P= ”_k U, (4-2)

5 Conclusion

A method has been presented that permits the deter-
mination of any system of forces applied to the boundary of a
disk, when the isochromatics are known at some selected
points of the field. The method is approximate in the sense
that it neglects the influence of forces applied to points
located far away from the points under consideration.
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A Free Boundary Value Problem in
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Plate Theory

In this paper the equilibrium configuration of a thin rectangular plate, supported on
an elastic foundation that reacts in compression only, is studied. It is assumed that

the foundation is described by the Winkler model in the contact region. The plate is
supposed to be weightless and subjected to a concentrated load in its midpoint. The
shape of the free boundary, where the plate loses contact with the foundation, is

determined.

1 Introduction

In 1884 Hertz [1] gave a closed solution to the problem of a
infinite thin elastic plate resting on an elastic foundation,
subjected to a concentrated load. Hertz himself realized that
his assumption that the surface of the plate experienced a
reaction proportional to the displacement was in contrast with
the effective behavior of the foundation, which reacts only
with compressive pressures where the plate penetrates into the
foundation. Hertz’s solution is more appropriate to describe
the deformation of an infinite plate floating inside of (or on
the surface of) a fluid, in which case(s) the fluid exerts on the
plate an increment in hydrostatic pressure proportional to the
displacement of the plate (Fppl {2, § 20]).

Weitsman [3] considered a version of Hertz’s problem and
was able to describe the realistic behavior of an infinite plate
on an elastic foundation. If the plate is loaded by a con-
centrated force P, it is plausible to expect that it makes
contact with the foundation only along a bounded circular
region surrounding the point of application of P. Outside this
region the plate remains above the elastic foundation and does
not interact with it, The radius of the contact circle is not
known in advance, but must be determined by suitable
conditions of continuity of the solution across the cir-
cumference at which the plate leaves the elastic foundation.

Once the radius of the contact circle is determined, the
entire solution is also determined, both inside and outside of
the contact circle. An unexpected property of the solution is
that the radius of the contact circle does not depend on the
magnitude of P, but only on the flexural rigidity of the plate
and the elastic modulus of the foundation (Weitsman [3, §3]).

In this paper I consider the case of a rectangular weightless
plate supported on an elastic foundation that reacts in
compression only. The plate is subjected to a point.load P at
its midpoint. Under the assumption that the sides of the
rectangle are not too different, and both are sufficiently large
with respect to the fourth root of the ratio between the

Contributed by the Applied Mechanics Division for publication in the
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flexural rigidity of the plate and the stiffness of the foun-
dation, the contact region is very small compared to the size
of the plate and the shape of the boundary of the contact
region can be determined by first-order perturbation of
Weitsman’s solution. Also in this situation the shape and the
extent of the free boundary is independent of P.

2 Basic Equations

Let us consider a plane rectangular plate supported on an
elastic foundation and loaded transversally by a point load P
at its center (Fig. 1). Let us denote the transversal
displacement of the plate by w, the lengths of the sides (¢=b)
by 2a and 2b, and the flexural rigidity of the plate by D. The
foundation is represented by the Winkler model; that is, it
offers a reaction kw, where k is a constant called modulus of
the foundation. This reaction, however, is only compressive
and occurs only where w is positive. Let us denote the
unknown curve by L, separating the contact and the non-
contact regions of the plate.

Let us introduce a system of plane polar coordinates (r,6) in
such a way that the origin coincides with the point of ap-
plication of P (Fig. 2). The deflection w is thus a function of
the type w=w(r,6), and this function must be periodic of
period 7 in 8, since the deflection is symmetric with respect the
axes of the rectangle.

Let us assume that, in terms of (r,0), L has the equation
r=r(0), where F(0) is a continuously differentiable function,
periodic with period 7.

Fig. 1
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2a
Fig. 2

The function w(r,8) is the solution to the following pair of
differential equations

arr rar r*oae? at roar r oo
=0 in E,
art ror r* g’ ar* r or  r* a6

=0 in E,, 2.1

where E and E,| are, respectively, the contact and the non-
contact set.

The boundary conditions associated with equations (2.1)
are the following. At the origin, that is, for r=0, w(0) and its
derivative dw/0r(0) must remain bounded. Moreover, if T, is
a circle of radius r, around the origin, we must have

lim S V,ds+ P=lim S (Q, + iM,1,> ds+P=0, (2.2)

re—0 J Te re—0 JTe as

where Q, is the normal shear force, M, is the twisting

moment, and 8/3s denotes the partial tangential derivative.
The exterior boundary C of the rectangle is free. Therefore

V, and the normal bending moment M,, must vanish along it:

a
Vn=Qn+—Mm=O, M,,=O on C. (23)

ds
In addition, certain conditions of continuity must be
satisfied across the free boundary L. These conditions require
that w, evaluated as limit from inside and outside L along the
normal derivative to L, vanish:

w(L™)=w(L")=0, (2.4)

and that normal derivatives, and the exterior characteristics
M,, V, be continuous:

ow . dw

%(L )—&(L"), (2-5?
M, (L™)=M, (L"), (2.6)
Vi (L7)=V,(L*). 2.7

It is important to remark that the free boundary L, the
locus separating E and £, is unknown.

3 An Asymptotic Solution of the Problem

In order to construct an explicit solution for the problem
formulated in the foregoing, it is useful to introduce the
notation (see Timoshenko and Woinowski-Krieger [4,§57])

kK 1

- = = 3.1
D ® @0
and define the nondimensional quantities
w r
S o=y, —=p. 3.2
;=% 7= (3.2)

Let us introduce the ratios a=a/l, 3=5// and make the
following assumptions:

(1) The number A= (a—8)/(a+8) is small compared to
unity and its square can be disregarded;

(2) The number R, = (a+3)/2 is much greater than 1 so
that powers on the ratio 1/R, of order higher than 1 can be
neglected.

Assumption (1) means that the plate must not be too dif-
ferent from a square plate. Assumption (2), as it will be seen
later, implies that the contact set E is small compared to R. It
is not strictly necessary, but simplifies subsequent
calculations.

In the following, the boundary C of the rectangle will be
approximated by the curve of equation

R(60) =Ry(1+ \cos20) 0=60<2m, 3.3)
while it is assumed that L has the equation
p(8) =py + N\p €026 (3.4)

where py and p; are two unknown constants, which must be
determined by the conditions of the problem. Equation (3.4)
contains the implicit assumption that L is a simple closed
continuously differentiable curve; the solution will confirm
that this conjecture is correct.

In terms of v and (p,8) equations (2.1) become

(a_2+1a+1 82)(62u+16v
00  pdp  p* 96*/ \dp*  p dp
' 1 9%v
+—= — )+v=0 0<p<p(h), 3.5
o)t p<p(0) (3.5)
<ﬁi+li+i 32)(32v+18v+162v>_0 (3.6)
> pdp p* 302/ \op> pop p> 30/ '

p(0) <p<R(8).

It is easy to find particular solutions to equations (3.5) and
(3.6). For instance, the function

v(p,0) =Cberp+ Cybeip+ Cykerp+ C,keip

+ )\(Dl berzp +D2bei2p+D3 kerzp
+ D, kei,p)cos2d, (3.7
where Cy,....,Ciand Dy, .. ... , D, are constants, and
berp, . . ., keip, ber,p, . . ., kei, p are the Kelvin functions

of grade zero and two, is a solution to (3.5). Similarly, the
function

Nomenclature

a,b = lengths of the sides of the plate
D = flexural rigidity of the plate
k = modulus of the foundation
w = displacement in the direction of the

normal
K
1/ = 5 = ratio between the moduli
v=w/l = dimensionless normal displacement

298/ Vol. 50, JUNE 1983

r/l=p = dimensionless length
a=a/l = dimensionless length
B=b/l = dimensionless length
A= (a—B)/(a+B) = eccentricity of the plate
Ry=(a+f)/2 = mean length of the dimensionless
sides
R=R(#) = equation of the boundary in polar
coordinates
p=p(0) = equation of the contact line in polar
coordinates
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v{p,0) =a+bp?® +clnp+dp*lnp+ N a, p* + b, p~?
+¢, 0% +d,)cos28,
d, iy o v ot

(3.8)

wherea, . ..., , d, are constants, is a solution
for (3.6).

The arbitrary constants in (3.7) and (3.8) must be deter-
mined by using the boundary conditions and the continuity
conditions across L. These conditions will be satisfied by
neglecting the terms of order higher than one in A

From the Taylor expansion of the Kelvin function in the
neighborhood of p=0!, it is seen that kerp, ker,p, kei,p, and
their first derivatives are unbounded as p—0. Therefore, the
conditions that v and 0v/dp remain bounded at the origin
imply that

C3 =D3 =D4 =0. (39)

Consider now a circle of radius p, around the origin. Using
again the Taylor expansions of the Kelvin functions, one has
from (2.2)

lim S V,ds+P=Ilim § Q.ds+P
pe—0 r, pe—0
D Sz” d (321) 1 ov
=— -1 — |-+ - —
2o Jo 3o \307 T 5 3p
1 9%
+— —= )pdf+P=0, 3.10
+ pelers )p (3.10)
where
1 T
v(p,0)= ~—C4<5p21np+ 1 + ... )
correct to terms of higher order in p.
Condition (3.10) thus yields
D
j C2n+P=0,
and, consequently,
P
Cy=— . 3.11
4 D (3.11)

The boundedness conditions at p=0 impose restrictions on
the constants in (3.7). Other restrictions on the constants in
(3.8) can be found from the boundary conditions on C. If the
original boundary is replaced by the curve (3.3), the com-
ponents of the unit normal vector in the p and ¢ directions are

1
(N,,Np) = (1 2 Ry

4N’ R}
Jl + — % cos?26
I

and, this expression, disregarding the terms of order higher
than 1 in A, can be simplified to

(N,,Ny) =(1,2)c0s28).

cost)) , (3.12)

(3.13)

On introducing the stress-resultants M,, M,
the p,6-system it is possible to write

MpB) Qp) QG in

M, =M,N? +MyN§ +2M 4N, Ny, (3.14)
M, =~ (M,—My)N,N,+M,, (N> —N}), (3.15)
oM,
V,=Q,N,+QuNy+ as’
oM, oM, N,
=Q,N,+Q;N, — Ny+ —2 22, 3.16
Qp P Q0 [} ap ) 96 0 ( )

LCf Jahnke-Emde-Lésch [5, IX, B3].

Journal of Applied Mechanics

Neglecting terms of order higher than 1 in A yields

M, =M, +2M 4N, (.17
v —g, o M ]
n=%p 30 P
oN, 1M,
=Q,— —(M —Mj) —~” ot (3.18)

80 -

But, on using the constitutive relations
3? 19 1 8%
M=-p[ L2301 B )
dp pdp  p* 36
a /10
Ma==-0-n0 2 (2 5]
dp \p a0

a [o? 10 1 92
Qp=—D—-[—»l; +- 2y 20 ]
dp L dp p dp  p? 39*
where D is the flexural rigidity and » Poisson’s ratio, and

neglecting again the terms of higher order in A\, M,,, and V,
become

a2 14
an_D[“i‘f'V( Y

p 3o

d /0% 1 dv 3 /1 0%
50 5)
dp \9p> p dp dp \ p? 96?

v 19 4XR
el

32 p dp o

L Lo )] 3.19
p? 362 /do=r » 3.19)

cos20

2
) (1 0%v (3.20)

;W]p:m)

The introduction of (3.8) into (3.19) and (3.20) permits us
to write the boundary conditions on Cin the following form:

b
[217— iz +dQinp+3)+MN2a, +6— +12c, p2>00520
0 o
2b
+2 (2bp+ ¢ +d(2plnp+p)> + ij)\(Zalp— ji +4C1p3>
P 0 o o

A b,
d (a,p +—+c,p +d)cos20] =0,
p*

p=R(0)

d b, 40
[41 +)\<—16 +32€1p)00520 4>\( — +2C,p
I

d 1 R
—z-g)cosze— ~(1-») (~2i2 +2d>4)\—9 c0s20
i o o P

—4(1—1/)%((11—31) +3c¢,p? —~——):| =

p=R(0)

In these equations R (#6) is given by (3.3). This expression
for R (6) is substituted into the equations in the foregoing and
the expansions in A\ up to the first order are considered. By
comparing the coefficients for equal powers of A, a system of
linear equations in b, ¢, d and a,, by, ¢, d, is derived, from
which:

I-v ¢

b= —>
1+v 2R3

d=0, (3.21),
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1 o bl 3+V2 dl
= —|6-n = +30-» = __] .
“ 3+u[( N P T i) G2
c——l’_”[c+2b‘+~—d1] 3.21
" 3+wLlRE RS RS 3-21)s

The remaining constants are determined by the continuity
conditions on the free boundary L. If the equations of L in the
p,0-coordinates is (3.4) and A is much smaller than 1, the
components of the exterior unit normal vector to L are

1

o
I+ o plsinds

= (1,2>\ﬂ sin29>.
Po

Then, up to the terms linear in \, one obtains

(n,,ny) = a2 sin20>
o

v [av n, dv ] dv
— =] —*h — = —,
an do " p 00 do=n0) dp
M D[alu + (1 6v+ 1 6%)]
o~ — — vl — — — ,
" dp? p Op  p2 30%/ 1o=pw)
d /d%v 1 dv 1 8% 1 d%v
TR
dp \ dp? WA p( ) dp?

1 dv >4)\p‘ 20+ (1 )1[6 (1620 >]
—-— —Cos. )~ | — - = .

p dp 00 pLap \p 962 /1o=0(9)
Once successively replacing (3.7) and (3.8) into these ex-

pressions, it is easily verified that the conditions of continuity
across L are maintained when

v(L=)y= v(L*)=0,

dv dv

— (L )= — (L"),
% (L7) o (L)

0%y 8%

- L7 = — L+ N
o (L= (L)
Fv 3°

5 (L7)= #(U),

or, in explicit form,

2

Pl
[C,berp+ C,beip—

57D keip+\(D, ber,p

+ D, beirp)cos26] -, =0,

b
la+bp?* +clnp+\(a,p* + ;21 +c,p*

+d,)c0s20],- 5 =0,
2

b 7 C ;! _
[Ciber’ p+Cybei’ p 27D

kei’ p+N(Dber;p

c b
+D,beisp)cos2f), . o =[2bp+ ; +)\<2alp—2p—;

+4 C,p%)c0s20] = p(0» [Cber” p+Cybei”p

PI2 ;" " s
— E-ﬂ_—lskez p+NDberip+ D,beiip)cos2i],_
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C b]
=[Rb- — +)\<2a1 +6— +12¢,p?)cos26]
1Y 1Y

p=p(8)>

P2
kei” p+ N(D, ber
37D 4 (D, 2 P

[C] ber)+C,bei” p—

b
+ D, beifp) cos20] ,_ ) = [2% £ >\<-24—;
p p

+24Clp):| s
p=p(8)

where p(8) is given by (3.4), and b, a,, and ¢| by (3.21).

The expansion of the terms of the equations in the
foregoing up to the first order in A and the comparison of the
coefficients of equal order in A, yields the following system
2

. Pl .
C] berpo + CzbEIp() - 27D kelpo = 0, (3.22)1
a+bp} +clnpy =0, (3.22),
) P2 c
C\ber’ py + Cybei’ pg — ——=kei’ pg=2bpy + —, (3.22),
27D 00
. pr c
C\ber” py+ C,bei” pg — ~27D—ke1 po=2b— a2 (3.22),
. z c
C\ber” py+ Cybei™ pg — >2D kei” py= 2po—3 s (3.22);
) rr
01(C, ber' pg +C,bei’ py— kei p0> + D, ber,py
27D
+D2bei2p0 =0 (3.22)'6
c b
200, + — o1 +apf+ 5 +epf+dy =0, (3.22)
Po o
C. ber” Y P2 )
01(C ber” py+ Cybei” py — 27D kei Po) + D, berjp,
+ D, bei;pg (3.22),
c b
=2bp; — — py +2a,p) — 2 — +4c, o3,
] [4i]
o (€1ter oy Coteivo - P i)
I ———
1 1 Po 2 Po 27D el po
+D,ber;py + D, beifpg (3.22),
c b
=2—py +2a, +6— +12¢,p3,
o o5
P1 (C, ber™ py + C,bei™ py — 77D kei“’p0>
+ D, berypy + D, beisp, (3.22) 4

=6 5 -24% 424C,0,.
Po P
These equations can be further simplified by substitution of
(3.22), into (3.22)¢, (3.22)4 into (3.22)3, (3.22);s into (3.22),,
and the use of relations between the Kelvin functions (see
Jahnke-Emde-Losch [5,1X,B3]). The system thus becomes

a+bpd +clnpy =0, (3.23),
2

Pl
C,berpy + C,beipy = 5D keipg, (3.23),
T
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Pl
Cyber’ py + Cybei’ po = ——kei’ pg + 2bpg + —,  (3.23)3
27D Po
o PP
C, beipy — Cyberpy = — —— kerpy —4b, (3.23),
27D
P '
C, bei’ py — Cyber’ pg = — —— ker” py, (3.23)s
27D
c ,, b "
2bpop + —py taps+ —5 +eipet +d =0,  (3.23)
Po PO
D, berpy +Dybeirpy = —2bp g —c 2L, (3.23),
Po
’ ¥ bl 3
leerzpo +D2belzp0=2a1p0-—2—3 +4C1p0 f (323)8
Po
. 4 b
D\ beiypy —Dyberypg= — —\a100+ —5 +4C‘1Po)
Po Po
c
+ap, (2000 + =), (3.23)
Po
. , 8 2
D\ bei3py — Dyberipy=8a,py— —5 (1 - “‘f)bl
Do PO
2
+1603 (1 - —z)c,. (G.23)
[0}

By solving equations (3.21) and (3.23) it is possible to
determine the constants defining the expressions (3.7), (3.8)
together with the radii pg, p; .

4 The Approximate Solution of (3.21) and (3.23)

A rather simple solution to (3.23) can be obtained by
making use of the assumption (2) in Section 3. If 1/R, is
much smaller than 1, its powers of order greater than 1 can be
disregarded. Consequences of this assumption — confirmed by
the explicit solution — are that 1 <p, < <Ry and p; < <py.

Under these conditions, equations (3.21) can be replaced by

b=V € 4o @.1)
T 1+v2R} T :
3-v ¢ 1-v ¢
=, = 4.1
“ 3+v R} “ 3+» R} 1),
equations (3.23), and (3.23), can be simplified into
a+clnpy=0, c2t+d, =0, @.1),
Po

and the remaining equations can be replaced by

Fig. 3
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27D

C,berpy + C,beipy = keipgy,

pr2 ¢
Cber' py + Cybei’ p, = ﬁkei'po + —,
.

Po
. P2 o (4.1),
C, beipy — Cyberpg = — mkezpo,
) 2
C,bei’ py — Cyber’ py= — mker'po;
~
and
D, ber,p, +Dzb€i2p0=—c£1—, B
Po
3-v ¢ b,
Dy berspy+Dybeispy=2— — py—2—
10€r20¢ 20€ P 3+ R Po p03 ,
. 3—1/ C bl Py '
D, bei,py— Dyber,pg= —4—— — —4—— +4c—,
10€13p9 20€rp9 3+7 R} P + CPO
. 3-v ¢ b, 2
D, beijp, —Dyberspy= —8— — _8_(1_,,).
MG FYY AR A VA
4.1);s

Substituting the asymptotic expansions of the Kelvin
function into (4.1), (cf. Jahnke-Ende-Ldsch [5, IX, B3]) and
eliminating ¢, C;, C, one obtains the transcendental equation

tg(f9 + I) = —cotg(V2pq),

V2 8
the first positive root of which is
V2w
Po=—g— =2.78. 4.2)
Once p, is known, it is easy to find the other unknowns:
P2 _
C, = ——e 071 (V2+cosVip,), 4.3),
2aD
P2 .
C,= - me-ﬂﬂo wsinv2pq, (4.3);
PP N2mpyeron
c=—
2D
. [P ™
sm(\/—% - ;)’ (4.3),
P2 N2mpgerorn
a=5D P Inpg. (4.3)4
sin( 2 —)
V2 8

Using again the asymptotic expansion of the Kelvin func-
tions of order two in (4.1); and solving with respect to p,, b,
D,, and D, one obtains

24V2 —4p, — <l6p0 - 2) (1 2 )

3TV po V2 _;;()i
o= 0 . (4.4,
3+v R§ 2 4
20\/2(1——2)+3\/§———
I25] Po
b 3-v ¢ | 23vV2p, +4
1—3+V1’e“(2)90 y 4 ) (4.4),
20\/5(1——2)+3\f§——
P Po
4 3- b
= [ S e 2], @
beiypg L3+v R§ ~ p§  po
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beirpo by
It is clear that this result confirms the correctness of the

initial conjecture p, < <pq. Since p, is positive the contact set

E has the major axis parallel to the larger side of the rectangle

(Fig. 3). In the figure, the original boundary of the rectangle is

replaced by the curvilinear contour, which, in-the present

approximate analysis, is assumed as the boundary of the
plate.

It may be worthwhile to remark that p, and p, do not
depend on the magnitude of P. In addition, the deflection at
the origin (given by setting p=0 in (3.7)) depends only on the
terms of first order since

ber,(0) = bei,(0)=0,

(4.4),

D, =

and
Dy=D,=0.

Both of these properties seem somewhat unexpected.

Remark. As « tends to infinity and 8 remains fixed, the
plate tends to assume the shape of an infinite strip pressed
against an elastic foundation by a force P concentrated at the
origin. The results of the present analysis no longer apply,
since A tends to one as a tends to infinity, and, consequently,
the procedure of asymptotic expansion of solutions in A fails.

302/ Vol. 50, JUNE 1983

Nevertheless it is interesting to note that R, tends to infinity as
« tends to infinity, and therefore p,, given by (4.4),, tends to
zero. It follows that the major axis of the contact region is
Po = 2.78.

The calculation (performed by Weitsman [3]) of the half-
amplitude of the contact interval of an infinite beam on an
elastic foundation that reacts in compression only is
plo= m/N2=2.22. On considering the unilateral contact
between a layer and a half space Keer, Dundurs, and Tsai [6]
showed that Weitsman’s results can be recovered as limit of
the three-dimensional case when the layer is rather stiff in
comparison to the foundation.
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The Viscous Collapse of Thick-
Walled Tubes

The collapse of glass tubes, as used in the manufacture of optical fiber preforms,

R. Csencsits

constitutes a problem involving Stokes flow, driven by surface tension and applied

pressure. Undesirable, noncircular modes of deformation may grow or decay,

Bell Laboratories,
600 Mountain Avenue,
Murray Hifl, N.J. 07974

depending on initial tube dimensions, radial viscosity variations, and the pressure
differential across the tube wall. A two-dimensional model of the collapse process
has been developed. Numerical results show trends that agree with experimental

observations and are useful in the control of actual, three-dimensional collapse.

1 Introduction

The manufacture of high-precision optical components,
such as lenses and prisms, has been traditionally accomplished
in the glass industry by grinding and polishing solid pieces of
material. This state of the art is changing somewhat with the
advent of optical fiber technology, where dimensional control
in the liquid state is often the preferred, if not the only
feasible approach. Thus an interest in slow, essentially
Newtonian, flows with carefully controlled free surfaces has
been generated. One example of this trend is the manufacture
and processing of so-called preform tubes. In this paper we
address the process by which such tubes are collapsed to solid
rods the preforms from which optical fibers can be drawn.

The preform collapse process involves slow viscous flow of
the glass, driven by surface tension and differential pressures
on the inner and outer tube surfaces, rather than contact
forces from dies and tools, as used in other forming processes.
By and large, physical contact with preform tubes must be
avoided to minimize contamination. !

During collapse, departures from the nominally circular
shape may occur and are of primary interest in process
control, The time evolution of these perturbations is a gradual
departure from axisymmetry, rather than a distinct bifur-
cation as encountered with typical buckling phenomena.
Nevertheless, we shall loosely refer to such deformations as
“‘instabilities’” if they grow in magnitude.

The standard collapse process for preform tubes is com-
monly executed on a glass lathe. While the tube rotates to

lBoth, the Newtonian characteristics and the absence of surface loads
distinguish the hot forming of glasses and ceramics from that of metals and
plastics. The latter material processes have been modeled extensively as flow
problems involving elastic-plastic and non-Newtonian media. Unfortunately,
none of this literature is of much help in dealing with the viscous collapse of
preform tubes.
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Fig.1 Schematic of collapse zone

preserve axisymmetry, a torch traverses along its length,
producing a local hot zone where the glass softens sufficiently
to permit viscous flow of the tube walls. Several passes of the
torch are usually needed to collapse the tube to a solid rod. As
the heated portion of tubing necks down, it is partially
supported by adjacent sections of tubing at lower tem-
peratures. The collapse process is therefore truly a three-
dimensional one. One may argue, however, that for long hot
zones the three-dimensional end effects lose significance and a
two-dimensional representation of collapse, neglecting
variations with the axial coordinate, z, can be quite ac-
ceptable. Further refinements of this qualitatively correct
model of tube collapse cannot be justified at the present, since
glass viscosities are subject to uncertainties resulting from
inaccurate measurements .of local temperatures and glass
compositions in typical preform tubes.

Section 2 defines the physical problem in detail and presents
the approach to modeling viscous collapse, adopted in this
paper. Results for uniform viscosity, i.e., homogeneous
tubes, are summarized in Section 3. Numerical solutions of
the differential equations for the more relevant, and more
difficult, case of nonuniform viscosity are discussed in
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Section 4. Section 5 presents results for tubes of nonuniform
viscosity. Some comparisons with experimental observations
and conclusions are also given.

2 Problem Statement and Analytic Formulation

Figure 1 illustrates the geometry of a typical collapse zone
in preform tubes. The neckdown region is centered at z=0
and tapers off toward z= xL, in both directions along the
tube axis. Our two-dimensional model addresses defor-
mations at z=0 as if this section were part of an infinite
cylinder, shrinking uniformly, without end effects. In short, a
plane-strain assumption is made for the deformations of such
a cross section throughout its collapse history.

The cross-sectional geometry is described by polar coor-
dinates r, 6, with inner and outer radii ¢ and b. The relevant
material property is viscosity u(7), which may be nonuniform
throughout the cross section. Fluid density does not enter into
our model because of the very low accelerations involved.
Surface loadings are given by inner and outer pressures P, (6)
and P, (0), as well as surface tension o. The purpose of this
model is to simulate the time history of tube deformations
which are produced by initial noncircularities of the tube,
various surface loadings, and viscosity variations in the tube
wall, due to variations in glass temperature and composition.?

The viscous flow problem for the tube walls is formulated
in terms of primitive variables, i.e., the velocity components
and pressure. These were chosen in preference to a stream
function/vorticity formulation for the sake of physical in-
sight. The Stokes equations in polar coordinates r, ¢ read {2]
as follows:

Radial equilibrium

2r u u r,
ru,,+(3+ “’)u,+—+ﬂ’— Proo @
H roor o op
Azimuthal equilibrium
PV, r I
vy, + (1 + —’ﬂ)uo—ru,‘, Py o)
I [ p
Continuity
u
~ F U+ V=0 (2-3)
where
u = radial velocity
v = azimuthal velocity
V = v/r
p = hydrostatic pressure
u = viscosity

and subscripts r, 6 denote partial derivatives. The two stress
boundary conditions at the inner and outer free surfaces
r=R,(0) and r=R, (8) can be written as

2The axially symmetric version of this problem has been treated previously
by J. A, Lewis [1].

R\ 2
4u,R0+(R2V,+u9)[1—(Eg> ]:0 (2-4)

and
“p+2[£(u,_Rer'—R9u0/R2)= —P+Ko (2-5)
where R = R, and R, as appropriate, corresponding to —

and + signs of the last term in (2-5)

K = K,(8) or K,(6) the free surface curvatures
o = surface tension
P = P,(6) or P, (6) the applied pressures.

It remains to express the free-surface deformation rates in
terms of velocity components u, v.

One finds

R
R =[ul -] 7 (2-6)
where R=R, or R, and u, v are evaluated along R, (9),
representing the current deformed boundary configuration,
and the subscripts ¢, § indicate differentiation.’

The space-time solution of (2-1)-(2-6) is u(r.6,t), V(r,6,t),
p(r.6,0), and R, , (6,f). Analytic procedures seem out of the
question for p # const. To begin with, it is expedient to
separate the spatial and time integrations. The latter is
executed as a sequence of finite steps Af, once a method has
been determined for calculating the velocity field for any
instantaneous boundary geometry and surface loading of the
cross section. Thus, if solution of (2-1)-(2-5) for the nth time
step, using R7;! for the tube geometry from the preceding
time step, yields u”, v", this leads to R{, by means of (2-6)
and then permits updating the tube deformation according to

R:,=RI3! +AIRp,. 2-7)

The main effort of this study had to concern itself with the
spatial solution of (2-1)-(2-5), especially for cases where the
viscosity varies drastically through the tube wall. For
w=const. the viscous flow problem defined by (2-1)-(2-5) has
an exact dual in the two-dimensional theory of elasticity,
where complex variable techniques can be used to develop
elegant, analytic solutions in polar coordinates [3]. However,
this formalism breaks down if pu becomes variable and
numerical techniques have to be used.

Direct numerical solution of the partial differential
equations in r and @ by finite differences or by finite element
methods was considered. However, geometric distortions of
the cross section can only be extracted from such com-
putations by further processing of the results, viz. a Fourier
analysis of boundary displacements. Alternatively, the most
direct and computationally efficient approach to tube
deformations consists of formulating (2-1)-(2-5) in terms of
Fourier components to begin with.

3 Equations (2-1)-(2-6) can be nondimensionalized with the following factors
(see Nomenclature and Section 4 for quantities relating to composite tubes):
lengths: 1/¢, where c=initial interface radius; stress or pressure: ¢/g; velocity:
up/0; time: o/(cpp). Consequently, (2-1,3) will be multiplied by cpp /0 and (2-
2,6) by pp /0. We assume that this has been done, without change of notation.

Nomenclature
a = inner radius
b = outer radius
¢ = interface radius
up = viscosity of outer layer (silica tube)
U, = viscosity of inner layer (low viscosity deposit)
R = general symbol for free surface radii
K = general symbol for free surface curvatures
P = general symbol for applied pressures )
r,6 = polar coordinates
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u,v = radial and azimuthal velocities
V = v/r
p = hydrostatic pressure
¢ = surface tension
() = a()/or
W=V
subscript 0 = 0(1) quantities
subscript2 =

0(e) quantities
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We assume that the solution can be described by a regular
expansion of the form
F=f,+ E e"'E (famcos m 6+g,,,.sin m 6) (2-8)
n=1 m=1
where f, represents the unperturbed axisymmetric tube
collapse and f,,,, g.» represent departures from circularity.
From a practical point of view, we are primarily interested in
small departures from circularity (e <0.15) and can therefore
restrict the expansion (2-8) to Of(e¢). It can be argued
physically that the collapse will be most sensitive to defor-
mations of the form cos 26, sin 20 and we therefore truncate
the Fourier expansion at m=2. These terms represent flat-
tening of the tube and ellipticity of the resulting preform core.
The ansatz used for individual variables is:

u(r,@) = u,(r)+u,(r) cos 28
v(r,8) = v,(r) sin 20
V(r,0) = V,(r) sin 20 2-9)
p(r,0) = py(r)+p,(r) cos 26
P(8) = Py+P, cos 20
R(8) = Ry+R, cos 20
K(0) = Ky+K, cos 26,

the latter three expressions holding at both surfaces, i.e.,
R—~R,,, P~P,, and K—~K,,. Quantities with subscript zero
are 0(1) and with subscript 2 are O(¢).

Using the notation d( }/dr=()’, equation (2-1) yields to 0(1)

2ru’ 1 r
ru6’+<3+ ——>u6+—u0—~—p5=0 2-10)
p row
and to 0(e)
2w 3 ;
ru2”+(3+ il >u5——u2—rp2 0. @-11)
n r m

Similarly, equation (2-2) yields to O(e)
3

ruy’ ru 2r
r3V2"+—"V2'—2(1+ -ff—>u2+2m; P _o -12)
p B p

Finally, from (2-3) to 0(1)
(rug)’ =0 (2-13)

and to O(¢)

% Ul +2V, =0. 2-14)

In an analogous fashion, the b.c’s (2-4) and (2-5), may be
separated into 0(1) and O(e) terms. To O(¢) equation (2-4)
yields

—8R,u{+R3V; —2u, =0 (2-15a,b)
while (2-5) yields to 0(1)
—po+2pui=—PyxKyo (2-16a,b)
and to O(e)
=Py +2pu5 + Qu' ug +2uu — piIR, = — Py £ Ky0, (2-17a,b)

where the last term on the left results from the O(e) ex-
trapolation of 0(1) quantities to the deformed boundary, viz,

[w,0.0,ul r = [1,0.0, 1] g,

+[u',v",p" "1z, Ry cos 26. (2-18a,b)

Note that the Fourier expansion permits separation of
variables, where the factors cos 26, sin 28 cancel out of all
equations, leaving a set of ordinary differential equations in »
to be solved numerically at each time step. The results of this
integration are used to update the inner and outer mean radii

Journal of Applied Mechanics

a, b, and their O(¢) perturbations a,, b, by a predictor-
corrector algorithm.

The 0(1) problem (2-10), (2-13), and (2-16) simplifies as
follows. From (2-13)

Uy= — (2-19)

r
where U is an integration constant and, from (2-10), the
integration of the following differential equation

=20’

Py= —5—
r2

(2-20)

involves another constant. These two constants follow from
the b.c.’s
— 2aU o
Po+ S =Py o

2' ]
R R (2-21a,b)

which are obtained from (2-16) with K,=1/R,. Barred
quantities designate the values of variables at
r=R,=a,b=current values of inner and outer mean radii.
Using (2-14), (2-19), (2-21), and K, =3R,/R} cos 20 to
simplify (2-11), (2-12), (2-15), and (2-17), the O(¢) system
becomes

i = — % —2v, (2-22)

2
pl= —2( a +u'> e —4(§+,u> V,—2uW, (2-23)

-
i w S (8
Wi=— -+ — (24 =
2 (r+ " W2 rz r+ " Uy
4 2p,
r_ZVZ—E (2-24)
where
V=W, (2-25)
with the b.c.’s
- 8R, U
RYW, —2ity = —% (2-26a,b)
Rj
. 2[1122 - 4UR2[}, 30'R2
4pV, = +P . 2-27a,b
Dy + Ro + [2240) Ra 2 R(Z) ( a,)

The fact that barred quantities are evaluated at the limits of
integration a, b does not mean that the solution of (2-20), (2-
22)-(2-25) is confined to these radii. The solution is actually
carried to the deformed boundaries by including ex-
trapolations such as (2-18) in the b.c.’s.

The computational algorithm is now completed by writing
explicitly for each time step

a" ! =a" + [uf], o A
B = b7+ [uh], p At

(2-28)

a3+ = a1+ 1), + (18],

bt =g {1+ [g) )+ 1)

where superscripts designate indices in the time sequence.
Finally, one notes that a preform tube whose viscosity
varies through the wall thickness due to compositional and
thermal gradients, can be modeled either by letting n be a
continuous function of r or by defining discrete layers with
different but constant viscosities. Either way, some account
must be given of distortions in the viscosity profile across the
wall thickness, due to internal mass transport during the
deformation process. The viscosity profile in typical preform
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Fig.2 Critical pressure versus outer diameter, 2b

tubes is roughly a step change between the high viscosity silica
tube and the lower viscosity deposit. The layer interfaces in
the discrete-layer model are treated as internal boundaries,
requiring continuity of stresses and velocities. Diplacements
of these interfaces are indicative of distortions in the viscosity
profile. '

3 Results for Uniform Viscosity

We begin by discussing the viscous flow of homogeneous
silica tubes, based on our two-dimensional numerical
simulations. This initial study elucidates some basic features
of viscous tube collapse and serves for later comparison with
more complicated models involving nonuniform viscosity.
Recall that the tube dimensions can be expressed as

a=ay+a,cos 20
and
b=by + bycos 20

where @ and b are the inner and outer surfaces, respectively.

One defines a critical pressure as the value of AP= (P, —
P,) at which the ellipticity neither grows nor decays. The
ellipticity grows if the pressure difference is larger than this
value and decays if it is smaller. The critical AP rises as a silica
tube collapses because stability increases as the walls become
thicker.

The critical pressure difference was experimentally
determined during the collapse of silica tubes. The ellipticity
was first measured along the entire length of a tube using an
optical line scan camera with 2000 diodes. The camera
measures the tube diameter as a function of time. The
ellipticity causes the diameter to vary through two periods per
revolution of the tube. The diameter variation data from the
line scan camera is fitted by a computer to a function of the
form

b(t) =by + bycosuwt + ¢)

where w is the rotational frequency of the tube and ¢ is a
phase shift angle. This procedure allows the determination of
be and b, as a function of position. The torch was then
traversed the length of the tube, resulting in a shrinkage of
about 5 percent. The internal pressure was varied linearly
during this collapse pass. The. ellipticity was measured a
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Fig.3 Deformation history of homogeneous tube

second time and compared with the previous measurement. It
was found there were two distinct regions; in one section of
the tube the ellipticity grew and in the other it decayed. At the
point separating these two regions the ellipticity remained
constant, corresponding to the critical pressure.

Figure 2 compares the theoretical and the experimentally
measured critical pressures as a 19 x25 mm tube collapses.
The excellent quantitative agreement verifies the accuracy of
the theoretical model.

Also of interest is the time behavior of the perturbation
quantities a, and b, which specify the magnitude of the tube
flattening. Typical initial perturbations in the starting tube*
are assumed to be 4, = b, =0.001 cm and we use a value for
the surface tension of o= 300 dynes/cm.

The history of tube deformation during coliapse is shown in
Fig. 3 for a pressure difference AP= 100 dynes/cm? (0.04 in.
of water) between outer and inner surface and initial radii
ay=1.0 cm and by =1.3 ecm.> It can be seen that @, and b,
develop nonmonotonically in time, increasing initially, but as
the tube radius decreases, the disturbance eventually decays in
magnitude. The pressure difference AP acts to destabilize the
tube deformation, whereas surface tension forces o/R have a
stabilizing effect. As the tube shrinks in size, the stabilizing
force increases in magnitude and eventually causes the
disturbances to decay.

The geometry of the preform rod, which is the result of
complete collapse, is of physical interest. The final defor-
mation of the homogeneous tube is presented in terms of
e, =b,/by, i.e., a fractional distortion of the outer surface.
Figure 4 shows the dependence of ¢, on the pressure dif-
ference AP for the case of ¢=1.0 cm and 5=1.3 cm.% It can
be seen that ¢, is very sensitive to AP, varying from
€, =0.0014 at AP=100 dynes/cm? (~0.04 in. of water) to
€,=0.013 at AP=250 dynes/cm? (0.1 in. of water). The
dependence of ¢, on the initial tube wall thickness d=5b—a is
shown in Fig. 5 for 4=1.0 cm and AP=100 dynes/cm?. As
one might expect, thinner-walled tubes are more susceptible to
flattening than thicker-walled tubes. The foregoing results
also illustrate that the fundamental flattening mode develops
gradually in time, i.e., as a divergence from the axisymmetric
condition rather than a sudden departure from circularity.

4Note that the response of disturbances in the linear model, expressed by (2-
1)-(2-5), will scale directly with the magnitude of initial perturbations.

While the numerical results of Sections 3-5 are discussed in dimensional
terms, for the benefit of those involved with lightguide technology, numerical
values on the plots are also supplied in nondimensional form to facilitate their
apglication to entirely different physical situations.

In this context, barred quantities represent initial values of the tube radii.
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Fig.5 Stability versus wall thickness; homogeneous tube

~0.20

4 Numerical Solutions for Nonuniform Viscosity

The remaining discussion of this paper will concern the
more relevant case of a high-viscosity tube, the silica “‘sub-
strate,”’ containing a low-viscosity internal layer, a doped
glass deposit that constitutes the waveguide core. Let the
interface radius between the low and high-viscosity layers be
designated ¢. The formulation of Section 2 must now be
generalized in terms of two boundary value problems, one for
each layer, with continuity conditions imposed on the stresses
and velocity components at the interface. Whereas a
straightforward shooting procedure and linear combination
of independent solutions (with individual, normalized b.c.’s)
sufficed in dealing with the single-layer case, the two-layer
model requires careful planning of the numerical procedure,
This is true especially for cases involving large viscosity ratios
between the substrate and the deposit, where ‘‘boundary
layer”’ effects occur near the interface in the 0(¢) solution. If
the numerical results fail to capture this feature of the spatial
velocity profile, the time evolution of deformations will also
be adversely affected.

The necessary continuity conditions at the layer interface
give rise to the following equations at r=c. Letting quantities
in the inner layer (¢ <r=c) be denoted by subscript —and in
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the outer layer (c<r=<b) by subscript +, the continuity of
velocity components yields at r=c:

hence U_=U,;
From (2-23), one observes that
p; ] [pé ]
24wyl =2 +vs|

[2;4. el 2u M +

to be used in the following. Continuity of the radial stress
yields

u0=u0+ u2=U2+ H Vz_ =V2+ .(4-1)

(4-2)

2U
Po, —Po_ = 5 (h-—py) 4-3)
and
2¢, cV;  cp;
D2, —D2_ =2(M+—M—)[?U—V2+T+4_M], (4-4)

where ¢, =0(¢) radial deformation at r=c. Note that, in view
of (4-2), it is immaterial from which of the two layers the last
two terms in the square brackets are computed. Continuity of
the shear stress yields

, , 4C2
peVal=u Vo =2 —p)| 22U

V 7/ V/
+ 224 P2 —2].

ctat (4-5)
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Equations (4-3)-(4-5) represent jump conditions in py, p,, and
V3, to be satisfied at the interface.

The 0(1) solutions for the two layers are found from (2-
19)-(2-21) and (4-3) in simple analytic form.

The most straightforward numerical approach to the 0(e)
problem consists of integrating across the wall thickness,
taking care of conditions at ¢ along the way. Since four b.c.’s
are imposed by (2-26), (2-27), one may generate four in-
dependent solutions by integrating, say, from a to b; each of
these solutions being normalized to {u,],-, = 1, [P2],= = 1,
[Voly=e = 1, [W2],=, = 1, in turn with the remaining i.c.’s
zero. Each integration proceeds continuously across r=c. A
‘‘particular’ solution is then generated with homogeneous
i.c.’s at r=a and accommodating the jump conditions (4-
4)-(4-5) in p, and V3 at r=c. A linear combination of these
five solutions satisfies the b.c.’s. Numerical integration for
this approach was effected with an extrapolative integration
algorithm, using spline functions (4). This procedure yielded
reasonable results for modest viscosity ratios (0(10?)) between
inner and outer layer, which we describe in the following.

Let a “‘standard’’ tube geometry be specified by

interior radius a = 0.95cm
interface radius ¢ = 1.00cm
exterior radius b = 1.30cm

308/ Vol. 50, JUNE 1983
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2% 103 poise

interior deposit o =

viscosity of ‘‘hard”’

outer shell u, = 10° poise
applied pressure difference AP = 100 dynes/cm?

This set of parameters will henceforth be used as a reference
case.

The time history of a composite tube for the preceding
conditions is compared with the corresponding homogeneous
tube in Fig. 6. As mentioned before, the substrate by itself
behaves nonmonotonically, with a,; and b,y reaching a
maximum and thereafter decaying gradually as surface
tension overcomes the initial growth of perturbations. By
comparison, the composite tube behaves quite differently. It
collapses in less than half the time required for the
homogeneous tube and all three perturbations a,., ¢, b, rise
above their counterparts for the homogeneous tube a,;, b,y
early in the collapse history. The disturbance a,. reaches a
maximum and then rapidly decays to zero. The other two
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perturbations b,. and ¢,. grow monotonically, to become an
order of magnitude larger than the final deformation in a
homogeneous preform. Note that ¢, actually exceeds b,. by a
slight amount. This behavior of the three perturbations
suggest that the interior surface rapidly recovers its circular
shape, due to the fluidity of the low-viscosity deposit, while
the core-cladding interface and the outer surface continue to
flatten, as far as linear perturbation theory goes. In the
regions of maximum flattening the interior deposit increases
in thickness (due to circumferential flow into these parts of
the tube), i.e., it ‘“fills the bulges’’ in the flattened substrate,
while the latter slightly reduces its wall thickness in these areas
(Fig. 7). The fluid dynamic implications of this behavior can
be seen from Figs. 8 and 9, where velocity profiles have been
plotted for u, and v, across the wall thickness and interpreted
schematically.

The rapid return to circularity of the inner tube surface, as
illustrated by the behavior of g, in Fig. 6, should become

Journal of Applied Mechanics

more pronounced as the viscosity of the inner layer is
decreased. At the same time, the velocity derivatives and
strain rates in the low-viscosity layer, near the interface,
should intensify and lead to a more abrupt boundary layer
behavior in that region. For large viscosity ratios, the
“‘shooting’’ procedure described in the foregoing will con-
tinue to generate solutions that formally satisfy all boundary
and interface conditions but yield meaningless results in the
interior of the layers. Replacement of the integration package
with one designed for ‘‘stiff’’ differential equations does not
remove this difficulty.

Fundamentally different approaches to the numerical
analysis had to be explored, and three different procedures
were tried; (1) Gram-Schmidt orthonormalization (for
example, see [S]), (2) interface matching, and (3) a finite-
difference boundary value problem solver that avoids
shooting methods altogether. Results from the second and
third algorithms agreed reasonably well up to viscosity ratios
of 104,

5 Results for Composite Tubes

We now summarize typical results for two-layer tubes in
terms of physical parameters of practical interest.

Out-of-roundness of the two-layer interface is of particular
importance and can be expressed as e.=c,/cy for the
collapsed preform. The dependence of the final geometric
distortions ¢, and ¢, or AP, the mean tube diameter, the
total wall thidkness, and the thickness of the low viscosity
deposit was studied. Figure 10 shows the effect of varying AP
on ¢, and ¢,. The computed collapse time required for each
case is shown in parentheses in Fig. 10 beside each data point.
The collapse time ¢ is proportional to the viscosity. It is not
possible to estimate the actual time required for collapse
because of insufficient information on the temperature and
pressure profiles in the hot zone and on the dependence of
viscosity on dopant level and temperature. Therefore, these
collapse times are only intended to provide a qualitative
comparison. It can be seen that the final tube deformations
are very sensitive, increasing by two orders of magnitude as
AP is increased from — 100 to 200 dynes/cm?. However, the
time required for collapse decreases only by 15 percent
because, at these pressures, surface tension is the dominant
force in driving collapse. Thus, in theory, one should
minimize the overpressure during collapse in order to op-
timize preform quality. In practice, one finds that significant
benefits can be realized by using a small, constant, excess
back pressure throughout the entire process.

Figures 11 and 12 predict the sensitivities of percentage
distortions ¢, and ¢, to changes in the initial interface radius,
c(a and b being scaled appropriately), and total wall
thickness, d=b—a. For ¢ varying between 1.0 and 1.1, out-
of-roundness ¢, increases by a factor of 2 and the collapse
time increases by 20 percent. For 0.25—d—0.45 with a
constant ratio of deposit to substrate thickness, out-of-
roundness decreases by an order of magnitude, with negligible
penalty in the collapse time. With regard to collapse, this
clearly suggests a preference for heavy-walled substrates and
proportionately heavier deposits. The process should not be
scaled up by going to larger tube diameters but either by
depositing more glass with subsequent rod-in-tube over-
cladding or by using thicker walled tubes with proportionately
heavier deposits. Thicker-walled tubes may necessitate the use
of different (hotter) torches in order to adequately heat them.

We now turn to the case of variable deposit thickness inside
a substrate of constant initial wall thickness, i.e. ¢=1.00,
b=1.30, and 0.90=<4d=0.99. Figure 13 displays resulting
ellipticities for this case and one noies that ¢. and €, tend
monotonically toward the appropriate values for the
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homogeneous tube as ¢—1.00 (viz. e, =0.0012 on Fig. 3 for
P, =100 dynes/cm?). Collapse times are also found to in-
crease dramatically with increasing a (decreasing thickness of
deposit), tending to the much longer collapse times charac-
teristic of homogeneous tubes. This result is consistent with
the experimental observation that more time is required to
collapse the preform tube in the entry region where there is
less deposit. These results are extremely interesting. They
imply that, if one can deposit a low viscosity but rather thick
cladding at a substantial rate (1-2 gm/min) then the longer
deposit time for the thicker cladding can be largely offset by a
shorter collapse time, while minimizing terminal values of e,
and ¢, with suitable control of AP,

6 Conclusions

A theoretical model of the collapse process has been
developed and verified by experimental measurements. The

310/ Vol. 50, JUNE 1983

dominant driving force for collapse is surface tension. The
stability depends strongly on the pressure difference, the
deposit viscosity relative to silica, and the deposit thickness.
The decreased stability and shorter collapse times of
multimode preforms is due to the fluid deposit. The insights
gained from the two-dimensional model in this study have
‘permitted control and optimization of the actual (three-
dimensional) collapse process.

References

1 Lewis, J. A., JFM, “The Collapse of a Viscous Tube,”” Vol. 81, 1977, pp.
129-135. .

2 Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena,
Wiley, New York, 1960.

3 Lewis, J. A., unpublished work.

4 Schryer, N. L., “A User’s Guide to DODES,’’ Comp. Sci. Tech. Rep. No.
33, Bell Laboratories, Aug. 1975,

5 Davey, A., and Nguyen, H. P. F., “‘Finite Amplitude Stability of Pipe
Flow,’* J. Fluid Mech., Vol. 45, No. 4, 1971, p. 701.

Transactions of the ASME

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Buckling and Postbuckling of a

C.Y.Wang

Departments of Mathematics
and Mechanical Engineering,
Michigan State University,
East Lansing, Mich. 48824

Long-Hanging Elastic Column Due
to a Bottom Load

A long heavy elastic column is supported at the top end. The bottom end is sub-
Jected to a compressive force. The critical buckling loads, related to zeroes of Airy
JSunctions, are quite different from the Euler buckling loads. Postbuckling shapes
are integrated numerically.

1 Introduction

The stability of a weightless column under compressive
loads was studied by Euler [1]. If the column is pinned at both
ends, the buckling loads are n®>72EI/L? where n is an integer,
EI is the rigidity, and L is the length of the column. The
problem of a heavy vertical column, bottom end fixed and top
end free, was studied by Greenhill [2] who found the critical
density or height of a uniformly weighted column. The
combined effect of column density and end load was con-
sidered by Grishcoff [3] and extended recently by Wang and
Drachman [4] to cases where a finite column is hanging from
a foundation.

In this paper we shall study the long-hanging column. The
column is secured at the top which supports all of its weight.
We are interested at the response of the column when a
compressive load is added to the bottom (free) end.

We assume the column length L is much greater than the
“‘bending length’’ (EI/p)"/?, where p is the weight per length.
In fact, we assume

L/(El/p)' oo 1)
There are three characteristics of this /ong-hanging column:

1. Conditions at the top end (forces and moments applied
at the top end) does not effect the bottom region.

2. There exists a long stretch of midregion which is
almost vertical.

3. The bottom region can move freely as a whole
laterally, i.e., it does not admit horizontal forces.

Figure 1(@) shows the three regions, which may be considered
independent of each other when the column is long enough.
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To simplify the present work, we shall consider a pinned top
end such that the column differs from the vertical only in the
bottom region, where buckling may occur. In this particular
case the top region would be absent.

The present work may be applied to deep sea drilling from a
platform and also to heavy curtains or drapes. In these cases
the assumption equation (1) is well satisfied.

2 Formulation

Figure 1(b) shows the origin of a cartesian coordinate
system (x’,y’) is situated at the bottom end. A local balance
of moment (Fig. 1(c)) gives

dm d*é

F'—ps')sin= —— =—~E]—

( ps’) ds’ ds’?

Here F’ is the force applied at the bottom end, s’ is the arc

length from that end, 6 is the local angle of inclination, and m
is the local moment. Using the following normalizations

2

top 7
region || |
X
mid m+dm
region
ON
w
o
m
)
bottom[ 11 S,
region | {1 - F-ps
= Yy
oy
E
(a) (b) (c)
Fig.1 (a) The three independent regions of a long-hanging column; (b)

the coordinate system situated at the bottom end; and (¢) local moment
balance of an arbitrary small segment ’
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F=F'(EI)"'"%p~%3, s=s"(po/ED', x=x'(p/ED"?,

y=y'(p/ED)'" €
Equation (2) becomes
da*
F+(F—s)sin0=0 (4)

The boundary conditions are that the bottom end is free to
rotate.

do '
— =0 5
PR ©) %)
and that the column becomes vertical at large distances

6(o0)—0 (6)
The actual configuration of the column can be found by

d.
el =cos 8,

d
= 7? =sin0, x(0)=y(0)=0 )

3 Stability

The buckling loads are found by linearizing equation (4)

d*o
—a +(F=5)6=0 8)
Let s— F=r. The problem becomes
d*0
prai rg=0 )

do

—a;—(—F)=O, f()=0 (10$)

The general solution to equation (9) is composed of the Airy
functions

6=CA;(r) +C,B;(r) (11)

The boundary conditions dictate C, = 0 and for a nontrivial
solution

vertical displacement

05+

dA;
dr
The roots of equation (12) are F = 1.018793, 3.248198,
4.820099, 6.163307, 7.372177, etc. [5]. Thus the smallest

(-F)=0 (12)

(critical) buckling load below which the column is stable, is

F' =1.018793 (ED/3p2/? (13)

The other roots correspond to higher modes of buckling.
These buckling loads are entirely different from the Euler
loads n?w?EI/L?. The linear buckling of a long heavy column
was first considered by Willers [6] who, using infinite series,
obtained the value of F = 1.0188 for the lowest mode.

4 Numerical Integration of Postbuckling Shapes

For finite deflections, equations (3)-(6) do not admit
analytic solutions. Numerical integration is required to obtain
the postbuckling characteristics. Such a two-point boundary
value problem may be obtained in principle, for given F, by
guessing 6(0), integrate to large values of s, and see if 6 decays
to zero. This scheme, however, is highly inaccurate due to the
oscillatory nature of 8 for s < F. We find the following
modified method is much better.

Rewrite equation (4) as

d*6

dr?
pick any 81,.,’ guess df/drl,_, and integrate equation (14)
as an initial value problem to large r (» = 5 was found to be
sufficient), and see if  decays to zero. This one parameter
shooting is much more accurate since equation (14) is
nonoscillatory for r > 0. Then using the correct values ¢ and
df/dr at r = 0, we integrate equation (14) backward until
dbf/dr first becomes zero, say at r = r*. Then

F=—-r*>0, (15)
Using equations (4), (5), (7), and (15) the postbuckling

configurations for the primary mode can be found. For the
higher buckling modes one can integrate to the second or

=rsin @ (14)

0|S=O=0|r=r*

H 1 1 i

0 1
F

4 5

Fig.2 Bifurcation of the force-vertical displacement curve. The curves
A,B,C represent the primary, secondary, and tertiary modes.
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Fig. 3 The displacements of the bottom end showing the first three
modes

Fig.5 Postbuckling configurations for the primary mode.
D F =1.029, (D F = 1.061, (3 F = 1.122.
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Fig. 4 The maximum normalized moment represented by 1df/ds| max
for the first three modes

higher zeros of df/dr. The integration was done by the fourth-
order Runge-Kutta algorithm. The error was adjusted by
varying the step size.

Results and Discussion

Figure 2 shows the force-vertical displacement curve for the
long-hanging column. The vertical displacement is obtained
by the difference between s and x at large s. We see that the
curves bifurcate from the trivial solution at 1.018793,
3.248198, 4.820099, etc. These branches are the stability
boundaries for the primary, secondary, and tertiary modes,
respectively. L 1 )

Figure 3 shows the lateral displacement of the bottom end
versus the vertical displacement. The displacements are
normalized with respect to the bending length (EI/p)'/3.

The maximum local moment is an important design
criterium. Since the moment is proportional to df/ds,
equation (14) shows the maximum moment occurs at either s

= For 6 = 0. Since 6 is never zero for the primary mode, the Fig.6 Postbuckling configurations for the secondary mode.
maximum moment is at s = F. For the higher modes the () F = 3.268, (2) F = 3.330, (3) F = 3.445.
Journal of Applied Mechanics JUNE 1983, Vol. 507313
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maximum moment is at the first # = 0. Figure 4 shows the

maximum moment for the primary mode is considerably
lower than those of the higher modes due to the difference in
' the location of maximum |d6/ds|.
The postbuckling configurations for the primary mode are
0) shown in Fig. 5. The decrease in 6 is monotonic. Figure 6
® . shows the secondary mode where 6 changes sign once, while
Fig. 7 depicts the tertiary mode. Elastic columns that buckle
in higher modes have higher potential energy and therefore
' thay are less stable than those in the primary mode. However,
similar to the higher modes of the Euler column, they do
occur in laterally restrained cases.
One may mention that it is possible to do a similar analysis
for a clamped bottom end. The normalized buckling loads are
2.338107, 4.087949, 5.520560, etc. Unlike the Euler column,
the higher buckling loads in both pinned and clamped cases
are not simple multiples of the lowest buckling load.

Our present results also differ substantially from the short-
hanging column [4] which is essentially dominated by the
stiffness. For the short column the buckling is highly sensitive
to conditions at the top end while in the present case the two
end regions are independent. Our numerical results show
disturbances at the bottom end are limited to a region of less
than 10 bending lengths from the bottom.
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Loaded Thin Arches of Arbitrary

The governing differential equations and the virtual work expressions for the large
displacement analysis of thin arches of arbitrary shape, subjected to pressure loads,
are derived. The virtual work expressions are employed as the basis for formulation
of finite element stiffness equations. Classical solutions are obtained, from the
differential equations, for the buckling of circular rings under uniform ‘‘follower’’

(hydrostatic) and ‘‘dead’’ (constant direction) pressure loadings. Finite element
solutions are calculated for elliptical rings for a wide range of axis ratios.

Introduction

Although basic theoretical principles for the inclusion of
pressure-load effects in finite element, elastic instability
analysis have been established for some time now [1], there is
considerable interest in and need for relationships for specific
cases of interest and for the study of the basic properties of
these relationships. Thus, Hibbitt [2], Loganathan, et al. [3],
and Mang [4] have examined the algebraic form and per-
missible approximations for finite element stiffness
relationships that arise when the effects of follower forces are
taken into account. Batoz [5, 6] has studied the formulation
of such relationships for the particular case of circular arch
finite elements.

Because the finite element method owes its significance to
its potentiality for the treatment of structures of rather ar-
bitrary geometry, it is desirable to have available the
theoretical basis for formulation of arch elements of any
shape. Thus, the purpose of this paper is to derive
geometrically nonlinear formulations for arches of arbitrary
shape acted on by pressure loads. Both the governing dif-
ferential equations and the associated virtual work ex-
pressions are presented. Generalized stress vectors are defined
which are consistent with the definitions of the strains. The
interaction of membrane and bending deformations is taken
into account.

The governing differential equations derived herein are
more general than those that have appeared previously.
Frisch-Fay [7] gives basic nonlinear equations for arches of
arbitrary shape, but neglects the interaction of bending and
membrane deformations. Wang [8] presents a linear static
analysis for a class of ring segments. The equilibrium
equations, however, are established for the undeformed
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configuration. The theory can only be used for cycloidal,
circular, catenary, and parabolic rings. If the radius of ring
segments cannot be expressed by R = a sec”"¢, it is inap-
plicable.

In this paper, following the derivation of the equations for
general shapes, various aspects of circular arches are studied.
Using the hypothesis of small middle-surface strain and
moderately small rotation, the governing differential
equations for circular rings are obtained from the more
general equations. These equations are solved for the
eigenvalues for the cases of ‘“‘follower’’ (hydrostatic) and
““‘dead” (constant direction) pressures, yielding solutions in
accordance with previously derived results. Certain aspects of
Batoz’s formulations for circular arches are also verified.
Finally, the finite element method is used to calculate the
critical loads for the elliptical rings of different geometric
parameters under two kinds of pressures. In case of
“follower’’ load, symmetrized load stiffness matrices are
employed.

Strain-Displacement Relations

The middle surface of an undeformed thin arch of arbitrary
shape can be expressed by the parametric equations (see Fig.

1)

Fig. 1
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x=yi(t), i=1,2 1)

The displacement of a point on the middle surface, referred
to the undeformed shape, is

dyf

= 0w, i=1,2 2
u'=—-ltniw, i 2

where v° is the tangent component of displacement, w is the
normal component, and »’ is the unit normal to the un-
deformed middle surface. Lowercase letteis are used here to
denote the displacements measured from the undeformed
state. Subsequently, we will use capital letters to denote
displacements referred to the deformed state.

For the deformed middle surface, the expressions for the
metric A and the coefficient of the second fundamental form
F can be written as follows

A=a[(1 +e)? + ¢?] (3)
and
a J
\/j[(l v ffure+ Loan]vao (L - L))
C))
where
_ d\//l 2 dwz 2
=) (&) )
is the metric of the undeformed middle surface, and
dZ l,[/l d2 ‘//2
— ! 2
I=r T e ©

is the coefficient of the second fundamental form.

Also, in equations (3) and (4), e represents the membrane
deformation and ¢ is the rotation of a normal to the middle
surface of the arch. These are, in terms of the displacements

v’ f

=— — 2 7
¢ dt a v M

1 dw
= 4+ — 8
= ) 0

The strain of the middle surface of the arch is defined as
1 @s)—@d): 1, 1,

m—z—“W——e*'Ee +§¢ &)

where ds and ds are the length of the element of the un-
deformed and deformed middle surface, respectively.
The strain at a point with coordinate z is

1 (ds;)?—(ds,)?
=3 = (A-a)
2 (ds)? 2(1—%z>2a[ ¢
e (0 -L)e]

where ds, and d§z are the length of the element of a fiber that
is parallel to and at a distance z from the middle surface.

(10)

Virtual Work Equations

In the following, the virtual work equations are derived
from which the nonlinear finite element analysis of arches of
arbitrary shape under hydrostatic and constant direction
pressure can be established on the basis of a consistent theory.

First, the equilibrium equations of the deformed arch (see
for example, reference [9]) are
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d [/ N, 0 _
a(J3) &t

Ny, 1 dQ

_+ﬁ T +p=0 r (11
1 dM

VA dr +0=0

J

where N, is the axial force, Q is the shear force, g, is the
frictional drag, p is the pressure, and R is the radius of cur-
vature. From (A4.8), R = A/F. According to the principle of
virtual work, we can construct the following integral

A5 (5) - & vaovs (3 + fz 2 ) ow
(\/% ZM+Q)50} ds= (12)

6V, and W are the tangent and normal virtual displacements,
respectively, referred to the deformed configuration, 66 is the
virtual rotation, and ds = Va dt. L is the length of the middle
surface of the arch with boundaries /, and /,.

Integration by parts of equation (12) yields

1 [ S
[ﬁ(NO 6V0+Q6W+M50):|/11+ B (qy 6Vo+p6)ds

={ [(%6(%)—;@6W>N0+(1 8V + \/i_qa(dW>

)0 o2 ur] s

After deformation of the arch, a point on the undeformed
middle surface wtih coordinates x’ moves to a new position

(14)

(13)

X=x+u

where »' is given by equation (2). Let /4’ be the unit normal to
the deformed middle surface. The virtual displacements can
be expressed as follows

i dl 1 — ‘ll’
Sul = 76V°+ SW= ~—t-6v +n' sw (15)

where
Vi v
W=-2 and v0=-2.
ny and v 7z
Differentiating (15) and using (A42), (43), (46), (47), (7), and
(8), we obtain

(2% ) % om G Lo es(3)] 5

dx! .
=7);6e+n‘\/56¢

(16)

Multiplying both sides of (16) by dx'/dt and A’ respec-
tively, and taking account of expressions (9), (49), and (A45),
the following equations are obtained

ave F 1
6(_dt )- = o= = o a7
1 1 aw a
I_Q(SVO+—\/;1 6<—dt >=-—;1 [pde—(1+e) 6] (18)

In (13) the coefficient of Q is the virtual shear deformation
for the arch. This effect is small and setting it equal to zero we
have
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By using (18), (19), and (A. 6)—(A 9), it can be shown that

1 de 1 d /1

at(ar)= gl spear G () 4] eo
In (13) the coefficient of M is 1/VA 6(d8/dt), which is the
variation of the bending curvature. In expression (20) the last
term in the square brackets therefore represents the influence
of the shear strain on the bending curvature, and can be
neglected according to the Love-Kirchoff hypothesis. Thus,
equation (20) can be written as

1 do 1 1
()= (7524
VA '\ dt A oF 2R6A

By using (17), (19), and (21), the internal virtual work in
expression (13) can be reduced to

51—S [N" 6A+M<6F 16A>]d
=) 12 A 2R s

(19)

@1

=SL (NSE+M8K) ds (22)

where E and K are defined as the generalized normal and
bending strains, respectively. In consideration of (9) and (10)

E= % (A—a)=aE,, (23a)
K=F-f (23b)

and N and M are the corresponding generalized normal stress
vector and bending moment:

N= }1 (NO - %) (24a)
= (24b)
A
The stress-strain relations can be written in the form
=(EQAYE (25a)
M= (EI/AY) K (25b)

where E {2 is membrane rigidity and EI is bending rigidity.
Thus, in view of (25a,b) equation (22) can be written as

61,-=S[<i9>E6E+ (j—ﬁ)k&f{] ds

Substituting equations (3), (4), (7), and (8) into (23a) and
(23b), we obtain
V)]
dt

E—a[-dl———f—w+ <d_v°_iw>2 (f
(27a)
a’  f

at a dt a
k=G0 G- T (e - D)o

d
+dz_w]—<fv°+dw)[d2 £<§W)~f§v°

(26)

dr? drr  dt
f dw /A

- — | —=. - 27b

a dt af} (270)

Substitution of (27a) and (27b) into equation (26) gives the
virtual work in terms of the displacements v°, w, and the
metric a, and the coefficient of the second fundamental form

S
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The external virtual work is

T

+(1+d”0 S )6](1 28
a P w}) owl ds (28)
for the hydrostatic pressure, and
6IC=SLp6wds, (29)
for the constant direction pressure.
The principle of virtual work then can be expressed as
6(l;—1,)=0 (30)

where 6/, is the external virtual work, for the hydrostatic
pressure 6/, = 6, and, for the constant direction pressure 87,
= 6l..

In accordance with the small middle-surface strain and
moderately small rotation hypothesis, i.e.,

e<<l,¢?< <l and Zd—(b<<1
ds
the virtual work expressions (26) and (28) become
EQ dv 1 da
51,:6& —[ —_— e -
L 2q? \th Wa dt "’ v=f
+1<f +dw>2]2d
— _v —_—
2\Va ' dt s
dv df f da) d*w1?
I, s S (G 3 ey s o
and
51—S [—l(fv >6+6]d 32
n= P T \Elt g ) tom (32)
where
v=vav®

Formulation of Governing Differential Equations

The internal virtual work of (26) can be written in the
alternative form

], [a[s () - ] 2 (v

R Ca R PR

For the hydrostatic pressure, the external virtual work is

61,,=SLp6 Wds (34)
and, for the constant direction pressure
6IC=SLp[\/5¢6V°+Jg(I+e)6W]ds (35)
The external virtual work for the frictional drag g is
6Id=SL qoVA 8 V0 ds (36)

Integrating (33) by parts and then combining with (34) and
(36) we obtain the following form of the equilibrium
equations
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NF - d[\/% = (M\/Z)] +M§ +p=0 (37b)

Elimination of N from these two equations gives a single
general nonlinear equation for arches of arbitrary form under
hydrostatic pressure and frictional drag, with force
parameters as unknowns:

aM M M - dp
-+ —5 e —— +ceM+Dy, — +D; p+Dy gy =0
an %) ar Cy ar 0 2 1P 0 do
(38)
where
31 dA lch_leA
2T 4a Fai’"'T A ar
ldA(ldA 1dF>+F
24 dt \A dt  Fad/ R
1 A ldA[leA_ 1 (ﬁé 2]
547 " A di LA df 242\t
R dF[dZA
2FA dt L dr?
*l(d_A)Z] 1dF F dR ldAD—ID
A\ dr Rdt R di 2R gt % 771
1dF 1 dA F

“Fa Aa DTV
Substituting (256) into (38) gives the general nonlinear

equation with displacement parameters as unknowns, for
hydrostatic pressure and frictional drag
a* ¢ EI _ d*> s EI _ d s EI _
i (G ) rerge (G ) ve g (55 6)
Er . d,
teg— R+Dy L 4 D,p+Dygy=0 (39)

A? dr
Similar expressions can also be obtained for constant
direction pressure.

Circular Arch

To confirm the foregoing, we derive the equations of thin
circular arches as a special case. The parametric equations of
the middle surface of circular arches are

x'=pcost,x* =psint

The metric and the coefficient of the second fundamental
form are therefore @ = p?, f = —p. Consider a circular ring
under hydrostatic pressure and constant direction pressure.
For the case of uniformly distributed pressure without
frictional drag, ¢o = 0, dp/dt = 0, and p = — p., in ac-
cordance with the small middle-surface strain and moderately
small rotation hypotheses. From equation (39) the following
differential equation for the hydrostatic pressure case can be
derived.

w2 dPw 1 dw pcr,o(d3 + 1 dw
2 ds? ds’ ds

4 AR > 0 (40
ds’>  p? ds p“ds (40)

Similarly for constant direction pressure the equation is
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déw 2 4 w+ l d*w
dsS  p* ds* 4 ds?
pcrp<d4w 2 d?w w)__
Lty ) =0 41
dsd ,02 dsz p4 ( )

where ds = p dt. ;
The buckling mode is assumed as w = w sin ns/p, where n
is the number of waves.

When n = 2, we obtain the well-known critical pressure
(for example see [10]), for the hydrostatic pressure
EI
P = 3 3
o
and for the constant direction pressure
EI
Po = 4 3
o

Finite Element Formulations

The buckling of rings of different dimensions and shapes
under both hydrostatic and constant direction pressures can
be investigated by the finite element method. For this we use
expressions for the virtual work written in terms of
displacements, i.e., equations (29), (31), and (32).

To transform the preceding expressions into algebraic
form, we first choose approximations for the displacements
and virtual displacements as follows:

v=| N | (8}  ov= [N, | {84)

where | N, | is row vector of expressions that approximate
the shape of the displaced state (i.e., ‘‘shape functions’’) and
{ A} is a column vector of displacements (including rotations,
as appropriate) of specified points on the element, and {5A} is
the column vector of joint virtual displacements. After dif-
ferentiation of v, w, év, and éw and insertion of the foregoing
into the left-hand side of the virtual work expression (30), for
an element, we obtain,

6(l;—1,) = | 6A] [IK°]+p (IKG]1 - [KiD] {A) 42)
where [K°] is the elastic stiffness matrix which includes the
membrane stiffness matrix [K%,] and the bending stiffness
matrix [K$],

[K1=| (L] IND"ES (1d,,] INDa=ds

and

k1= (Ldy) INDTET(d, ) D@~ a5
)7

= L (G a (-5 @ i

[K%]is the ‘“‘geometric stiffness matrix”’

1
K51=J, — (LdJ INDT (Ld, ] IND ds

where

et = L0 3

and

where

S

4] =L

The load stiffness matrix is
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K= CLdu) INDT ( Ldn ) (M) ds
where
f1d
dy]=110], |dp)=| L =%
Ldn] = [10), L= | 2 22

It should be noted that [K%], in general, is an unsymmetric
matrix.

Summation of the element virtual work of all elements gives
the global virtual work. In accordance with the principle of
virtual work, equation (30), from equation (42), we have for
the structural system

K]+ P (K] - [K. D] {A) =0 (43)

The critical pressures are obtained by solving the algebraic
eigenvalue equation stemming from the foregoing.

Finite Element Solution for Elliptical Rings

The buckling of elliptical rings of different dimensions
under both ‘“‘follower’” and ‘‘dead” pressures is now in-
vestigated by use of the finite element method. For elliptical
arches the middle-surface equations are

x!'=b, cost, x*=b,sint
According to (4) and (5), we have
a=>b? sin’t+ b3 cos?t
and
. ~by by
(b} sin?f + b3 cos?r) 2
The hypotheses of small middle-surface strain and
moderate rotation are used in the formulation. Both
displacement functions, v and w, are approximated by cubic
polynomials. The finite element mesh of a quarter of the ring
(see inset, Fig. 2) consists of 12 elements with a total of 52

degrees of freedom. For the ‘‘follower’ pressure the load
stiffness matrix is symmetrized.

Journal of Applied Mechanics

Table 1
Py
by=110 b =120 b, =140
Load *b1=b2=100 b2= 920 b2= 80 bZ: 60
‘‘dead”’ 4.0000 3.7724 3.3128 2.1617
“follower”’ 3.0232 2.8140 2.7352 2.0333

*2b; —long diameter of the ellipse
2b, —short diameter of the ellipse

1
Kf1= E([KL]+[KL]T)

where [K;] is the unsymmetric load stiffness matrix. The
thickness of the arch is taken to be t = 1.0, the width & =
12.0, and elastic modulus £ = 10°. The results of the com-
putation are summarized in Table 1 and Fig. 2.

The results show that the 1.33 ratio between ‘‘dead’’ and
“follower’’ instability pressures for circular rings approaches
1.0 as the axis ratio decreases. Comparison of the finite
element and classical solutions for the circular ring discloses a
high degree of accuracy for the former. However, there
appears to be no available comparison solutions for elliptical
rings for the phenomena studied.

Concluding Remarks

The purpose of this paper has been to present the basic
relationships, in the form of both differential equations and
the virtual work expression for pressure-loaded thin arches of
arbitrary shape. Using the virtual work expression and
displacement approximations often employed in the finite
clement representation of circular arches; finite element
stiffness equations are constructed for an elliptic arch
element. These are employed in analyses of pressure-loaded
elliptic arches for the full range of axis ratios.
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APPENDIX

Basic Geometric Relations

For the undeformed middle surface, the relations between
the geometric characteristics are

JUNE 1983, Vol. 50/ 319

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



n’=ﬁe,j a (A1)

dn’ fody
d ~  a dt (A2)
ey '
2V (43)
r= % (A4)

where e; is the permutation symbol and r is the radius of
curvature of the undeformed middle surface.
Similarly, for the deformed middle surface we have
- 1 dx’/

= ,, ——
n \/746” P (AS5)
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dil  F d¥ 6

dt A drt )

i N

ae (A7)
A

where R is the radius of curvature of the deformed middle
surface.

According to expressions (2), (7), (8), and (14) the tangent
to the middle surface of deformed arches can be written as

d _av

dr —71’—(1+e)+n’\/3¢

(49)
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Theoretical and Experimental
Investigation of the Nonlinear
Torsion and Extension of Initially
Twisted Bars

A set of nonlinear equations that describe the nonlinear deformation of initially
twisted bars under the influence of torsional moment and tension force, which act
simultaneously, are derived. Special attention is devoted to the case of thin sym-
metrical cross sections and the equations appropriate to this case are shown. The
linear terms of the equations, in the case of thin rectangular cross sections, are
compared to solutions of the same problem, obtained by other researchers, who
investigated the torsion and extension of helicoidal shells. It is shown that even for
thin cross sections having large values of initial twist, the deviations between the
two linear solutions are very small. To check the applicability of the theory to
nonlinear regions, the theoretical results are compared to experimental results
obtained during the course of the present research. The experiments include the
torsion and extension of thin steel strips having rectangular cross sections. The

A. Rosen

Senior Lecturer,
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Haifa, Israel

agreement between both is very good, which proves the validity of the theory.

1 Introduction

The influence of initial twist on the torsional rigidity of thin
prismatical bars was pointed out by Chu [1] who investigated
the problem theoretically and experimentally. Recently it was
pointed out [2] that the mathematical treatment of the
problem, presented by Chu suffered from certain kinds of
inaccuracies. These inaccuracies resulted mainly from the fact
that a nonorthogonal system of coordinates was used without
using the appropriate theory for such a system. These inac-
curacies have continued to appear in the vast literature dealing
with the structural behavior of initially twisted blades of
marine and aircraft propellers, helicopter rotors, different
kinds of turbines, and other cases. It was also pointed out [2]
that the influence of initial twist on the behavior of bars may
be explained by the influence of the initial twist on the con-
tributions of warping. Following this indication, a new theory
that decribes the influence of initial twist on the torsional
rigidity of the bars was developed [3, 4]. It was shown that in
certain cases the results, according to the new theory, were
identical to those of Chu [1] and matched experimental results
very well. In other cases they succeeded in overcoming the
weak points on the previous theory. Following the results of
[2] the torsion of initially twisted bars due to extension was
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also explained by the influence of initial twist on the warping
of the bar [5].

In the present paper the investigation presented in the
foregoing is extended as follows: while in the previous cases,
application of torsional moment alone or tension alone were
considered here, the behavior of the bar under the
simultaneous action of the two is considered. Moreover, the
derivation is consistent and the region of the applicability of
the theory is defined. To prove the validity of the theory the
linear terms are compared to the linear solution to the
problem of extension and torsion of thin strips with rec-
tangular cross sections obtained by other investigators using
shell theory. In addition, theoretical results are also compared
to experimental results that were obtained during the present
research, so the ability of the theory to describe the nonlinear
behavior is also assessed.

2 Theoretical Derivation

An initially twisted bar is shown in Fig. 1. The length of the
bar is / and all the cross sections are identical. The initial twist
is presented by a rotation § of the cross section about the x
axis. The initial twist k, is given by:

ag
k e ¢))]
The present derivation will be restricted to the case of con-
stant initial twist. It is also limited to twisted bars with cross
sections having two-fold symmetry. Otherwise the torsion and
axial extension are coupled with bending, which is not in-
cluded in the present analysis.
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General description of the loaded initially twisted bar

Fig. 1

In Fig. 1 two different systems of coordinates are
presented. The first system is the x, y, z system which is a
fixed-in-space system. The axes y and z are orthogonal to x
and to each other, which yields an orthogonal system of
coordinates. The second system is the x, n, { system where 7
and { are the principal axes of the cross section of the bar,
perpendicular to each other, and rotate with the cross section
along x. The angle between the axes n and y equals .

A torque M, and an axial force T are applied at the end of
the bar. As a result, the bar deforms and the displacement

vector of each point of the bar, W, is given by
W=ué. +vé,+wé, )

where é,, €,, and é, are unit vectors in the directions of x, y,
and z, respectively. It is assumed, as was done previously {3,
4], that the deformation is a superposition of a Saint-Venant
torsion together with some axial motion u; of each cross
section, unknown at this stage. The displacement components
will then be:

u = u+6y Ba)
= y(cosp—1)—zsin ¢ (3b)
w = ysineg+z(cosep—1) 30)

where ¢ is the Saint-Venant warping function, ¢ is the angle
of rotation of the cross section, and § is the change in ¢ per
unit length, given by:

de

0= ™ 4

Equations (3a-c¢) differ from equations (10a-c) of {3] or
equations (3¢-¢) of [4] by the fact that finite values of ¢ are
allowed. Equations (3a-c) converge to the other equations
assuming ¢ to be small enough so that cos ¢ equals unity and
sin ¢ equals ¢. To simplify the derivation it will be assumed
that the bar is free to warp at the ends. This assumption
results in uniform torsion along the bar, which
mathematically means that 6 is constant and not a function of
x. If necessary, the equations for the case where warping at
the ends is restrained may be obtained in the same way that is
presented here, but the derivation is a little more tedious.

By differentiation of equations (3a-¢) the nonlinear strain
components are obtained as:

du N 1 [( au>2+<au>2+<aw>2]_
o T Tox 2 ax dx ax h

N 1
PR + J—
ax 2

Il

€ +0 [<61+0%)2 +02(y2+z2)] (5a)

. Nomenclature

A = cross-sectional area of
the bar K = cross-sectional constant

a = the length of a rec- defined by equation
tangular cross section (10e) u, = the axial motion of the

b = the thickness of a k = the initial twist of the cross section
rectangular cross sec- bar defined by equation ¥ = the total potential of the
tion (1) deformed bar

D = cross-sectional constant { = length of the bar W = the displacement vector
defined by equation M, = the torsional moment of each point of the bar
(10a) that is applied to the bar x,y,2 = orthogonal fixed-in-s-

E Young’s modulus of N,Q = constants of a thin pace system of coor-
elasticity symmetrical cross dinates

é:,€,,€, unit  vectors in the section defined by B8 = the angle of initial twist

directions x, y, and gz, equations (16a,b), of each cross section of
respectively respectively the bar

F cross-sectional constant S = cross-sectional constant €xxs€xyr €y = the strain components
defined by equation defined by equation ¢ = ordering measure
(10b) 10H ¢; = defined by equation (6)

G shear modulus of T = the tension force that is 7, = the principal axes of
elasticity applied to the bar each cross section of the

1, polar moment of inertia t\,ty,t,t; = correction factors in bar
of the cross section equations (184, b) 0 = elastic twist

Js the Saint-Venant linear u,v,w = displacement com- v = Poisson’s ratio
torsional stiffness of a ponents, in the ¢ = angle of elastic tor-
bar without an initial directions x,y, and z, sional rotation
twist respectively ¥ = the warping function
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1 ou 6v) 1 (6u ou v ov

v = ==+t )+ = (= —+ — —
€y 2(3y x/ " 2\x & T x o
+6w aw')_
ox dy -
1 1 3y oy EVAN
P e )
3 rr 4 e e,+9a (5b)
_i<ﬂ+a_w)+1<auau dv  ov
€xe 2 \ 9z = ox 2 \ox 3z  ax oz
aw 6w>_
ox 8z /
1 oy i ay
2 gy ()]
3 %z +y+ a2 € +6 ™ (5¢)
where
du, ©)
6:—
: ox

As a result of our assumptions ¢, is constant along the bar.
The derivation will now be restricted to the case of small
strains and finite rotations. This means that the terms (du,/dx
+ 00y/0x), 1/2 0 (04/3y — z), and 1/2 6 (3y/dz + y) are of
order ¢, which is the order of strain. Since the derivation is
restricted to the elastic region it means that for metals e equals
0.005, at the most. Mathematically the finite rotations mean
that the terms 0y, 6z, 8 dy/0z and § dy/dy are of lower order
than the strains. The derivation will be restricted to cases
where these terms are of order Ve. For metals this means that
these terms are, at the most, of order 0.07. Since Ve is still
small, it will be neglected compared to unity. Therefore the
underlined terms in equations (5a,¢) will be neglected.

If at the edge x = 0, rotation and axial motion are restricted
such that:

x=0 Q)

Then the potential of all the internal and external forces that
act on the bar is given according to bar theory, and based on
our assumptions, by:

e=u, =0 for

! E
S SA S[“ Exxz +26(6xy2 +6x12):| dx dy dz

V’zo 2

Ty —My_y=

/ E
= SO {SA 5[7 o’ +2G(e,, +fxzz)] dx dy

- Te, M8} do ®)
Substitution of equations (5a-c) into equation (8) implies:

¢ B
V = SO [.7 (Aelz+25e10+1<62+1pe102+003+

1 G
+ ZM‘*) + o 0= Te, —M,H}dx ©)

SA S(g—f>(yz+z2) dy dz
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F=| foreer ava (108)
1, = | forray v az (100)
T (TR A P
- LI v
L) v

J, is the well-known Saint-Venant torsional stiffness of the
same uniform bar without initial twist; 7, is the cross-
sectional moment of inertia, while F is the fourth-order area
moment of the cross section. All the other terms D, K, and S
involve integration of terms containing dy/dx over the cross
section. In the present case of uniform cross section the only
contribution to (3y/dx) is due to the initial twist.

Since the bar is in equilibrium, V should obtain a stationary
value. This means that the first variation of V with respect to
¢, and 6 should vanish, which implies that:

1
EAde, + ESO+ —-2—E1p62=T (11a)

3 1
ESe, + (GJ;+EK)O+El,e 0+ 7ED92+ TEF(P:M,

(11b)

The underlined terms in equations (11a,b) are the nonlinear

contributions. Substitution of the expression for ¢;, as ob-
tained from equation (11a) into equation (115), yields:

s? 3 1,8 1 1,2
-5 5 (050 3 (- 2)e]
{GJS * A 2 A b+ 2 A

(12)

The first term in the curly brackets on the left side of equation
(12) presents the usual Saint-Venant torsional rigidity of the
bar without initial twist. The terms in the square brackets
present the change in the torsional rigidity due to the initial
twist and nonlinear terms associated with the elastic twist, The
last term in the braces presents the increase in the torsional
rigidity due to axial force in the bar {6, 7]. This term is known
to be important in the case of open, thin cross sections. The
first term on the right side of equation (12) is the applied
torsional moment while the second term represents the
contribution of the axial force to the torsional moment due to
the presence of initial twist. The underlined terms in equation
(12) are again the nonlinear contributions.

3 The Case of Thin Symmetrical Cross Sections

It was shown [3, 4] that in the case of thin symmetrical cross
sections, as shown in Fig. 2:

0 _ 0y om0y 8¢ (. N _, o, o
ax  on ox | ar ox “k(fan "a;)‘k("z £
(13)

Substitution of equation (13) into equations (10a-f) implies:
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file:///~dx~

Fig.2 Cross section of a thin-walled prismatical bar with initial twist

D = kSA Sn4(1— %)dﬂ d¢ (14q)
F = SA Sn4<1+ 5—2) ’ dn d¢ (14b)
I, = SA S"z (1 + i—i)dn d¢ (14¢)

kZSA Sn“<l~ j;—z>Zd77 dc  (144)

(- 5o

S (14e)

i

The underlined terms in equations (14a-e) are negligible in the
case of thin cross sections which results in:

D = kN (15a)
F=N (15b)
I =0 (150)
K = kN (15d)
s =k (150
where
N = SA Sn“dnd( (16)
0 = | |ramur (160)

In the case of thin rectangular cross sections where the length
of the cross section is @ and the thickness b, one obtains:

ab
= — 17
N 80 (174)
a*b
= — 17b
Q 2 (178)
A =ab (17¢)
1
J, = 34 b3 (17d)

Equation (17d) may be found in any elementary book on the
theory of elasticity (for example [8] page 273, equation (155)).
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If equations (15a-e) and equations (17a-d) are substituted
into equations (11a-b) and the nonlinear terms are neglected,
the linear equations for the case of thin rectangular cross
sections are obtained. These linear equations enable one to
obtain an assessment of the accuracy of the present theory.
This is done by comparing these linear equations to the linear

“solution of the same problem which was obtained by Knowles

and Reissner [9] who investigated the torsion and extension of
helicoidal shells. The linear solution may be described as:

1
Bab(1 +1))e, + - Bka*b(1 +1,)0=T (18a)
1 1
— Eka®b(1 +1,)e, + [ — Gab’ (1 +13)
12 3
1
+ g5 EK2ab(l +t4)]0:M, (18b)

According to the results of the theory presented in this paper
1), 5, t1, and ¢, are zero while according to equations (7.5),
(7.6), and (8.4) of [9] they obtain the following values:

3+4p 5 29+ 88v4 5612
- T (ka)* +0[(ka)°] (19
t A (ka)* + 1920 (ka) [(ka)*]1 (19a)
9+ 8y 161 4+ 304p+ 1522
- _ 2 4 6
t 20 (ka)* + 4480 (ka)* + O[(ka)®]
(19b)-
ty = —l(ka)2+ 63 (ka)* +0[(ka)®] (19¢)
T 24 640
45+ 20v 531450442322
{y = — 2 4 6
4 T68 (ka)* + 10368 (ka)* + O[(ka)®]
(1%9a)

From equations (18a4-b) and (19a-d) it is clear that in the cases
where (ka) is smaller then 0.5 the difference between the
results of the two theories will not exceed 8 percent. For value
of (ka) smaller than 0.25 the difference is less than 2 percent.

Additional theoretical confirmation of the present
nonlinear theory, beyond the support offered by the /inear
theory of helicoidal shell [9], may be found in an unpublished
work of E. Reissner. In that work, a solution on the finite
axial torsion and extension of a slightly pretwisted strip is
obtained by using Marguerr’s shallow shell formulation. The
nonlinear results of that work agree with equations (11a-b)
when the case of thin rectangular cross sections is considered.

Substitution of equations (15¢-e) and equations (17a-d)
into equation (12) yields the nonlinear equation:

{1 + % —g— ( %) ’ [(ka)2 + % (ka)(6a)

1 T
+ 7 (0(1)2 +15 E—ab:l} (fa)=

20)

M, 1 E(a

)
G 4 o \p/) ®gy

The terms in the square brackets on the left side of equation
(20) present the relative increase in the torsional rigidity due to
initial twist and nonlinear contributions. The first term on the
right side presents the linear value of (6a) due to the applied
torsional moment for the same untwisted beam, while the
second term presents the linear contribution to (@) of ex-
ternally applied tension. In the next section the validity of
equation (20) is checked by comparison to experimental
results.
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Fig. 3 The behavior of initially twisted steel strip under the action of
end torisonal moment

0.004 b~ —-  THEORY ®
e  EXPERIMENTAL RESULTS .’
T .
EA °
L]
L]
L
°
0.003 |- .
°
( ]
2
o
L]
L]
0.002 (]
(]
0.001 —
| | I | |
0 -0.02 ~0.04 -0.06 ~0.08 -0.10
(eq)

Fig. 4 The behavior of initially twisted steel strip under the action of
end tension force

4 Experimental Results

The experiments included measurements of the elastic
torsion of initially twisted, thin rectangular steel strips under
the action of external tension force and torsional moment.
The material properties were E = 1,92 + 10° N/mm? and G =
7.45 « 10* N/mm?,

The dimensions of the first specimen’s cross section were: a
= 10mm and b = 0.5mm. The length of the strip was 600mm,
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long enough to allow the neglect of any influence of the
boundary conditions. The initial twist was ke = 0.224. The
purpose of this experiment was to investigate the behavior of
the strip under increasing end torsional moment. The strip
was held fixed at one end and the other free end was loaded by
a tension force of 28.6 N. Then increasing values of torsional
moments, M,, were applied at the same free end while at each
moment the elastic twist was measured. In Fig. 3 the elastic
twist (fa) as a function of the nondimensionalized torsional
moment 3M,/Gb?, relative to the case M, = 0 T = 28.6 N, is
given. The solid dots present the experimental results while
the solid line is the theoretical results obtained by using
equation (20). It is shown that up to values of (6a) = 0.12 the
agreement between theoretical and experimental results is
excellent. As the applied torque is increased the deviation
between theory and experiment is increased, while theory
predicts a slightly lower elastic torsion. This deviation is
expected since the values of (fz) and (8y) slightly exceeds the
previously mentioned limit of 0.07. Even then one can con-
clude that the agreement between theoretical and ex-
perimental results is still very good. The dotted line in Fig. 3
represents the linear theory. It is clearly seen that at values of
(6a) as low as (8a) = 0.05, nonlinear effects should be in-
cluded to accurately enough predict the behavior of the strip.

The dimensions of the second specimen were: ¢ = 4.45mm,
b = 0.2mm, and length of 710mm. The initial twist was ka =
0.203. The purpose of this experiment was to investigate the
elastic untwist of the strip due to the action of tensile force.
During initial tests it was found that the compressive stresses
that are developed in the edges of the strip, while untwisting,
tend to cause edge buckling of the thin strip. As a result of this
buckling the torsional rigidity of the strip is reduced and the
present mathematical model is no longer appropriate. To
avoid this problem, a concentrated torsional moment of
57.5Nemm was initially applied to the free edge of the strip
which caused a substantial elastic twist. Increasing values of
the tension force were then applied at the same edge which
caused elastic untwist. This caused a reduction of the tensile
stresses due to the initial torsional moment, but since they did
not prove to be negative, buckling of the edges was
eliminated.

Figure 4 presents the elastic untwist of the bar relativeto the
state of M, = 57.5Nemm and 7 = 3.92N. In Fig. 4 the ex-
perimental results are compared with the theoretical
predictions according to equation (20). Throughout all the
regions the agreement between the two is very good. Part of
the deviation may be explained by experimental errors which
are also noticed if one examines the smoothness of the ex-
perimental curve,

The almost linear behavior of (6a) as a function of (7/EA)
may lead to the wrong conclusion that the phenomenon is
mainly linear. The reason for the linear appearance is the fact
that while the term 3/2 (ka) (0a) in equation (20) presents a
reduction of the torsional rigidity, the terms 1/2 (fa)?> + 15
T/Eab present an increase of this rigidity. These two opposite
influences, although noticeable by themselves (the increase in
the torsional rigidity due to the term (157/Eab) exceeds 47
percent) tend to cancel each other and results in a ‘‘linear-
looking’’ behavior.

5 Conclusions

A nonlinear theory that describes the nonlinear behavior of
initially ‘twisted bars under the simultaneous action of axial
tension and torsional moment has been derived. The theory
includes the influence of the initial twist on the torsional
rigidity and torsional moment through its influence on the
warping of the bar. Nonlinear effects include the influence of
elastic twist and tension on the torsional rigidity. Special
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attention has been devoted to the case of thin symmetrical
cross sections. The validity of the derivation for the case of
thin cross sections was proved in two ways. At first the linear
set of equations for the case of thin rectangular cross sections
was compared to the equations of other researchers who
solved the same problem from another point of view, by
considering it as torsion and extension of helicoidal shells. It
was shown that up to values of (ka) = 0.5 the difference
between the beam theory and the shell theory did not exceed 8
percent. This difference is proportional to (ka)? and decreases
very rapidly with a decrease of (ka). The second way to check
the accuracy of the derivation included a comparison of
theoretical predictions to experimental results. The ex-
periments included the extension and torsion of thin rec-
tangular strips. In all cases the agreement between the two was
very good, a fact that proves the validity. The experiments
and theoretical calculations covered large regions of nonlinear
behavior. It was shown that to obtain valuable theoretical
results it is important to take all the nonlinear effects into
consideration.
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Penetration of Targets Described
by a Mohr-Coulomb Failure

D. B. Longcope

M. J. Forrestal

Criterion With a Tension Cutoff’

A model is developed to estimate the force on a conical-nosed penetrator for normal
entry into geological targets that have linear hydrostats and fail according to a

Sandia National Laboratories,
Albuquerque, N. Mex, 87185
Mems. ASME

Mohr-Coulomb criterion with a tension cutoff. The model is applicable to targets
with shear strength which either increases with pressure (dry rocks) or is constant
(sea ice, concrete, saturated rocks). For high enough penetrator velocity the target

response is elastic-plastic, but at lower velocities stresses exceed the target tensile
strength and the response includes an additional cracked region. Parametric results
are obtained via a similarity transformation and solution to a nonlinear wave
propagation problem. Predicted and measured penetrator decelerations are
compared for a field test into a dry rock target and reasonable agreement is shown.

Introduction

Projectile penetration has been studied extensively for both
metal and geological targets [1]. Investigations have focused
on depth of penetration, deceleration history, loads, and
structural response. Various approaches have been taken
including the development of empirical relations such as those
of [2] to predict penetration depth, the use of cylindrical or
spherical cavity expansion approximations of target response
for metals [3] and rocks [4], and the derailed modeling and
numerical = solution of rock target responses with two-
dimensional wave codes [5].

The present study is concerned with predicting the resistive
force on a rigid conical-nosed penetrator during normal entry
into a geological target and uses a cylindrical cavity expansion
approximation. As in [4], a linear hydrostat represents the
target pressure-volume strain behavior in contrast with the
locking hydrostat model which has been employed in other
cavity expansion analyses, such as [6]. The target shear
strength is modeled by a Mohr-Coulomb failure criterion with
a tension cutoff [7] and includes unconfined compressive
strength which was neglected in [4]. This model is used to
represent pressure-dependent triaxial failure data of antelope
tuff [8], a dry porous rock from the Sandia Tonopah Test
Range, Nevada, and can also represent materials with con-
stant shear strength such as sea ice, concrete, and saturated
rock.
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Army, Pershing 1I Project Manager’s Office.
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At high enough penetration speeds the target response is
elastic-plastic, but at lower speeds when the circumferential
stress gy exceeds the target tensile strength, an additional
cracked region with g, = 0 is included in the response. The
extent of the cracked region may be significant when the
target tensile strength is much less than its compressive
strength, which is typical of geological materials [7].

The target response is calculated by solving a nonlinear,
radial wave propagation problem via a similarity trans-
formation and numerical integration. Graphical results in-
clude stress wave profiles ‘in the target, stress on the nose
versus penetrator velocity, and the effect of uncertainty in
tensile strength on the stress on the penetrator nose. For
quasi-static penetration, a closed-form expression is
developed for the stress on the conical nose. Predicted and
measured penetrator deceleration histories are compared for a
field test into a layer of antelope tuff and reasonable
agreement is shown. Velocity-dependent interface friction is
considered as an explanation of a significant increase in the
measured deceleration just prior to the penetrator stopping.

Governing Equations

A rigid projectile with a conical nose penetrates a uniform
target medium with normal incidence in the z direction; see
Fig. 1. The axisymmetric target response is reduced to a one-
dimensional response by making the cylindrical cavity ex-
pansion approximation. This approximation allows only
radial target motion, which is reasonable for penetrators with
sharply pointed, slender noses, and enforces plane strain, e,
= 0, a condition that may be approached at depths greater
than a few penetrator aft-body diameters. Penetration of a
given elemental layer of thickness dz produces wave motion in
the radial direction only and the layer responds independently
of other layers. Lagrangian and Eulerian radial coordinates,
denoted R and r, respectively, are employed in the analysis
and are related by
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r=R+u ¢))

where u is the displacement in the radial direction. Target
response regions are separated by two radially propagating
wave fronts located at Eulerian coordinates ¢ ¢ and c,f at a
particular time ¢ after the nose has begun to penetrate a given
layer. .
The equations of momentum and mass conservation in
terms of the Lagrangian coordinate R are, respectively,

4—23—1
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Fig.1 Geometry of the problem and target response regions
300 —
200
g K
2
a
® MEAN
1001~ I DATA RANGE
0 ! L L
[ 0.04 0.08 0.12

VOLUMETRIC STRAIN 7
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OR

where py, p are the initial and current densities and g,, oy are
the radial and circumferential components of Cauchy stress
taken positive in compression.

Material compressibility is modeled by a linear pressure-
volume change relation (hydrostat)

1 :

P=Kn; P=§(a,+00+oz); n=1—pg/p (4a, b, ¢)
where K is a constant, P is the pressure, and 7 is the
volumetric strain. A pressure-dependent yield or failure
condition is assumed in the form

o, —ag=pP+71; To=(1-u/'3)Q 5
where p and 7, are constants and Q is the unconfined com-

pressive strength. An additional requirement is that the tensile
strength Y of the material may not be exceeded,

(6)

Together, equations (5) and (6) have been called a Mohr-
Coulomb failure criterion with a tension cutoff [7]. It is
assumed that (5) and (6) hold for large strains. In fact, e,
according to the elementary strain definition is infinite along
the conical nose, R = 0. At stress states below failure, the
response is elastic and is governed by the isotropic Hooke’s
laws expressed in terms of Poisson’s ratio » and the bulk
modulus K, taken to be the same as in {(4q). Equation (4a) with
K = 2.0 GPa and (5) with 0, = g, (discussed later), p = 1 and
7o = 10 MPa are compared with triaxial test data of antelope
tuff [8] in Figs. 2 and 3. Antelope tuff is a partially welded
ash-flow tuff with 30 percent porosity. The data are from
field cores taken over a depth of 7.5 m at the Sandia Tonopah
Test Range, Nevada. The data of Fig. 2 suggest some
nonlinearity in the hydrostat; however, the linear fit is within
10 percent of the mean data over the range shown. This range
is sufficient for typical geologic penetration calculations
(including those of this paper), as verified a posteriori. In
addition, the total force on the penetrator is an integration of
the stresses on the nose which is not as sensitive to small errors
in the target model as other results might be, such as stress
waves in the target. In Fig. 3 each data point represents the
failure of a sample at a particular confining pressure which
corresponds to o, in a penetration application. Since the
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Fig. 3 Triaxial strength data for antelope tuff and the Mohr-Coulomb

failure criterion with a tension cutoft
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difference in axial and lateral stress, o,—ay, increased
moderately with increasing axial strain to sample failure,
equation (5) fitted to the data will overestimate the material
resistance to deformation. The tensile strength of antelope
tuff was not measured but the ratio Q/Y = 11 is estimated
from data in [7] for a similar rock, Nevada Test Site tuff,
described as welded volcanic ash with a porosity of 20 per-
cent. ’
To simplify the solution procedure we assume

0;=0p ' 0
except where the response is elastic, which eliminates use of
the Prandtl-Reuss equations [9]. The calculated o, at the
conical nose is not sensitive to the assumption (7) as shown
later by a comparison with results from o, = (g, + g4)/2
which has frequently been assumed in plasticity calculations
[9].

The equations of conservation of momentum and mass
across a cylindrical wavefront propagating in the radial
direction with speed c are

g, 4+p v (v —c)=0. " +ptvt (vt —¢) (8)

p (T =c)=pT (v —c) ©)

in which v = 0u/at is the particle velocity and + and — refer

to particles on the radially outer and inner sides of the wave
front, respectively.

The boundary condition is that the cavity radius in a given
layer dz conforms to the conical nose

u(0, t) = (Vtang)! (10)

where V is the vertical velocity of the penetrator, assumed
constant during passage through a layer, and ¢ = 0 is the time
at which the conical nose first contacts the layer.

Elastic-Plastic Response

For high enough radial expansion velocity, tensile stresses
in the target do not exceed the tensile strength of the rock and
an elastic-plastic solution is valid. In Fig. 1 the response
region between interfaces 1 and 2 is elastic with wave front
speed ¢, while the inner region is plastic with interface speed
Cy.

Elastic Response. Equation (2) is linearized and written in
terms of u# using Hooke’s law (with K, ») and ¢, = 0u/0dR, ¢
= u/R, and ¢, = 0. The resulting equation is reduced to a
first-order ordinary differential equation in dg/d{ by the
transformations

R _ou
= u:—-—;

ct’ ot

u==%q an
where £ is a similarity variable and ¢, is the unknown velocity
of the elastic-plastic interface. Integrating, satisfying 4 = O at
the elastic wave front (¢ = 1/y, v = ¢,/¢;, ¢3 = [3(/(1 -
/(1 +v)]1K/py), and satisfying the condition of incipient
plasticity (5) at the elastic-plastic interface (¢ = 1) gives the
results

i=(1+»D[f(x) —xg(x))/(37);

v=2(1+»)Df (x)/(37) (12a, b)
o, =D[(1-2»)f(x)/x+g(x)]; @ =2Dg(x)—a, (12¢,d)
SOy =(0-x)"/x; g(x) =Inlf(x) +1/x]; x=~¢&

D=3v7,/[6(1 - 2v)yf(v) —2u(1 + ») vg (7)]
where

1 <t< /Yy, 7 =1/K,0=0/¢;, 5,=6,/K, 55=0,/K.

Elastic-Plastic Interface Speed. Equations (4), (5), and (7)
are combined in the form

Journal of Applied Mechanics

0, =(1 +2u/3)K(1 = po/p) +274/3 (13)

which applies on either side of the interface at £=1. Then (9),
and (13) are used to express (8) across £ = £, = 1 in terms of
vy, ¢, 01, o with the result

(55 —27,/3) (1~ 0, %)
142p/3 —?2(1 -0, *)?
where a = ¢,/cpandcp = (K/pg)/?.In(14), v, * and a,*
are known through (125, ¢), but o* and ¢, ~ are unknown. cp
is often called the ‘‘plastic’’ wave speed and is the elastic-
plastic interface speed for one-dimensional strain elastic-
perfectly plastic problems. For spherical waves this interface
speed is not always c¢p and is unknown a priori; e.g., see
Hopkins [10].

Plastic Response. Using (3)-(5) and (13) to substitute into
(2) along with the transformations (11) gives the equation of
motion in the plastic region

U, " =0,% + (14)

(1o 3)ieror] 52
S(CEDERT

du du du
—u(e S v Y o] (14 25 ) =0

w(e 5 a5 )t (10
Equation (15) reflects both finite strains and density changes.
The solution procedure in the plastic region is an inverse

numerical integration beginning at the interface ¢ = 1 and
proceeding to the cavity surface ¢ = 0. Dependent variables

U=u+¢, N=(dU/d¢t) /& (16a, b)

are used to convert (15) into a pair of first-order nonlinear
differential equations which are solved by a Runge-Kutta
integrating subroutine [11]. A value for the unknown constant
o is assumed. With the restriction &? < 1 + 2u/3, the
coefficient of d?i/d$? in (15) will always be negative and no
singularity will occur during the integration. Continuity of &
at £ = 1 gives a starting value, U(£=1), while (14) with the
assumed value of « gives v, from which N(£=1) is deter-
mined. The integration progresses with ¢ decreasing until ¢ =
0 is reached and U(¢=0) is calculated. Then the cavity ex-
pansion velocity ¥tan¢ corresponding to the assumed value of
o is determined

Vtang =c, U(0) = acp U(0) an

The stresses o, and ¢, in the plastic region are related to the
displacement through (13), (3), and (5). Graphical results are
produced conveniently by assuming a range of values of « and
calculating directly ¢,/K over a range of values of V. Results
of the calculations show ¢, is always positive and oy > —Y
for high enough values of the expansion velocity V. Then the
assumed elastic-plastic response is valid. At low values of V,
the tensile limit is exceeded, gy < —Y, and radial cracking
should be modeled.

Quasi-Static Penetration

(15)

When the penetration speed is low enough, a quasi-static
analysis of the target response is valid and leads to a closed-
form result for the penetration resistance. Solutions of this
type with application to metal punching have been developed
in [9]. The target response consists of three regions denoted
plastic (rg < r < ry), cracked (r;, < r < ry)andrigid (r, <r)
where 1 and 2 refer to the interfaces in Fig. 1 and r is the
Eulerian coordinate. The rigid region approximates an elastic
region in which (6) is satisfied. If o, = Y at r = r,, the
maximum tensile stress in an elastic regionis 0, = —Yatr =
r,. The elastic region is approximated by a rigid region by
requiring
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u(r)=0; a,(r)=Y (184, b)

In the cracked region we require g, = O to represent radial
cracking of the material when its tensile strength is exceeded,
0y < — Y. This region is significant if Y is much less than the
compressive strength Q, as for rocks [7].

Stress Solution. Rewriting (2) in terms of r and omitting
the interia term gives the equation of static equilibrium. This
is integrated in the cracked region by using o, = 0, = Oandin
the plastic region by using (4), (5), and (7). After satisfying
(180), incipient plasticity (5) at r = ri, and continuity of o, at
ry, the stresses are determined in terms of the unknown r;.
Particular results are

ry/ry =(1e/Y)/ (1 —u/3) (19)
7o [(142p/3) /| WO+
T [a——,ua) (E) —1] (20)

where o, is the radial stress at the known cavity surface ry.

Displacement Solution. The compressibility equation (3) is
now used to determine the displacement field ¥ and the ratio
ri/ry. In (3) po/p is written in terms of P through (4) and,
following Chadwick [12], the substitution ¥ = r—R is made
to give
_ rdr
" (1-P/K)
After substitution for the previously determined stresses in P,
equation (21) is integrated. The result that satisfies R = b at r
= rg, equation (18a), and continuity of displacements at r; is

RdR @n

b2 +25,1 xdx
o 7o ]
142 70 /x) w2
poopd-w3) !
5 r2 xdx
=r —2S - (22)
e Toly
B—u)x

where b is the initial hole radius. 7, is a small parameter, 7,
< < 1, and the integrand on the right side of (22) is ap-
proximated by

X 7ol

Tol' (3—M)

T B-wpx

while the terms involving 7, in the integrand on the left side of
(22) are neglected. Then setting » = 0, and using (19) gives

. _ 172
n_Gom Iy
ro ‘?'0 6

where ¥ = Y/K. The error in the approximation (23) is less
than 1 percent for the antelope tuff parameter values given in
the following. The stress o,, required to expand a hole from
zero initial radius to finite radius ry is given by (20) with ry /ry
given by (23) and estimates the stress on a penetrator at low
speed.

In the limit as p — 0, equation (23) and the use of
L’Hospital’s rule with equation (20) gives

0',0=T0(1+1nr—1), [,LZO
ro
Equation (24) has application to quasi-static penetration in
materials such as concrete and sea ice which have ap-
proximately constant shear strength over a substantial range
of pressure.

(23)

24
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Rigid-Cracked-Plastic Response

Results (given later) of the elastic-plastic solution for an-
telope tuff parameters show o, exceeds the target tensile
strength o, < — Y at low enough penetration speeds. A model
is introduced in which the dynamic target response consists of
three regions as for the quasi-static response, a plastic region
for 0 < R < R, acracked region (64 = 0) forR; < R < R,,
and a rigid region for R > R,, where R is the Lagrangian
coordinate. The interfaces at R, and R, are propagating
radially outward and o, > 0O is required in the plastic region
since material enters it from the cracked region. The loading
path of a material particle is shown in Fig. 3.

A similarity variable is introduced based on the outer wave
speed ¢, and the dependent variables are written in the
nondimensional form

£= 5 T X ;U= L

’ 25 7b7
cyt Cyt Cy ( 4 C)

which apply throughout this section.

Field Equations. The effect of radial cracking is accounted
for by setting g, = 0 in the cracked region. Using (3), (4), (7),
and (25a, b) in (2) gives the equation of motion for the
cracked region

[ Z -]

+(1+ ﬂ)[ﬁ—z(gm)g—g]:o,glq« 26)

d¢ £

a=cy/c, 27)

The equation of motion in the plastic region has the same
form as before (15) with £, @, and « now given by (25a, b),
and (27).

Interface Conditions. As discussed in the quasi-static
response section, the rigid region approximates a region of
clastic response and is represented by requiring

u=0; v=0 ag=—Y (28a,b,c,d,e)

at & = £,

Applying the conservation of momentum and mass
equations (8) and (9) across the rigid-cracked interface §,,
using gy = 0 at &5, and using (4), (7), and (286-d) gives

0=po; 0,=Y;

o =3—T/v," (29)

with o and v, ~ given by (27) and (25¢).

At the cracked-plastic interface &;, a similar procedure
shows v, p, ¢,, and o,y are continuous. An additional condition
holds at this location,

o =10/(1 —u/3)
as determined from (5) with g, = 0, = 0.

30

Solution Procedure. As in the elastic-plastic calculation,
the field equations (26) and (15) are numerically integrated
using the variables U, N (16a, b). One difference is that now
both interface speeds ¢, and ¢, are unknown at the beginning
of the solution. A value of @ = c¢,/cp is assumed which
through (29) determines v, ~ . With this and # = 0, equations
(16a, b) determine starting values of U and N for a numerical
integration of (26) which continues until a value of o, is
calculated which satisfies (30). The corresponding value of £
= £, and the cracked-plastic interface speed is determined
fromc,/c, = &, + u,. At £, the variables are continuous and
the plastic field equation (15) is now integrated until £ = 0 is
reached and V is determined through (17).
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Fig. 4 Radial stress profiles in antelope tuff for two target response
models and two penetrator velocities
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Fig. 5 Radial stress on the conical nose of a penetrator into antelope
tuff for various target response models

Results and Comparison of Response Models

Following the numerical procedures discussed previously,
results are calculated for the various response models using
the antelope tuff target parameters u = 1, 7, = 0.005, v =
0.234, and Y = 0.0007 from [7, 8]. Stress wave profiles in
antelope tuff are shown in Fig. 4 for the elastic-plastic and
rigid-cracked-plastic models at two penetrator velocities.
Vtang/cp = 0.104 is the minimum speed at which the tensile
strength is not exceeded in the elastic-plastic solution and the
curves agree closely, except for the small jump at the elastic-
plastic interface. At the lower speed the tensile strength Y is
exceeded over a region of the elastic-plastic profile which is
approximately half the extent of the cracked region. These
profiles are representative of quasi-static profiles which
depend on the current cavity radius, but not on its history,
and, therefore, also represent the response produced by an
ogival-nosed penetrator at low speed. They indicate the
loading of a material particle increases monotonically and
smoothly in contrast with the loading process (initial peak
followed by unloading) which has sometimes been assumed in
previous penetrator analyses as justification for the locked
hydrostat approximation.

Figure 5 shows the radial stress component on the conical
nose o,, over a range of penetration speeds. For Vtan¢/cp >
0.104, numerical results indicate ¢, = — Y and the elastic-
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Fig. 6 Radial stress on the conical nose of a penetrator into antelope
tuff and sea ice for various values of the tensile strengths

plastic solution is valid. At lower velocities a cracked region
should be modeled in the response. The rigid-cracked-plastic
solution gives a 20 percent lower value of o,4 than does the
elastic-plastic solution as ¥V — 0 and does not differ
significantly for Vtané/c, > 0.104. At low penetration
speeds the rigid-cracked-plastic stress on the penetrator is
higher than that which would be calculated if the rigid region
were replaced by an elastic region.

The model of [4] is based on (4) and (5) with 7, = 0. It gives
6o — 0as ¥V — 0, but approaches the other models at high
enough velocity.

The ‘‘rigid-plastic’” model consists of a plastic region
governed by (15) and a rigid region represented by setting o}
= 79 (1—u/3), from (30), and u;* = 0 at R = R{ . This
model overestimates o,y by about a factor of two in the quasi-
static limit and merges with the more accurate models at
higher speeds.

A comparison of elastic-plastic results based on ¢, = (o, +
09)/2, as frequently assumed in metal analyses [9], and on o,
= gy, as used in the present work, shows a maximum dif-
ference of 12 percent in ¢,y in the quasi-static limit and a
smaller difference at higher speeds. )

Tensile strength measurements for rock may vary by a
factor of 2 or more as discussed in [7]. Figure 6 shows the
effect of uncertainty in Y on the stress versus velocity curves
for antelope tuff (u = 1, 7, = 0.005) and seaice (u = 0, 7y =
0.0026 from [13]) for the rigid-cracked-plastic model. Dif-
ferences in Y are significant only at very low speeds for both
materials.

Figures S and 6 indicate that the rock property detail
required to estimate penetration resistance depends on the
penetrator speed. At the highest speeds shown, it is sufficient
to know pg, K, and u; as the speed is decreased, 7, is also
needed; and at still lower speeds into the quasi-static regime,
Y becomes important.

Compﬁrison With a Field Test

Results from the rigid-cracked-plastic, cavity-expansion
analysis shown in Fig. 5 are used to compute the deceleration,
velocity, and depth histories corresponding to a recent field
test into a layer of antelope tuff [14]. Target material data are
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Fig. 7 Acceleration — time measurement and predictions for a field
test into antelope tuft

presented in Figs. 2 and 3. Parameters used in the theory are
those of Fig. 5 and K = 2.0 GPa, py = 1.62Mg/m?.

The penetrator had total length 1.56m, aft-body diameter
0.156m, an ogival nose shape with 6.0 CRH (caliber radius
head), and mass 162 kg. For this test, the penetrator was
propelled with a Davis Gun [4] and impacted the antelope tuff
layer at 520 m/s. A 55.3 kg pusher plate, which fits the in-
ternal diameter of the gun barrel, was attached to the end of
the penetrator. An onboard accelerometer measured the
deceleration history with 2 kHz resolution and this was in-
tegrated to give velocity and depth [14]. The deceleration data
were filtered to 500 Hz to remove structural vibrations and
obtain the rigid body deceleration shown in Fig. 7.

The theory in this study is for a penetrator with a conical
nose whereas the test penetrator had an ogival nose. Data
from several hundred soil penetration tests [2] indicate that a
6.0 CRH ogival nose and a conical nose with tan¢ = 0.30 are
nearly equivalent and this is used for the calculations.

For the theory, it is assumed that no deceleration takes
place until the equivalent conical nose is embedded. Post-test
observations of dry rock, concrete, and sea ice targets indicate
a crater near the target surface, which is usually one to two
nose lengths deep, followed by a tunnel, which has nearly the
penetrator aft-body diameter. As in [4], sliding frictional
forces between the conical nose and the target are neglected
and equilibrium in the r and z directions is applied to a target
particle at the conical surface to show ¢ = 0,y = 0,9, where o
and o, are the normal pressure and the radial stress on the
conical nose, respectively. Integrating the normal pressure
over the nose gives F = ma® 0,5, where F is the resultant axial
force on the penetrator and a is the aft-body radius. The curve
of Fig. 5 for the rigid-cracked-plastic model is used to
calculate the penetrator rigid body deceleration which is
compared with the measurement in Fig. 7. According to the
theory, at t = 0.50 ms the nose is just embedded, at 1 = 3.0
ms the pusher plate is removed from the penetrator by the
rock surface producing a deceleration jump, and at 40 ms the
penetrator velocity reduces to zero and is assumed to remain
zero which results in the deceleration jumping to zero. The
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corresponding calculated final penetrator depth is 7.0 m while
the measured depth was 7.9 m.

The theory underpredicts deceleration at late time and this
could be accounted for by the effect of sliding friction be-
tween the penetrator and rock target. Post-test observations
[15] of penetrators show surface melting of the nose and some
wear on the aft-body. Data for steel on steel [16] indicate a
constant coefficient of friction f = 0.08 for sliding velocities
greater than 300 m/s and that f increases as the sliding
velocity decreases; e.g., f = 0.25 at 30 m/s. A comparison of
the computed and measured responses shows a departure in
the velocity regime where the data of [16] would indicate an
increased friction resistance. If friction is included on the nose
and neglected on the aft-body, the resultant axial force is F =
7a® g9 (1 + f/tang), where f is the coefficient of sliding
friction between the penetrator nose and rock target. In [16] it
is suggested that the frictional resistance is controlled by a
thin melt layer of the material with the lower melting point,
which for the penetrator test would be the steel of the
penetrator. Thus, the steel on steel data may approximate the
sliding frictional resistance of steel on antelope tuff and these
data from [16] are used to obtain the predicted deceleration
curve with friction in Fig. 7. This curve shows a significant
increase in the deceleration just prior to the penetrator
stopping which is in qualitative agreement with the measured
deceleration.

Conclusions

At high enough penetration speeds, an elastic-plastic
solution for the Mohr-Coulomb target response is valid, while
at low speeds an additional response region containing radial
cracks is needed in the solution. The present target model
gives a nonzero minimum force on the penetrator in the quasi-
static limit as compared with a zero force from the model of
[4]. Calculated stress wave profiles in antelope tuff show
smooth, monotonic loading of a target particle for either
conical or ogival-nosed penetrators over a substantial low
speed regime. Graphical results indicate that the target
description detail required to determine the force on a
penetrator depends on the penetrator speed. A comparison of
predicted and measured penetrator decelerations for a field
test into antelope tuff shows reasonable agreement. A sharp
increase in the measured deceleration just before the
penetrator stopped could be a result of velocity-dependent
frictional forces.
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Inertial Effects in Poroelasticity

R. M. Bowen
Mem. ASME

The dynamic behavior of a chemically inert, isothermal mixture of an isotropic
elastic solid and an elastic fluid is studied. Geometrically, this mixture is assumed to

comprise a layer of fixed depth, bounded below by a rigid, impervious surface, and
above by a free surface to which loads are applied. The resulting boundary-initial

R. R. Lockett’

value problem is solved by use of a Green’s function. Two different loading con-

ditions are used to demonstrate the effect of including inertia terms in the equations

Department of Mechanical Enginsering,
Rice University,
Houston, Texas 77001

of motion. In the first example of a constant compressive load, our result is found
to agree with the inertia-free solution only for a certain long-time approximation.
The second example shows that for a harmonically varying compression, resonance

displacements occur at certain loading frequencies, whereas the solution obtained
by neglecting inertia does not predict this behavior.

1 Introduction

This paper is concerned with the question of whether one
can justify neglecting constituent inertia terms in the
equations of poroelasticity. The poroelasticity model is a
linearized model of a compressible isothermal mixture of an
isotropic elastic solid and an elastic fluid. Formulations of
this model can be found in many articles on poroelasticity. In
this paper, the governing equations are presented in the
notation used by Bowen [1, 2].

If one approaches classical diffusion theories from the
standpoint of the general theory of mixtures, it becomes
apparent that Darcy’s law and Fick’s law can only be reached
after a complicated list of specializing assumptions. This list
always contains some assumption regarding the acceleration
of the constituents. Within the context of porous media
models, Darcy’s law simply neglects the acceleration of the
fluid. It is frequently the case that the acceleration of the solid
is also neglected. For example, the classical article by Biot [3]
developed an inertia-free model for the study of consolidation
problems. This model has been utilized extensively in the
study of fluid-filled porous materials. The article by Rice and
Cleary [4] should be consulted by readers interested in the
Biot model.

When interia terms are neglected, the resulting partial
differential equations are singular perturbations of the
original equations. As such, one would not expect the ap-
proximate equations to yield acceptable short-time solutions.
For example, one could not satisfy the same number of initial
conditions with the approximate equations. In spite of the
singular nature of the inertia-free approximation, persuasive
arguments can be made that suggest that inertia terms are only
important for times that are small. Roughly speaking, one
argues that diffusion is a slow process whose effects become

1 Currently at M.1.T., Cambridge, Mass. 02139,
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important for a long time. Therefore, suggests the argument,
one might as well neglect at the outset terms in the governing
partial differential equations which have no significant efffect
on the long-time answers. By the use of a rather simple
example, we will show that the preceding argument is not
always correct. An example will be given that illustrates a
long-time inertial effect that cannot be neglected.

The approach used here is straightforward. We will for-
mulate and solve certain problems with and without the
inertia terms. We will then look at approximations sufficient
to reduce the solutions with inertia to the solutions without
inertia. Next, we will investigate whether these ap-
proximations are realistic. In deciding whether a particular
approximation is realistic we will frequently use order-of-
magnitude arguments based on published material properties
of definite porous materials. The material properties adopted
here are those summarized by Rice and Cleary [4].

Section 2 contains a summary of the governing equations of
poroelasticity. Section 3 represents the solution of a class of
one-dimensional injtial-boundary value problems in terms of
an appropriate Green’s function. The initial-boundary value
problem for the Green’s function is such that it can be
represented in a classical form as an eigenfunction expansion.
The time-dependent part of the Green’s function obeys a
system of ordinary differential equations. The inertial effects
of interest in this paper are isolated in the form of this system
of equations. Section 4 contains the details of how one
calculates the Green’s function. This calculation involves
factoring a certain fourth-order polynomial. It turns out that
rather accurate approximations can be derived for the roots of
this polynomial. Section 5 contains the derivation of these
approximate roots.

Section 6 contains our first example problem. Essentially it
is the same one-dimensional problem solved by Biot [3] except
that all inertia terms have been restored. This problem at-
tempts to determine the displacement resulting from a
compressive load applied to a porous material of specified
length. The sufficient conditions required to reduce this
solution to Biot’s are discussed in detail. Among these con-
ditions is one that characterizes the initial layer, inside of
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which inertial terms cannot be neglected. By use of the
example data mentioned in the foregoing, the conclusion for
this problem is that inertial effects are essentially unim-
portant. In other words, ‘the sufficient conditions are
reasonable physical assumptions.

Our final section contains a slight modification of the Biot
problem. The compressive load is allowed to oscillate with a
prescribed frequency. This problem is solved with and
without the inertia terms. In this case the approximations
sufficient to reduce the solution with inertia to the one
without are simply unacceptable. We will show that the
prescribed frequency must be unreasonably small so one can
utilize the inertia-free solution. This example illustrates the
long-time inertia effect essential to the premise of this paper.

In Appendix A we have listed the material constants that
have been calculated from the data presented by Rice and
Cleary.

2 Governing Equations of Poroelasticity

For a binary isothermal mixture of an isotropic elastic solid
with a linear compressible fluid, the governing partial dif-
ferential equations are:

2

d‘u . _
or -“atzf =\, grad(div u;) + A grad(div uy)

an alls )
—fl— = 2.1
g( at ot @b
and
d*u, . , '
Ps W = (>\s + »u'x) grad(dlv us) + s dlv(grad us)
. auI alls )
+ Ay grad(div uy) +£(7 5 ) (2.2)

where p; is the reference density of the fluid, u; is the fluid
displacement, p, is the reference density of the solid, and u; is
its-displacement. The coefficients N, As, A, and u, are elastic
constants, and £ is the drag coefficient. A derivation of these
field equations from the general theory of mixtures can be
found in the articles by Bowen [1, 2]. The material constants
in (2.1) and (2.2) are required to obey the following
inequalities:

A, >0, @.3)
2
)\f()\:"}‘ 5[45> >)\2f5, (2.4)
ps >0, @.5)
and
£>0. @.6)

The constitutive equations used to derive (2.1) and (2.2) are
T= (A +Ns) (div u,) I+ (N + N ) (rEg) T+ 2p,E
2.7

and

2.8)

where T is the stress on the porous material and p, represents
the chemical potential for the fluid. It is customary to replace
the chemical potential by the fluid pore pressure P;. These
two quantities are related by

orus=—Asdivu,—Ng trEg,

OPr=prus, 2.9

where ¢ is the porosity of the solid in its reference state, The
quantity E; appearing in (2.7) and (2.8) is the infinitesimal
strain tensor for the solid, defined by
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1
ES:E (grad u; + (gradu,) 7)., (2.10)
This work is concerned with one-dimensional longitudinal
motions of the fluid and solid. For this case, the field
equations may be simplified and written in matrix form as

%u . 0%u du
— =Q—— —¢tE—. .
M ar? Q ax? £ ot @10
Here, u is the displacement matrix defined by
up(x,t)
u= , 2.12)
Us (x,1) ,

where u; and u, are now the one-dimensional fluid and solid
displacements, respectively. The matrices M, Q, and E in
(2.11) are symmetric matrices defined by

-
M= , 2.13)
0 Ps
A A
Q- { s } @.14)
)\fs N +2u,
and
1 -1
E= [ } . 2.15)
-1 1

Here, M is the bulk density matrix, Q is the elastic coefficient
matrix, and £E is the damping matrix. Because of the
inequalities (2.3)-(2.5), the matrix Q is positive definite.
Clearly M is positive definite and E is positive semidefinite.

3 Boundary-Initial Value Problem Formulation and
the Green’s Function

In this paper, we are interested in a class of boundary value
problems geometrically similar to one investigated by Biot [3].
Consider a column of fluid-saturated poroelastic material
confined laterally by a rigid sheath so that no lateral ex-
pansion can occur. At the top, the stress and the pore pressure
are prescribed. At the bottom of the column, the fluid and
solid displacements are prescribed.

In the mathematical statement of this problem, take x to be
positive downward with its origin at the upper surface.

Initially we have
u(x,0)=f(x) 3.1

and

ou
o (x,0)=g{x) (3.2)

for 0 < x < h, where k is the length of the column. Atx = 0
we require that

T(0,t) = —s(¢) 3.3)
and

Py(0,1) =r(1) (3.4)
for0 < t < oo. At x = h we require that

u(h,t) =k(1) 3.5)

for 0 < ¢ < oo, The functions f, g, s, #, and k constitute the
data for our class of problems and, of course, are regarded as
given. It is convenient to define a column matrix q(¢) by
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—¢r(t)
qa() = . (3.6)
—s(t) +or(t)
With this definition, the boundary conditions (3.3) and (3.4)
can be written

o 0.0 =q(s

after (2.7)-(2.9) and (2.14) have been used. -

By use of standard Green’s function arguments, the
solution u(x,f) of our initial-boundary value problem can be
expressed in terms of the data and a Green’s matrix. The
result is as follows:

h
“(xat) = SO G(x,t,X(),O) M g(xo)dxo

a A
o So G (x,1,%0,0) M £ ()%

h
+£] G nt0,0 Efro)dx,
!
- | 60ar0.0) atodro

e
_SO o, (ot 10) Qk (1)t 3.8)

The quantity G (x,¢,x0,%0) is the Green’s matrix defined by

3G aG
M _(:’? (xat:xO’tO)+ ‘EE _5; (X,t,xo,fo)

-Q ?’:T? (x,8,x0,80) = 8(£~£)6 (x—xo)I, 3.9

where 7

G(x,t,x9,4,)=0 (3.10)
fort <tyand0 < x < A, ‘

G (h,t,x0,t)=0 (3.11)
for 0<¢< oo and

% (0,tx010) =0 (3.12)

ax

for 0<t< oo, In (3.9) I is the 2 x 2 identity matrix, x, is an
arbitrary point in (0,4), and ¢, is an arbitrary time in (0, 00). In
addition, 8(x—xg) and 8(¢— ) are the Dirac delta functions
with poles at x, and ¢, respectively.

4 Solution for the Green’s Function

We will use an eigenfunction expansion to determine

" G(x,,x5,09). If one examines the eigenfunctions associated

with the space part of our differential operator, it is possible
to conclude that G (x,1,x,,%,) has the representation

@2n—1nx

G(xt%0,00)= Y3 K, (110) Cos =

n=1

os (2n—Dwx, '
2h

Note that (4.1) obeys the boundary conditions (3.11) and

(3.12). The 2 x 2 matrices K,, are determined by substitution

of (4.1) into (3.9). The result of this calculation is that each
K, (¢,fy) must obey :

C (4.1)

336/ Vol. 50, JUNE 1983

(3.7)

@n-1)27?

MK, (160)+ EEK, (1,60) + =17 Q K, (1,1o)
2
= 8(t—1) L. 4.2)
The initial condition (3.10) implies that
Ku (1,10)=0 (43)

for + < t,. This fact allows us to compute the Laplace
transform of (4.2) and obtain

Q@n—1)x2 _ 2
T Q) K, (s,t0)= " e s ],

where s denotes the transform parameter and K, (s,t)
denotes the Laplace transform of K, (##). The formal
solution of (4.4) is

Kn (S,t())

(szM +EsE+ 4.4

2n—1)2 72
s? adj M+ £s adj E+ (——4}17)1 adj Q

= — st
= -— ¢ S0 s

) Q2n—1)*7? )

det (s M+EsE+ e
where adj denotes the matrix adjoint operation. In other
words, adj Q is the transposed matrix of cofactors of the 2 x
2 matrix Q. Because M, Q, and E are 2 X 2 matrices, the adj
operator is linear. It is useful to note in passing that if we
neglect inertia in (4.5) by placing M to zero, the resulting
formula is the one obtained by Bowen [S, Sect. 4] in the
derivation of the Green’s function for classical consolidation
problems. _

To compute the inverse Laplace transform of K, (s,f,) in
(4.5), we must calculate the roots 8, of

2.2

(27 IRt « Q) 0.
4h?

The four roots of (4.6) are either all real, two real, and one

complex conjugate pair, or two complex conjugate pairs. In

each case it is possible to prove that the real part of each root

cannot be positive.

Since analytical solutions to fourth-order polynomials are
difficult to interpret, it was necessary to solve (4.6)
numerically for certain example porous materials. The
materials selected and their material properties are discussed
in Appendix A. For our immediate purposes, it is sufficient to
note that none of the materials considered had four real roots
for any nonzero value of n. Roughly speaking, for small »
there are two real and one complex conjugate pair of roots,
and we will factor (4.6) in the form

@n-1)%7*
, 4n? Q>
=det M (B, +a,) (By+v,) ((By+ &)+ k).

As n increases, the numbers «, and vy, approach each other
until they become equal. For larger values of n these two real
roots branch into another complex conjugate pair. In this
case, we will factor (4.6) in the form

@n—1y7?
a9
=det M((B, + £ " + w0, 2B + §: P + w0, P2).

4.5)

det (,8,2, M+£6, E+ (4.6)

det( 2 M+ £8, E+
@7

det(Bf, M+£8, E+
4.9)

In the first case, by use of the factorization (4.7), we can
invert (4.5) to obtain

2
K, (t,5))= ~h—H(t—t0){e—"n(’—’o) A, +e - OB,
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—e~ =10 Cos w, (t—15)(A, +B,)

n

. oy = -
+e =0 Sin w,,(t—-to)( n—ln A+ frg
- w" wn

1
chwo))
wfl

where H is the Heaviside step function,

4.9)

1
A, = - { 2 adjM
" (et M) (vn —otn) (@t — £0) 2 + w2 L7 8Y
-1y m?
—a, tadj E+ (J"Z—ﬁé)—l adj Q], (4.10)
B ! { 2 adj M
n= na
' (et M) (@ —7) ((ra— 6002 F ) U729
. 2n—1)2x* | -
oy fadj B DTy Q}. (.11)
ah
It follows from (4.9) that
K, (15 ,10)=0 (4.12)
and
K, 2
M I (1d i) = = 1L (4.13)

ot h

These results could have been established directly from (4.2).
In the case of large n, the factorization (4.8) is used and
(4.5) inverts to the result

2 1
Ky (bt0)= - H (= to) e~ -0y
Sin w (¢—15)—~ DY Cos wt (£~ 10))
2
+e~ i -0/(CP Sin o (t— 1)

—~D? Cos w? (t— to))} . (4.14)
The matrices C{V, C?, DV, and D{? are defined in terms of
M, Q, E, and the roots of (4.8) by lengthy and complicated
formulas. It turns out that the number of terms in the ex-
pansion (4.1) before one must use (4.14) is extremely large for
the example materials discussed in Appendix 4. For a height
of 100 m, the smallest number of terms arises for Berea
sandstone. In this case it takes more than 12,000 terms before
one must utilize (4.14) rather than (4.9). Thus, for the sake of
brevity, we will not list the formulas that define C{, C{,
D, and DP.

To make comparisons with the inertia-free case, it is
desirable to invert (4.5) in the case where M is placed to zero.
The result in this case turns out to be

@n-12 5
2 - 3 c{t—1p)
K, (t,t5)= S H—t)e 4 F
adj E 8h

(t—1p), (4.15)

tr((adj Q) E) #2(2n—1)? 8

where ¢ is the compressible consolidation coefficient defined
by

o= o (4.16)
&tr((adj Q) E)
and :
1 . det Q ~
F= -~ _detQ
str((ade)E)(adJQ ,,(ade)EadJE>. (4.17)
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The derivation of (4.15) can be found in the article by Bowen
{5, Sec. 4].

Given the representation (4.1) and the preceding forms for
K, (4,1y), the solution (3.8) can be written

@2n—1nx

2h

Q2n—1Dwx,
2h

u(x,t)= i Cos

n=1

h
{K,, (£,0) M§O Cos g (xo) dx,

g 21— Dxo
2h

N <aK,, (1,0) M +£K, (£,0) E) S:C f (xo) dxo}

ot

3 Q@n—Dymx (!
_ "El Cos——z—h—{go K. (t,t0) a (tp) dty

+(= 1y

(2n—1)7r§" } @4.18)

W OKn(t,fo)Qk(fo)dto

In the case where inertia is neglected one simply takes M to be
zero in (4.18) and adopts (4.15) as the expression for K,, (¢,4,)
rather than (4.9) and (4.14).

5 Analytical Approximations
Consider the polynomial (4.6) written in the expanded form

(det M) 87 + £ tr ((adj M) E} 65

1) 72
+ 2T i (adiM )
2n— 1)
+ 20T dr ((adi Q E) B,
14t
+9%71 det Q=0. 5.1)

It turns out that rather good analytical approximations to the
roots of (5.1) can be derived in certain cases. These ap-
proximations are useful when we compare our results with
results from the inertia-free approximation. First we need to
introduce the acceleration wave speeds u; and u, defined by
the roots of

det(Q—u*M) =0 (5.2)
and the ““frozen’’ wave speed u, defined by
tr(adj Q) E
3 radiQ) 5.3)

tr(adiM)E

If by convention we take u; to be the largest acceleration wave
speed, then it can be shown that

¢4

Readers interested in the origins of the squared speeds u3, u?,
and u3 within the context of wave propagation problems in
poroelasticity should consult Biot [6], Bowen [1, Section 2.10;
2, Section 10], Bowen and Chen [7], and Bowen and Reinicke
I8]. Given the definitions (5.2) and (5.3), the polynomial (5.1)
can be written

ul zud >uj.

2n—1)% 72
g oottt T (i 6
@n-1)*7* Qn—1y 7t
where
_r{@adiME} (1 1)
Wp = det M —E p_f + 05 . (5.6)
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Numerical values of constants ug, u;, 4, and wy are shown in
Table 1 of Appendix A. The quantity wyg is defined in terms of
the drag coefficient in such a fashion that it has the physical
dimension of frequency. Therefore, 1/w, is a characteristic
time of diffusion. As Table 1 indicates, this time is very small.
For this reason we seek approximations to the four roots of
(5.5) valid for small ¢,, where ¢, is a dimensioniess quantity
defined by

_@n-Dm Ug
T wp

Because ¢, increases with n, the approximations given in the
following are not valid for all n. However, ¢, is small for
rather large n for the example materials shown in Table 1
providing the height 4 is not exceedingly small. For example,
with an & of 100 m, the largest value of ¢, arises for Berea
sandstone. This value is approximately 5 X 105, One can
easily see that it takes approximately 10,000 terms before ¢, is
near unity. Thus, it is not surprising that approximations
based on the assumption of small ¢, are often valid. In the
notation of the factorization (4.7), the approximate roots of
(5.1) are easily shown to be

5.7

u2u2
o, = :482 woe2 +0(ed), (5.8)
w? +ub — ud
o= = ——5—— 6o +0(eD), (5.9)
u? — U (ud — u?
Cn= (~‘——°)L4°—2—) woel +0(e3) (5.10)
2u0
and
W, = wpe, +0(e)). (5.11)
Another form for (5.8) is
2n—1) 72
o, = (—-WL c+0(E). (5.12)

where c is defined by (4.16). If terms 0(e ) are neglected, this
root corresponds exactly to the single root which Biot [3]
obtained in his inertia-free calculation. There is an interesting
special feature of the example materials listed in Table 1. In
each case the speed u, is very close or equal to the speed u,.
Because of this fact, it follows from (5.10) that the values of
the coefficients ¢, will always be extremely small. One could
readily generate approximate roots of (5.1) valid for all n if
one were to construct a small dimensionless parameter based
on the difference u; —u,. Such an approximation might be
useful in certain applications, however we prefer not to ex-
ploit this approach here.?

Given (5.8)-(5.11), it is possible to derive approximations
for the matrices A, and B, defined by (4.10) and (4.11). The
results turn out to be

AII=F+0(E,,) (513)
and
= -—1— _.Ld']_]i:_ — -1 2
B, = wo [tr[(adj M) E} M } +0(en), (5.14)

where F is defined by (4.17). Given (5.13), (5.14), and (4.17),
it follows that

21f one equates u; to ug in (5.1), the resulting polynomial can be shown to
have at least two real roots unless the integer n is larger than 1/2 (1 +
woh/muy). This result is the basis for our comments in Section 4 regarding the
large number of terms in (4.1) before one must utilize (4.14).
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adjQ

1
A,+B =—{—-—~——
T wp Lu detM

+<1—“%"%) adj E }+o 5.15
ud /J tr ((adj M) E} (en) (3.15)
and
1 — -
—M-! + Oy g-n An+ Tn $n B,,
Wy Wy Wy
1 adi E
= e 1 0(e,). (5.16)

wo €, tr{(adj M) E}

It is possible to see from (5.8)-(5.11) some of the fun-
damental differences that result when one retains inertia
term$. When inertia is omitted, (4.15) shows that there is one
exponentially decaying mode for each n. Because of (5.8) and
(5.12), we see that this mode decays slowly. This slow dif-
fusion mode is present in (4.9). The root «,, is of the second
order in ¢, and thus small. Unlike the inertia-free case,
equation (4.9) shows a second diffusion mode. Equation (